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Abstract. We present a calculation of the harmonics yield from the lithium atom
driven by a pulse of A = 3.5 pym laser. Our calculation shows that a considerable
increase of the yield of high harmonics can be achieved if initially the atom is prepared
in an excited 2p state or in a superposition of the ground and excited states. Dynamic
analysis shows that harmonics yield enhancement in this case is a result of mutual
interaction of several excited atomic states.
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1. Introduction

High harmonic generation (HHG) is a nonlinear atomic process which manifests itself
in appearance of odd-order multiple frequencies in the spectra of the atom placed in an
intense electromagnetic (EM) field. From the theoretical side, this is a relatively well
understood phenomenon. Many essential features of the HHG, such as the existence
of the plateau in the spectrum (Krause et al 1992, L’'Huillier and Balcou 1993), can
be explained using classical concepts (the so-called 3-step or recollision model (Corkum
1993). The model describes the HHG phenomenon as a 3-step process consisting of
tunneling ionization of an atomic electron at the moment of time which ensures that
electron in the EM field, following a (completely classical) trajectory, will eventually
return to the nucleus and recombine. This model was used as a basis for a number
of semiclassical approaches (Becker et al 1994, Kuchiev and Ostrovsky 1999, Kuchiev
and Ostrovsky 2001). Entirely quantum description of the HHG process has also been
developed (Usachenko and Pazderezsky 2002). Qualitatively, these later approaches
do not modify significantly the clear picture of the 3-step model. From the quantum
mechanical point of view, HHG can still be regarded as release and quantum evolution
of the atomic electron (described e.g., with the help of the fully quantum-mechanical
strong field approach as in cited work of Usachenko and Pazderezsky (2002)) followed
by emission of the HHG photon. The typical pattern of the resulting HHG spectrum
consists of the first few generally quickly decreasing harmonics followed by the plateau
ending with a relatively sharp cut-off.

The first works in which such a structure of the spectrum was established considered
the atom initially in the ground state driven by the single colour EM field. The spectrum
can be modified if these conditions are changed. Extension of the recollision model for
the case when the atom is driven by a combination of two fields with different frequencies
(Watanabe et al 1994, Protopapas et al 1995) shows that in this way one extends the
spectrum to higher orders. Numerical study of the combined effect of two fields on the
hydrogen atom (Ishikawa and Midorikawa 2002) showed that by adjusting properly the

frequencies of the driving fields one can enhance the high harmonics in the spectrum.
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Another approach to the problem of the modification of the HHG spectra is choosing
excited atomic state as an initial state of the process. It was shown that admission of the
coherent superpositions of various atomic states as initial state may considerably modify
the HHG spectrum (Sanpera et al 1996) introducing additional plateaus in the spectrum.
In work by Paul et al (2005), several orders of magnitude increase in harmonics yield,
in particular for the 7-th and 9-th harmonics, was observed in the experiment on Rb
atoms. Experimental conditions were such that few rubidium states (5s, 5p, 4d) were
populated. The observed enhancement of the harmonics yield was attributed to mutual
interaction of these levels.

In the present work, we perform a study of the HHG process from the lithium
atom, initially in the excited 2p state or in a superposition of the ground and excited
states. We show that a considerable increase of the harmonics yield can be achieved in
this case. Our interest in lithium stems from recent experiments on the intense laser
field ionization of magneto-optically trapped (MOT) Li atoms (Steinmann 2007). The
strong field ionization was driven by a Ti:Sapphire laser at A = 0.795 ym. However, the
combination of the laser wavelength and the characteristic field intensities used in this
experiment did not satisfy the HHG condition as the plateau of the harmonics spectrum
would contain only few harmonics. To stretch the HHG plateau, we apply in the present
study a driving pulse with A = 3.5 um, as in the experimental work by Paul et al (2005).
In addition to the lowest 2p excited state, we shall also briefly consider the process of

harmonics generation from higher lying Rydberg states of Li.
2. Theory.

