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Abstract
We evaluate photoelectron angular anisotropy (-parameters for the process of sequential two-
photon double electron ionization of helium within the lowest order time-independent perturbation
theory. Our results indicate that, for the photoelectron energies outside the interval defined by
the one-electron energy conservation, there is a considerable deviation from the dipole angular

distribution thus indicating the effect of electron correlation.
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I. INTRODUCTION

Rapid development of experimental techniques has given a considerable impetus to studies
of multiphoton ionization in the XUV photon energy range. One of the most fundamental
processes of this kind is two-photon double electron ionization (TPDI) of the helium atom.
There are two physically distinguishable regimes of TPDI. One, the so-called non-sequential
ionization (NSI) regime, occurs for the photon energies exceeding the TPDI threshold at
39.5 eV. Another, sequential ionization (SI) regime, is taking over at the photon energies
above the ionization potential of the singly charged helium ion IPg.+ = 54.4 eV. In this
regime, the first photon knocks out one of the electrons from the neutral He atom. The
second photon has enough energy to ionize the He™ ion. According to this scenario, the
two photoelectrons leave the He atom independently and are expected to have energies
Etst = w — IPge and Egow = w — IPge+, Where [Py, = 24.6 €V. Such an energy distribution
is very different from the NSI regime where the single-differential, with respect to the energy,
cross section (SDCS) is typically a broad concave curve [1].

The cross-over from the NSI to the SI regime is not an abrupt one. The SI regime starts
to manifest itself for the photon energies even below the sequential threshold. It was shown
in Ref. [2] that, when approaching the SI threshold from below, the SDCS exhibits rapid
growth at the extremes of the energy sharing which is a precursor of the two peaks appearing
in the SDCS in the SI regime.

Because TPDI in the SI regime can take place without any inter-electron interaction, the
role of many-electron correlation in this process is expected to be insignificant. However, the
mechanisms of TPDI become more subtle for very short laser pulses in the sub-femtosecond
regime. This was demonstrated in theoretical studies [3-6] which relied on numerical solu-
tion of the time-dependent Schridinger equation (TDSE). This approach allowed to reveal
interesting effects related to the duration of the laser pulse. In principle, the ST and NSI
regimes can be distinguished as follows. Under certain assumptions, the probability of SI
scales as a square of the total duration of the pulse while NSI scales only linearly [5]. These
scaling laws are only valid if populations of the initial atomic state and intermediate state

of the He™ ion do not change appreciably during the whole interval of time considered,



which means that the laser pulse should be either short or of weak intensity [7]. It was
found in Ref. [5] that for such pulses additional (anomalous) component is present in the
electron spectrum which is due to sequential ionization and depends quadratically upon the
pulse duration. This anomalous component was attributed to the process of relaxation.
After the first ionization event takes place, the Het ion is in a non-stationary state. It
relaxes subsequently to the ground state. During this relaxation, the photoelectrons still
exchange energy. This leads to an increase of SDCS in the region of the mid-energy point
Es = (Brtast + Faiow) /2.

This study was continued in work [6] where, in addition to SDCS, photoelectron angular
distributions were also studied. Authors used pulse parameters similar to those under in-
vestigation in Ref. [5]. It was found that, in agreement with results of Ref. [5], correlation
is responsible for the increase of SDCS at the vicinity of the mid-energy point (the ”corre-
lation valley” according to the authors’ terminology). Moreover, the photoelectron angular
distribution reveals quite distinctive features for different energy sharings. When ejected
electrons share energy as Fr,s and Egow, their angular distribution is strongly dipolar which
is a clear signature of an uncorrelated TPDI process. On the contrary, for the energies of
the photoelectrons in the correlation valley, this distribution is dominated by a quadrupole
contribution, thus indicating a very significant role played by the electron correlation.

Another manifestation of the effect of correlation in TPDI SDCS for short pulses is the
shift of the peaks towards each other [4-6]. These correlation effects are prevalent for short
laser pulses. They are expected to disappear when the pulse duration becomes large. Nev-
ertheless, it is a legitimate question to ask whether any traces of electron correlation remain
in the photoelectron angular and energy distribution for long laser pulses. A useful tool for
answering this question is the lowest order, in respect to the laser field, perturbation theory
(LOPT), which allows to study ionization processes driven by continuous electromagnetic ra-
diation. The LOPT was used in Ref. [8] to study the cross-over from the NSI to SI regimes.
In work [2] an approach based on the LOPT was used to compute the triply-differential
cross sections (TDCS) describing the angular distribution of the photoelectron pair in the

coincident mode.



It is known, however, that prescriptions of the conventional LOPT lead to a problem
in description of TPDI in the SI regime which manifests itself in appearance of divergent
terms in SDCS [2, 8, 9]. The divergence problem can be avoided in the formalism of the
rate equations [7] which allows to get a finite well-defined expression for the SDCS.

In the present paper, we use a conventional LOPT to evaluate the anisotropy /-
parameters characterizing the angular distribution of each individual photoelectron in a
non-coincident mode. These parameters can be extracted unambiguously from a LOPT
calculation and their calculations do not suffer from the divergence problem. We shall also
show that even in the limit of the infinite pulse duration, there are some traces of electron
correlation left in the angular distributions of the ejected electrons for extremely unequal
energy sharings.

The paper is organized as follows. In the next section we give an outline of the theoretical
procedure. Then we discuss the numerical results which we obtained for SDCS and angular

anisotropy parameters for several photon energies.

II. THEORY
A. TImplementation of LOPT.

We follow essentially the same theoretical approach which we used in Ref. [10] for calcu-
lation of the total integrated cross-section (TICS) of TPDI in the NSI regime. We employ
two versions of the LOPT based on the length and Kramers-Henneberger (KH) gauges of
the electromagnetic interaction.

In the KH gauge, the operator of electromagnetic interaction takes the form:
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where & = — / A(7) dr, A is the quantized vector potential, Z = 2 for helium. Operator (1)
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has two lowest order amplitudes connecting the initial and final states:
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Here we adopt the notation for a state vector |a,m), where a stands for a set of quantum
numbers describing the helium atom and m denotes a number of laser photons. In expres-
sions (2) and (3), a is the initial (ground) state of the helium atom, b is the final doubly
ionized atomic state, and c is the set of intermediate states for which the corresponding ma-
trix elements have nonzero values. More details about implementation of the KH technique
can be found in Ref. [10].

In the calculation using2 the length gauge, we have to compute only the amplitude M,

with the operator HE Z F - r;, where F is the field strength.

int =
To perform summatio.‘é?over all intermediate states in Eq. (3) (and its analogue in the
length gauge), we use the discretization method developed in Ref. [11] and applied to the
problem of TPDI of helium in work [12]. As a set of intermediate states in the LOPT
expressions, this method uses a set obtained by diagonalization of the atomic Hamiltonian
in a suitably chosen basis. A variant of the discretization procedure developed in Ref. [11]
which we used in our earlier work [10] for calculation of TICS, gives the following prescription
for the computation of the spectral sums in Eq. (3) (we dropped the photon numbers as
redundant here). We computed the amplitude
<a‘I:I§fH ci> <c,~ Iilng‘b>
E,+w—E, +1i¢
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i
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where ¢; is the discrete set of states resulting from the diagonalization of the atomic Hamil-
tonian, for several small, but finite values of ¢, and then extrapolate the results to the e = 0
limit. For too small values of ¢, the amplitude given by Eq. (4) diverge. This divergence
manifests itself when the parameter € becomes comparable in magnitude to the energy spac-
ing of the nearby states in the vicinity of a pole. Optimum values of ¢, which can be used
for the reliable extrapolation to the e = 0 limit, are generally several times larger than these
energy differences [11]. For this procedure to give reliable results, the set of e-values used for
extrapolation should be chosen such that the density of discrete states c; in the vicinity of

the pole of the perturbation expansion is sufficiently large. We used this recipe in Ref. [10]



to obtain TICS of TPDI of helium for the photon energies below the SI threshold. It was
shown in this work that amplitudes considered as functions of € indeed exhibited a plateau
followed by a rapid growth which started at the values of € of the order of the energies dif-
ference of the states in the vicinity of a pole. This plateau, where Ms(e) is a slowly varying
function of €, could be used for reliable extrapolation.