We describe the field-free lithium atom in the ground state by solving a set of self-
consistent Hartree-Fock equations (Chernysheva et al 1976). We adopt the single active
electron approach and describe the one-electron excitations from the valence 2s shell
in the frozen-core approximation. This approximation provides reasonably accurate
description of the manifold of excited Li states. It places the excitation energies of 2p,
3s, 3p, and 3d states at respectively 1.841, 3.333, 3.797 and 3.830 eV, which compares

well with the known transition energies of Li shown in Figure 1.
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The time dependent Schrédinger equation (TDSE) describing the motion of the

valence electron in the presence of the external EM field can be written as:

._:'\ 1
o ~ HY, (1)

with the Hamiltonian

~

H= IA{atom + IA{int (t)a (2)

where H,iom is the Hamiltonian of the field-free lithium atom. To describe interaction
of the atom and the external electromagnetic field we use the length gauge. The EM
field is chosen to be linearly polarized along the z-axis. The interacting part of the

Hamiltonian can be written therefore as (atomic units are used):

Hipi(t) = f(t)zF cos wt (3)
: - : o : 32 24

Here f(t) is a switching function which is smoothly growing as: f(t) = T2 T3 for
i i

0 <t < T, and is constant for ¢t > 7. The switching time 77 = 5T where T is a cycle
of the laser field. The whole interval of time on which the time-evolution was computed
was 30 cycles of EM field.

To solve the TDSE we follow the strategy similar to that we have applied before
for two-electron systems (Ivanov and Kheifets 2006, Ivanov and Kheifets 2007). The

solution of the TDSE is sought in the form of an expansion on a square-integrable basis

U(r,t) =3 a;(t)f;(r). (4)
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Here the basis states f;(r) are pseudostates obtained by diagonalizing the field-free
lithium Hamiltonian in a suitable square integrable (Laguerre in our case) basis (Bray

1994):

<fﬁ|f{atom|fé\l[ll> = Enldnn’all’ . (5)

Here E,; is the energy of a pseudostate and N is the size of the basis.

We shall be interested below in the harmonics of the order not higher than 9. Since
we consider modestly strong electric fields of the order of 0.01 a.u. corresponding to
3.5 x 10" W/cm? intensity, we can retain in expansion (4) only the basis states with
angular momenta [ = 0 — 9. The total number of pseudostates for each | was 40.

In order to solve TDSE (1), we rewrite it as a system of differential equations
for the coefficients a;(¢) in Equation (4). The pseudostates as defined in Equation (5)
are computed within a box (the box size of 200 a.u. was used in this work). Since
we are interested in sufficiently long pulses (thirty periods of the EM radiation) we
must ensure that no artificial effects due to possible reflections of the wavepackets from
the boundaries of the box are present. This was achieved by means of the complex
absorbing potential —iWW (r) which was chosen as a smooth function, zero for r < 120
a.u. and continuously growing to a constant —:W, with Wy = 40 a.u. outside this
region. Introduction of the absorbing potential distorts, of course, the wave function in
the region r» > 120 a.u. But that is not important if we are interested only in calculation
of the HHG process to which electrons reaching distances of 100 a.u. from the nucleus
cannot contribute. With the complex absorbing potential thus defined, the TDSE was
propagated for the time interval (0,77), T3 = 307. The harmonics spectrum was then

calculated as prescribed by Krause et al (1992):

to 2

/ e “d(t) dt

ta —t B

d(w)]* =

(6)

Here d(t) = (¥(t)|z|¥(t)) is expectation value of the dipole momentum, ¢1, ¢, are chosen
to be large enough to minimize the transient effects (we used ¢; = 207, t, = 307, i.e.,

last 10 cycles of the pulse duration).
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3. Results.

3.1. HHG from excited 2p lithium state.

If Figure 2 we present the harmonics spectrum obtained from the Li atom prepared
initially in the 2p state. In the same figure, we also show an analogous spectrum of the
Li atom prepared initially in the ground state. As is seen from the figure, the excited

2p state turns out to be much more efficient generator of high harmonics.