In the present case of the SI regime, situation is more complex. As we mentioned in
the Introduction, a conventional LOPT, when applied to the sequential ionization, produces
divergent results. The origin of this divergence can be easily seen in Eq. (3) which is, in
fact, present for any one-body operator. The divergence is due to the fact that matrix
elements between a singly-ionized intermediate state 1s™ kp, where one electron is left in
the ground state of the He™ ion and another is in p-wave continuum with momentum &,
and the final state Wy, are singular [9]. Appearance of this singular behavior is most
transparent if the intermediate and final continuum states are represented by Coulomb
waves as in Ref. [8]. Matrix elements of a one-body operator computed with these functions
contain terms proportional to the delta-functions 6(k; — k) and §(ks — k). Such terms, when
substituted into Eq. (3) and integrated over momenta of the intermediate states, produce
the energy denominators E, + w + IPye+ — k?/2 and E, + w + IPge+ — k3/2 . Using the
total energy conservation F, + 2w = k¥/2 + k2/2, these denominators can be rewritten as
k?/2 — w + IPge+ and k3/2 — w + IPge+. For the photon energies w > IPye+ corresponding
to the SI regime, these terms produce infinite probability to observe an electron with the
energy E = w — IPg.+ in the final state.

As we mentioned in the Introduction, there is a way to remove this singularity by employ-
ing a formalism of the rate equations [7]. In this approach, the depletion of the initial and
intermediate states is taken into account. As a result, the energies of the initial and inter-
mediate states acquire imaginary parts proportional to the decay rates of the corresponding
states. Appearance of these imaginary parts in the LOPT energy denominators removes the
divergence of the SDCS which instead assumes a Lorentzian form A/((E —w+ IPyge+)*+17?) .
In this formula, FE is the photoelectron energy, A is a constant, and I" describes the depletion

effects. If depletion effects are not included in the theory and we set I' = 0, this expression



reproduces the divergent form of the SDCS found in [8] on the basis of the conventional
LOPT. From the purely formal point of view, the role of the depletion effects in this respect
results in introduction of the regularization factor I' in the SDCS expression obtained within
a conventional LOPT. The regularization procedure which we employed in Eq. (4) is, in fact,
very similar. Indeed, inclusion of a finite € in Eq. (4) has the same effect as prescribing finite
widths to the initial and intermediate states. For finite values of ¢ we can expect, therefore,
to obtain the Lorentzian profiles for SDCS in the vicinity of the points Egow, Fras. From
what has been said above, it is clear that for ¢ — 0 we should expect neither convergence
nor presence of a ”plateau” for the SDCS as a function of .

The e-dependence of the angular anisotropy parameters, however, does show existence of
a region, where these parameters are slow (in fact, very slow) varying functions of €. Possible
reasons of this behavior will be discussed below. First, we give more numerical details about
the basis set we used in the calculation to implement the discretization procedure and

represent the initial state of the helium atom.

B. Atomic states.

For a reliable implementation of the discretization procedure, we have to guarantee, that
density of the discretized states in the vicinity of the pole of Eq. (4) is high enough. To
achieve this goal, we used the basis constructed from a set of B-splines in a box which we
employed previously for calculations of TICS in the NSI regime[10].

In the present calculation, we used a bigger box size which resulted in a slight modification
of the B-spline set. Details of this set are given below. We use a set of B-splines of the
order k = 7 with the knots located at the sequence of points lying in [0, Ryax]. The bulk of
the results presented below has been obtained for R, = 130 a.u. To demonstrate stability
of convergence of the results with the box size we also performed a separate calculation for
Rpax = 100 a.u.

A typical number of knot points was 40-45. All the knots ¢; were simple ones except for
the knots located at the origin and the outer boundary R = Ry« of the box. These knots

had multiplicity £ = 7. The simple knots were distributed in (0, Ryax) according to the rule



tir1 = at; + B, with 8 = 0.65, and « close to 1 (typically 1.1).

For each value of the angular momentum [, the first [ + 1 B-splines and the last B-spline
resulting from this sequence of knots were discarded. Omission of the first  + 1 B-splines
ensured that any B-spline in the set decreased as r'*™! (or faster) at the origin, the omission
of the last B-spline ensured that all B-splines of a set assumed the zero value at the outer
boundary. The set of B-splines constructed for each 0 <[ < 3 served as a set of one-electron
radial functions R;(r). The two-electron basis functions were built from these orbitals in a
usual way. For the calculation using the box size of Rn., = 130 a.u. we had 2180 basis
functions of the S-symmetry and 3170 basis functions of the P-symmetry. The former
were used for the representation of the ground state of the helium atom. Diagonalization
of the helium Hamiltonian in the subspace of the basis functions of S-symmetry gave the
ground state energy E, = —2.90273 a.u. The basis functions of P-symmetry served for
the construction of the set of the intermediate states ¢; in Eq. (4). In the vicinity of the
pole of the LOPT expansion (4) the energy spacing of the discretized states was typically
of several thousandth of a.u. providing a sufficiently dense representation of the continuum
of P-states.

When checking stability of the results with the box size we used Rpy.x = 100 a.u. Using
the knots distribution similar to the one described above for the R,,x = 130 a.u. calculation,
we obtained 2050 basis functions of S-symmetry and 2978 basis functions of P-symmetry.

The final states which we needed for TPDI calculations were states of the S- and D-
symmetry with incoming boundary conditions describing two electrons in continuum. We
used the convergent close-coupling (CCC) method [13] to represent these states. In this
method, the two-electron scattering state is represented by a close-coupling expansion over

the channel states composed of a target pseudostate f and a Coulomb wave k:

(k) = kf) + 3 gk )

Here (kf|T|k'j) is the half-on-shell T-matrix which is found by solving a set of coupled
Lippmann-Schwinger integral equations [14]. For the target pseudostates f with a positive

energy €5 > 0, the wave function given by Eq. (5) can be used to construct a state with two



electrons in continuum [13]:
U (ko ka) = 3 S VAY (R, o) e R OGO ey 1) W (Ry) (6)
J=02 1115
In Eq. (6) we introduced a bipolar harmonic according to Ref. [15]:
Vi (ke ko) = > CPM s Yim, (F1) Vigm, (K2) (7)
mima
The unit vectors 12:z = k;/k; are directed along the photoelectron momenta. The func-
tion Wy, .4y, 7(k1) results from the partial wave expansion of the scattering wave function
given by Eq. (5), (nsls||k2,l2) is a radial overlap of the target pseudostate and a Coulomb
wave with Z = 2 and matching energy k3/2 = €;. Finally, 67=" (k1) and 6;7=*(kz) are the
Coulomb phases with corresponding nucleus charges. More details on implementation of

this procedure can be found in Refs. [13, 16].

C. Calculation of SDCS, TDCS, and angular anisotropy parameters

By plugging the atomic states described in the previous section into amplitudes of Eq. (2)
and Eq. (3), we can compute the TDCS of a process in which absorption of two photons
leaves the helium atom in a state with two electrons in continuum with the momenta k1, k.
With normalization of the continuum wave functions to the delta function of momentum,
this cross-section (in units of cm?s/eV) is given by the following expression:

do _ 2'mdalagTw? | My (ky, ko) + Ma(ky, ky)|? (8)
dEd%dQ, Ry Ftkyky '

Here « is the fine structure constant, ag = 0.529 x 10~® cm is the Bohr radius, 7 = 2.418 x
107!7 s is the atomic unit of time, Ry = 27.211 eV is the Rydberg constant and k;,k,
are photoelectron momenta. Notation M (ki, k2) is used for the amplitudes in Eq. (2) and
Eq. (3), computed with the final state wave function given by Eq. (6). The SDCS is obtained
by integration of Eq. (8) over the solid angles dQ;d(; . Finally, the angular anisotropy
parameters [, and 4 can be found by integration of Eq. (8) over one of the solid angles and
representing the result as Legendre polynomial expansion:

do do 1
dEdQ dE 4

[1+ B2P2(cos(8)) + BuPa(cos(6))] - (9)
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As we discussed above, the cross-section (8) is divergent in the present LOPT approach.
Consequently, the cross-sections do/(dEdS)) and do/dE in Eq. (9) are divergent. However,
their ratio, which determines the 8 parameters, is not. It is due to this reason that the
LOPT, in its present version, is capable to provide meaningful values for the S-parameters,

as we shall try to demonstrate below.