0pF HIL H3 H5 H7 HO

Figure 2. Harmonics spectrum of Li from
2p state, peak strength of the EM field F' =
0.005 a.u. (red) solid line, F' = 0.0025 a.u.
(green) dashed line and from 2s state, F' =
0.005 a.u. (blue) dots.
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At the peak strength of EM field F' = 0.005 a.u., the harmonics H7 and H9
are 3 to four orders of magnitude more intensive if evolution starts from the 2p
state as compared to the process starting from the ground state. Actually, at this
field strength, the 2p state depopulates very rapidly and the harmonics generation is
saturated. It would be physically more appropriate to compare generation from the
ground state at F' = 0.005 a.u. with generation from the 2p state at a weaker field, e.g.
F =0.0025 a.u. which will give approximately equal values of the ionization rates and
Keldych parameters (1.62 for 2s and 2.63 for 2p) for these states. Figure 2 shows that
for this field strength the intensity of harmonics H7 and H9 gains yet two more orders
of magnitude, comparing to the generation from the 2p state at F' = 0.005 a.u.

To get a closer insight into the origin of this phenomenon, we performed a wavelet
analysis of the function d(¢) in Equation (6). The wavelet transform of the square

integrable function d(t) is defined according to Tang et al (2000) as

Ty(w,7) = / ()@ (wt — wr) dt . (7)
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This transform is generated by a function ¥(z) (the mother wavelet). As a mother
wavelet we choose here the Morlet wavelet ¥(z) = x5 exp(iz) exp[—2?/(2x2)] with the
parameter o = 10. Inverse wavelet transform allows to represent the signal (function
d(t) in our case) as a superposition (with weights proportional to Ty (w, 7)) of the so-
called daughter wavelets ¥(wt — w7) with various w, 7, which can be interpreted as a
superposition of Gaussian pulses with the carrier frequency w emitted at ¢ = 7. For the
Morlet wavelet, Ty (w,7) = |Ty(w, 7)|e® is a complex quantity. For a given frequency
w, the values of 7 at which maxima of |T(w, 7)| occur can be interpreted as moments
of a peak emission of pulses constituting the harmonic of this frequency (Chu and Chu
2001). Values of § corresponding to these times 7 provide information about the phases

of these pulses.
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Figure 3. Wavelet transform (amplitudes - solid red curves and phases - ditted green
curves) for the frequency corresponding to the 7-th harmonic generated from the 2s
state (F=0.005 a.u.) (left panel) and 2p state (F=0.0025 a.u.) (right panel).

Figure 3 shows amplitudes and phases of the wavelet transform |Tg(w, 7)| for the
fixed frequency w corresponding to the 7-th harmonic. As one can see from the figure,
generation of the 7-th harmonic from the ground and excited 2p states seem to be
completely different processes. Maxima of generation from the ground state occur at a
sequence of points. The phases ¢ at these points assume more or less random values.
This generally leads to destructive interference of these pulses and, correspondingly, to
a weak output of the 7-th harmonic. On the contrary, generation from the 2p excited
state seem to be a process occurring more uniformly in time, except for the interval

of (0,5T) corresponding to the switching of of the EM interaction. The phases lie on
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smooth curves, which not vary much allowing for the constructive interference of the
pulses.

The wavelet analysis does not tell us which mechanism is responsible for the
enhancement of the harmonics yield for the case of the generation from the 2p state. We
can speculate, however, that similarly to the case of Rb studied by Paul et al (2005),
this enhancement may be due to mutual interaction of several excited states. That this
is indeed might be the case for Li can be seen in Figure 4 where we present harmonic
spectrum generated by the 2p state if in the trancate expansion Equation (4), thereby
removing all low-lying excited states of Li from the description of the time-evolution of
the system. More exactly, for each angular momentum [ the first 5 pseudostates have

been removed (except of course, the 2p state itself).

0O H1 H3 H5 H7 H9

Figure 4. Harmonics spectrum of Li from
2p state, (red) solid line, and the spectrum
obtained if low lying excited states of Li
are excluded from the expansion (4) (green)

3 | j : dashed line. Peak strength of the EM field
w0E ;I .03 | | . F =0.0025 a.u.
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As one can see from Figure 4 the removal of the manifold of low-lying excited Li
states does produce considerable changes in the intensities of higher order harmonics (2
and 3 orders of magnitude for 7-th and 9-th harmonics respectively). Intensities of the
lower order harmonics do not change appreciably.

The role played by these states can be further clarified if we consider probabilities
to find the Li atom in various states as function of time. Figure 5 presents these
probabilities for two cases: evolution starting from the 2s state (F = 0.005 a.u.) and
evolution starting from the 2p state (F = 0.0025 a.u.).