III. RESULTS

In Figure 1 we show our results for the SDCS calculated at the photon energy of 90 eV.
The KH gauge calculations with the box size Ry, = 130 a.u. are displayed for different
values of the regularization parameter € . At this photon energy, the separation of the
discretized states in Eq. (4) in the vicinity of the pole was approximately 0.003 a.u. If any
sort of convergence of the SDCS with respect to € could be achieved, we should expect it
to be visible on the plot. The value of ¢ = 0.01 lies, perhaps, dangerously close to the
critical value as determined by the energy differences in the vicinity of the pole. Therefore,
discretization procedure is likely to fail in this case. We do not see, however, convergence for
larger values of € either. The SDCS calculated with e = 0.1 and e = 0.05 vary considerably.
Instead of showing a ”plateau” for values of € several time larger than the critical value, the
SDCS exhibits steady growth not allowing for meaningful extrapolation to the e = 0 limit.

Now we turn our attention to the asymmetry S-parameters. Firstly, we perform several
checks, showing that our results do not depend on various auxiliary parameters character-
izing the calculation.

We show results of these checks in Figure 2, where we display the anisotropy (B> and [,
parameters at the photon energy of 90 eV. For the reference calculation, we choose the KH
gauge, the box size Ry.x = 130 a.u. and the regularization parameter ¢ = 0.1. On the left
panel, we reduce the box size to Ryax = 100 a.u. which has almost no visible effect on the 8
parameters. This check assures us of the stability of our calculation with respect to the box
size, which otherwise could have suffered from appearance of spurious unphysical resonances
[17].

A small discontinuity of the S-parameters at the midpoint is an inherent feature of the

10



0.8 | ;
0.7 - " i
0.6
05
04
0.3
02 - s
01 .

SDCS (10> cm? &/ eV)

100

Energy (eV)

FIG. 1: Single differential cross section at the photon energy of 90 €V and different values of the
regularization parameter: € = 0.1, solid (red); e = 0.05, long dash (green); e = 0.01, dash (blue).
The photoelectron energies in the absence of correlation Egow = 35.6 €V and Ef,g = 65.4 €V are

indicated by the tics.

CCC method, which treats the two photoelectrons on different footing. As is seen from
Eq. (6), one, usually the slow photoelectron, is described by the target pseudostates, while
another, the fast photoelectron, is described by the Coulomb waves. Direct calculation of
the TDCS and S-parameters is only possible for Fs < E;. Another half of the photoelectron
energy interval is covered by assumed symmetry of the wave function (6) with respect
to exchange of electron momenta k; <+ k;. In a numerical calculation, this symmetry is
approximate and holds only to a certain degree. This effect is well-known [18], and manifests
itself only in the energy region very close to the midpoint. Unlike the S-parameters, the
SDCS plotted in Figure 1 is symmetrized with respect to the mid energy point and shows
no visible gap.

As another check of consistency of the present calculation, we compare the reference set
of S-parameters with an analogous calculation in the length gauge (middle panel of Figure
1). The two gauges agree reasonably well. Strictly speaking, for a finite value of €, gauge
invariance need not hold [11], it is restored only for the values extrapolated to the e = 0

limit. We believe that, as in our previous calculation of TICS below the SI threshold [10], the

11



Eslow Efast Eslow Efasl Eslow Efast
%} 2r By (— r B, I B /a!:«,:;~‘*‘ijfi""\f~
g a5t I \ e \
4 : Rmax Gauge - € :
£ 130 — KH — 01 —
] ir 100 - r L B

0.01
5 T s B
(3] 4 = P4 ) | T~
g 0 _xm\_/_'_,__/ . I e
2 -05 " 1 " 1 " 1 " 1 " J " 1 " 1 " 1 " 1 " J " 1 " 1 " 1 " 1 " J
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Photoelectron energy (eV) Photoelectron energy (eV) Photoelectron energy (eV)

FIG. 2: Photoelectron asymmetry parameters B2 (top) and B4 (bottom) for the photon energy of
90 eV. The reference KH gauge calculation with the box size Ryax = 130 a.u. and € = 0.1 is plotted
on all panels with the solid (red) line. Left panel: the box size is changed to Rmax = 100 a.u. ,
dash (blue). Middle panel: the KH is changed to the length gauge, dash (blue). Right panel: the

€ parameter is changed to € = 0.05, long dash (green) and ¢ = 0.01, dash (blue).

KH gauge results are considerable more accurate. As one can see, the length gauge results
show some rather unphysical oscillations. A convenient feature of the KH gauge is the fast
decrease of the electromagnetic operator with distance. The KH gauge thus emphasizes the
regions of the box close to the nucleus where, as our rather accurate ground state energy
value indicates, we may hope to have achieved a good description of the electronic structure
of the target. That also explains, why our results are so insensitive to the box size. The
length gauge, on the contrary, puts emphasis on the outer regions of the box, and may suffer
from spurious unphysical effects to a greater degree.

Finally, on the right panel of Figure 2, we compare the reference calculation with the ones
in which the regularization e parameter varies as in Figure 1. As one can see, for ¢ = 0.1 and
€ = 0.05 the S-parameters are virtually identical in the whole range of the photoelectron
energies. Even for the value ¢ = 0.01 which, as we determined above, is, perhaps, too
close to the critical value, deviation of the S-values is not that big. This, we believe, is a
consequence of the fact that determination of the S-parameters does not rely on the SDCS
which diverges in the version of the LOPT that we employ.

It is worthwhile to compare our [-parameters with those which follow from a simple

model of TPDI in the SI regime proposed in Ref. [8]. This model neglects correlations in the
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intermediate and final states and represents TDCS as a product of two dipole distributions
for each of the photoelectrons. Consequently, in this model $5 = 2 and 84 = 0 in the whole
photoelectron energy range. This prediction agrees reasonably well with our data at not too
extreme energy sharings, where deviation from the dipole regime becomes most noticeable.
The authors of Ref. [2] observed themselves that their simple model cannot provide accurate
description of the photoelectron angular distribution for all possible electron energy sharings.
Indeed, they demonstrated that for the photon energy of 58 eV and 90% of the excess energy
carried by the fast photoelectron, the TDCS differs dramatically from the dipole distribution.
Present results apparently confirm this statement.

For the photon energy of 90 eV, in the absence of correlation, the energies of the photo-
electrons should be equal to Egow = 35.6 €V and Eg, = 65.4 eV. These values are marked
by corresponding tics on the top horizontal scale of Figure 2. As one can see, in between of
these energies, (35 is indeed close to 2, while 3, is relatively small. We observe a significant
departure from this simple dipole regime only in the case of extreme energy sharings, either
for E < Egow, or for £ > Ep.

This statement can, perhaps, be raised to a status of a propensity rule. We illustrate
this rule in Figure 3, where we present plots for S-parameters for photon energies of 62.7,
90, and 150 eV. These results have been obtained with the box size of 130 a.u., ¢ = 0.1
and the KH gauge. We have performed the same set of checks for all photon energies as
described above for 90 €V in order to ensure that neither the box size, nor the choice of
the regularization € parameter or the gauge, affects significantly our numerical results. For
the reader’s convenience, we put on the middle panel of Figure 3 the reference data set for
90 eV photon energy, which we presented already in Figure 2.

As one can see from Figure 3, B2 remains close to 2 for the electrons energies in the
interval (Egow, Etast). For electrons energies outside this interval, 8, deviates from 2, this
deviation becoming less pronounced with increase of the photon energy.

One may give an explanation of such a behavior of the parameter £ using the following
simple picture. Let us consider TPDI in the SI regime as a sequence of two ionization events.

To produce photoelectrons with energies outside the interval ( Egow, Erast) the following has to
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FIG. 3: B-parameters for photon energies of 62.7 €V, 90 eV, and 150 eV.

happen. The fast electron, emerging first with the energy E¥.q, has to accelerate further yet.
If we neglect electron correlation completely (as in a simple model employed in Ref. [8]),
or even describe this correlation within a simplified static exchange model, than the fast
electron will see overall attractive potential of the He™ ion. This attractive potential can
only decelerate the electron. For the fast electron to acquire additional energy, correlations
must play a major role. On the contrary, if electrons energies in the final state lie in the
interval (Egow, Frast), the fast electron has to decelerate. This is a process which can occur
without any correlations at all, the attractive potential of the He' ion is enough to produce
such an effect. This may explain the behavior of the B;-parameter seen in Figure 2 and
the fact that in the interval (Eqow, Etast) this behavior does not differ considerably from the
simple dipole behavior.

As to the parameter [3,, this is a more subtle characteristic. This parameter is determined
by correlations in all accessible interval of energies. Any model for 84 should, therefore,
necessarily include correlations, which makes it difficult to provide an explanation for the
observed behavior of £, in simple terms.