One can observe that the probability curves on the right panel (especially one
for the 3s state) are modulated in a rather complicated way. This modulation is also

present in the amplitudes in Equation (4), and will translate into modulation of the



HHG from excited states of Li. 9

0.1 0.1
0.01
0.001 0.01
2 2
= 0.0001 , ) = A
g R A N A g 0001 f
o 1le05 F o L Co S o
T T
1606 0.0001
1le-07
1608 I A N N BN T 1605 I A N N BN T
20 205 21 215 22 225 23 235 24 20 205 21 215 22 225 23 235 24
Time (periods of ac field) Time (periods of ac field)

Figure 5. Probabilities to find Li atom in the states: left panel: Py; — 0.9 (red) solid
line, P, (green) dashed line, P3, (blue) dots, F' = 0.005 a.u., 2s-initial state; right
panel: Py, — 0.9 (red) solid line, P»; (green) dashed line, Ps; (blue) dots, F' = 0.0025
a.u., 2p-initial state.

dipole momentum.
This may lead to the considerable modification of the Fourier transform of the
function d(t) and hence, the HHG yield. Formula often used for the evaluation of d(t)

is (Lewenstein et al 1994, Sanpera et al 1996):

d(t) = —i /: dt’ / dqD*(q + A(t))E(t)D(q + A(t')eS@tt) 1+ cc. (8)

where S(g;t,t') = /ttl dr ((q+ A(1))?/2 + Ip) is the action, D(v) is the z-
component of the dipole transition matrix element between bound and continuum state
in which electron has a velocity v = q + A(t), A(t)-the vector potential. Product of
three terms on the r.h.s. of Equation (8) corresponds to ionization of an electron into
a continuum state with the velocity v at the moment of time ¢' , propagation in the
laser field from ' to ¢ with constant canonic momentum q and recombination at the
moment of time ¢ (the three-step model). Expression (8) is obtained if, in the spirit of
the Keldych theory, propagation of electron in the EM field is described by means of
the Volkov states, which neglect any atomic potential. If we wish to include influence of
the atomic potential on the electronic motion, it is the description of this propagation
which should be modified. Instead of the Volkov propagator ¢(%tt) we should use the
exact propagator G(gq,t,;q't"), and introduce additional integration over q' (canonic

momentum g is no longer conserved quantity if we take into account atomic potential).

This makes the problem hardly tractable. One feature of d(¢) obtained in this way,
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can be however guessed. Exact propagator G(q,t,;q't') is to be built form the exact
time-dependent state of Li in the laser field. As we saw, such states may vary in time
with various, generally incommensurate frequencies. That will lead to presence of such
terms in the expression for d(¢). If any of those incommesurate frequencies is close to
a frequency of a given harmonic, that may lead to the enhancement of the harmonic

intensity.
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Figure 6. Harmonics spectrum of Li
from the 2s state ((red) solid line and a
superposition ((green) dashed line), a|2s >
+v1—a?3s > (a =0.9), F =0.0025 a.u.
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If, as the starting point of the process we choose a coherent superposition of the
ground and an excited state then, due to a much larger ionization rate, presence of
the excited state modifies considerably the HHG spectrum. In Figure 6 we show
the harmonic spectra obtained for the initial state 2s, and a superposition a|2s >
++/1 —a2|3s > with a = 0.9 and the field strength F' = 0.0025 a.u.

For such a field strength the harmonics yield from the ground state is virtually zero
since the ground state hardly ionizes. Therefore, even a relatively small contribution of
the 3s state completely changes the spectrum. In Figure 6 one can see the harmonics
H1, H3, H5 present in the spectrum as well as an additional peak marked H3s . This
structure can be explained with the help of a recently developed theory of HHG from
coherent superpositions of several states (MiloSevi¢ 2006). According to this theory,
harmonics in this case can be produced in two ways. For the harmonics with frequencies
smaller than excitation energy (in our case E3; — Fas = 0.1225 a.u.), the conventionally
mechanism of the single-state harmonic generation is at work producing odd multiples of
laser frequency. For harmonics with frequencies in the vicinity of the excitation energy,

the resonance mechanism produces harmonics with the frequencies E3s — Fas + (2k+1)w.
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To produce such harmonics, the electron ionizes from the 3s state and recombines later
into the ground state. Figure 6 shows presence of two harmonics of this kind (marked

H3s1 and H3s3 on the figure).