Generally, deviation of 85 from 2 and B4 from 0 becomes less prominent as the photon
energy grows. This is quite natural, as electron correlation plays less important role in
emission of fast photoelectrons, which leave the atom quickly and have no time to interact

with each other.
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IV. CONCLUSION.

In the present work, we studied photoelectron angular distributions following the process
of two-photon double electron ionization of He in the sequential regime at the photon energies
of 62.7, 90, and 150 eV. Our study was motivated by the previous works on TPDI of
He in the SI regime [5, 6]. These works demonstrated that, for the laser pulse duration
of several optical cycles, electron correlation leaves its trace in the so-called ”correlation
valley”, the region close to the mid-energy point in SDCS, where anomalous component
of the SI is present. It was also shown in Ref. [6], that the correlation valley displays an
anomalous behavior as far as the angular distribution of photoelectrons is concerned. The
corresponding angular anisotropy J parameters assume values very different from the simple
dipolar behavior one would expect in the absence of electron correlation.

For long laser pulses, the correlation valley should disappear. Our results for S-parameters
indicate that, indeed, in the whole region of energies (Fsiow, Frast) the angular distribution
is of a simple dipole character. This is the result one would expect for the uncorrelated
electrons. This behavior is in a marked contrast with the behavior of the 3-parameters for
TPDI at the photon energies below the SI threshold. For the photon energy of 45 eV [18],
for example, 1 < B2 < 1.4 thus indicating an important role played by correlations for all
accessible electron energies.

The question which we posed to ourselves was, if there were other traces of correlation
left for sufficiently long pulses. Such traces are indeed present for extreme energy sharings
of photoelectron outside the interval (Egow, Efast)- In this energy region, we found a notice-
able deviation of 35 from 2 and [, from zero. This region is only accessible due to electron
correlation, which upsets the energy balance between the photoelectrons. An overall corre-
lation effect is more pronounced for smaller photon energy where correlation plays a more

prominent role.

15



V. ACKNOWLEDGEMENTS

The authors acknowledge support of the Australian Research Council in the form of the
Discovery grant DP0771312. Resources of the National Computational Infrastructure (NCI)

Facility were used.

16



[1] P. Lambropoulos, L. A. A. Nikolopoulos, and M. G. Makris, Phys. Rev. A 72, 013410 (pages 4)
(2005).
[2] D. A. Horner, T. N. Rescigno, , and C. W. McCurdy, Phys. Rev. A 77, 030703(R) (2008).
[3] J. S. Parker, L. R. Moore, K. H. Meharg, D. Dundas, and K. T. Taylor, J. Phys. B 34, L69
(2001).
[4] S. Laulan and H. Bachau, Phys. Rev. A 68, 013409 (2003).
[5] K. L. Ishikawa and K. Midorikawa, Phys. Rev. A 72, 013407 (2005).
[6] I. F. Barna, J. Wang, and J. Burgdorfer, Phys. Rev. A 73, 023402 (2006).
[7] P. Lambropoulos, L. A. A. Nikolopoulos, M. G. Makris, and A. Miheli¢, Phys. Rev. A 78,
055402 (2008).
[8] D. A. Horner, F. Morales, T. N. Rescigno, F. Martin, and C. W. McCurdy, Phys. Rev. A 76,
030701(R) (2007).
[9] D. Proulx, M. Pont, and R. Shakeshaft, Phys. Rev. A 49, 1208 (1994).
[10] I. A. Ivanov and A. S. Kheifets, J. Phys. B 41, 095002 (2008).
[11] E. Cormier and P. Lambropoulos, J. Phys. B 28, 5043 (1995).
[12] L. A. A. Nikolopoulos and P. Lambropoulos, J. Phys. B 34, 545 (2001).
[13] I. Bray, Phys. Rev. A 49, 1066 (1994).
[14] I. Bray and A. T. Stelbovics, Adv. Atom. Mol. Phys. 35, 209 (1995).
[15] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum theory of angular
momentum (World Scientific, Singapore, 1988).
[16] A. S. Kheifets and I. Bray, J. Phys. B 31, L447 (1998).
[17] P. G. Burke, K. A. Berrington, and C. V. Sukumar, J. Phys. B 14, 289 (1981).
[18] A. S. Kheifets, I. A. Ivanov, and I. Bray, Phys. Rev. A 76, 025402 (2007).

17