3.2. Harmonic generation from Rydberg states.

In this section we consider briefly the process of harmonics generation from the Rydberg
states of lithium. Harmonics generation from such states is of less interest since they
are ionized very rapidly and we should either use very small field strengths or larger
frequencies of the source of EM radiation. In both cases we leave the domain of the HHG
proper. For the typical laser parameters used above (F' = 0.005 a.u., w = 0.3544 eV), the
HHG cutoff defined as 3.17U, + I, where U, is ponderomotive potential, /- ionization
potential, is of the order of 0.2 a.u. The plateu of the harmonics spectrum contains
then approximately 20 harmonics, which allows us to speak about HHG. However, for
these laser parameters, Rydberg states are ionized extremely fast. To take a look at
the harmonics generation from Rydberg states we consider below a laser source with
larger frequency, viz. the Ti:sapphire laser with the main frequency of 1.56 eV. If we
use EM fields of the order of 0.005 a.u. as above, we cannot talk about HHG of course
(the ”plateu” in this case contains 3 harmonics only). The harmonics, however, can be
produced, and, as we shall see, the Rydberg states produce them more efficiently than

the ground state.
H1  H3 H5 H7  H9

Figure 7. Harmonics spectrum of Li for the
peak strength of the EM field F' = 0.005 a.u.,
w=1.56 eV; the 5p initial state: (red) solid
line, the 2s initial state: (green) dashed line.
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In Figure 7 we show the harmonics spectrum from the 5p initial state at peak

strength of the EM field F' = 0.005 a.u. In the same figure we also show the harmonics
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spectrum obtained from the ground 2s state. A considerable enhancement of the seventh
and ninth harmonics can be observed. The origin of this enhancement is probably due
to the presence of the manifold of the closely lying Rydberg states. As was observed
by Zeng et al (2002) for the process of two-colour harmonics generation of a model
1D atom, the atomic structure can greatly modify the yield of some harmonics. Some
indication that the Rydberg levels do indeed interact strongly with each other can be

gained from Figure 8. In this figure we blow up the time interval of (14T, 167) where
the EM field attains its peak strength.
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Figure 8. Probability to find the lithium atom in the 5p: (red) solid line, and 5s:
(green) dashed line, states as a function of time for ¢ € (147, 16T") and peak strengths
of the EM field 0.0025, 0.005, 0.01 a.u. (from left to right).

4. Conclusion.

We presented a series of calculations of the HHG from the lithium atom initially in an
excited state or in a superposition of the ground and excited states. We found that
excited states, in particular the 2p state is extremely efficient high harmonics generator.
Gain of several orders of magnitude in harmonics intensity can be achieved if the Li atom
is initially in the 2p state. For an atom prepared initially in a coherent superposition of
the ground and excited states, we also see a considerable increase of the harmonics yield
and appearance of additional harmonics due to the resonant mechanism predicted by
Milosevi¢ (2006) and studied in that work for a model two-level atom. We demonstrated
these effects for a real atomic system.

Wavelet analysis shows, that harmonics from the ground and excited states are
produced in a markedly different way. In particular, the distribution of phases of

the wavelet transform for the 2p state suggests that the 7-th harmonic in this case
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is produced by a superposition of pulses belonging to several (four) families. Pulses of
the same family have nearly identical phases leading to constructive interference and
large harmonic intensity. This is in strike contrast to the results of the wavelet analysis
for the ground state. The obvious difference between the ground and excited states
is the different extent to which they are influenced by outher states. Dynamic of the
system in an excited state is considerably more complex, involving mutual interaction
of several states. This is even more so for the Rydberg states.

The consideration of these effects in the paper concerned only the single-atom aspect
of the problem. To produce experimentally observable effect of the N2 enhancement
(where N is a number of Li atoms in the target), one needs to be able to prepare a
coherent superpositions of Li atoms in a given state. Availbale techniques, such as pi-
pulse technique or stimulated Raman adiabatic passage (Bergmann et al 1998, Vitanov

et al 2001) allow to solve this problem.
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