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Abstract

We study the influence of the external DC electric field on the process of single-photon double
ionization of helium at photon energies of 85 and 90 eV. Calculation is based on a numerical
solution of the time-dependent Schrodinger equation and subsequent projection of the solution on
a final state furnished by the convergent close coupling (CCC) expansion. We find that for the
range of the field strengths studied (Fpc < 3 x 1072 a.u. ) the presence of the external DC field
leads to a monotonous decrease of the total probability of single-photon double electron ionization.
This decrease is achieved primarily due to decreasing probability to detect electrons with unequal

energy sharing.
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I. INTRODUCTION

Single-photon double ionization of helium has been studied extensively over the past
decade across a wide range of photon energies from meV [1] to keV [2] regimes. Basic
mechanisms of this process are now well understood, both qualitatively and quantitatively,
with accurate theoretical predictions being confirmed experimentally under a wide range of
kinematical conditions [3-5]. The emphasis in double photoionization (DPI) studies is now
shifting towards the multi-photon processes in stronger electromagnetic fields [6] or/and
more complex atomic [7, 8] and molecular [9, 10] targets where electron correlation may
play a more prominent role. In the present work, we introduce another factor which may
complicate single-photon double ionization, a static electric field. We consider the DPI of
helium subjected to an external DC field with the strength ranging from few hundreds to
few tens of the atomic unit.

The motivation of this study is two-fold. First, we want to examine the correlated
many-body dynamics of two-electron escape under the influence of the static electric field.
Since the pioneering work of Wannier [11], it is well known that the double ionization is a
“balancing act” between the inter-electron repulsion and the nucleus drag with only very
few selected trajectories leading to the two-electron escape. The static field may upset this
delicate balance or open up new possible two-electron escape routes. This can result in a net
decrease or increase of the DPI cross-section and changing energy and angular distribution
of the photoelectron pair.

On a more pragmatic level, we want to test a new computational procedure aiming to
describe two-electron ionization processes in atoms subjected to short pulses of electromag-
netic and/or static electric fields. The presence of a static electric field opens up a new,
tunneling ionization mechanism which cannot be described within the perturbation theory
(PT) even in the weak field regime. So the theoretical treatment should be non-perturbative.

Our method is based upon numerical integration of the time-dependent Schrodinger
equation (TDSE) by expanding the solution on a suitable square integrable basis. Simi-
lar time-dependent methods have been used extensively in strong field ionization studies of

two-electron atomic targets with variety of bases employed, e.g. explicitly correlated [12],



multiconfiguration Hartree-Fock [13] and Coulomb wavepackets [14]. In our implementation
of the TDSE method, we construct a two-electron basis from the pseudostates obtained by
diagonalizing the He* Hamiltonian on a Laguerre basis [15]. Once the solution of the TDSE
is found, various cross-sections can be obtained by projecting the TDSE wave function on
a set of the field-free final states of the helium atom with both electrons in continuum.
Proper description of such states is, by itself, a rather complicated problem. There has been
various methods proposed to solve this problem. One can incorporate the correct boundary
conditions needed to describe two electrons in continuum using the exterior complex scaling
method [16-18]. The problem of imposing correct boundary conditions can be avoided alto-
gether with the help of the procedure using the complex Sturmian basis [19]. Hyperspherical
R-matrix method with the semiclassical outgoing waves was used to represent the final dou-
ble continuum state in the problem of double ionization of helium [20]. One can also use
approaches based on the various implementations of the close-coupling method [15, 21-23].
In the present work, we use the so-called convergent close-coupling (CCC) expansion to de-
scribe the field-free two-electron continuum. This provides a far more accurate description
of the inter-electron correlations as compared with a finite order PT employed by other
authors [24, 25].

To the best knowledge of the authors, the present work is the first study of the effect
of the static DC field on DPI of He. There have been previous reports on the DC field
effect on double photoexcitation of helium [26-28]. Because of a large radial extent of the
highly excited Rydberg states involved in these studies, much weaker DC fields were needed
to observe a noticeable effect. In the present study, the static field is competing with the
nucleus field at smaller distances which requires a much stronger DC field strength.

The paper is organized as follows. In Sec. II we outline the theoretical procedure. In
Sec. IIT we give numerical details and assess the accuracy of our computational procedure.
In Sec. IV we discuss the results. Finally, we conclude by discussing application of the

present method to other processes and atomic targets.



II. THEORY.

We seek a solution of the TDSE for the helium atom
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with the Hamiltonian
H = Hy+ Via + Hue(2), (2)

where the non-interacting Hamiltonian and the Coulomb interaction are, respectively,
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The interaction with the external electromagnetic and static fields is written in the length

gauge:

Hin(t) = f(t)(r1 + 72) - (Fac coswt + Fpe), (5)

Here f(t) is a smooth switching function the detailed form of which will be given below.
The AC electric field is assumed to be linearly polarized. For the sake of simplicity, we chose
the AC and DC fields to be parallel and employ the same switching function for both fields.

The solution of the TDSE is sought in the form of expansion on a square-integrable basis
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Here
fi(r1,m2) = @, (1) i, (r2) [1(1)2(2) L), (7)

where notation |l1(1)I2(2) L) is used to represent two spherical functions coupled in a stan-
dard way to a state with the total angular momentum L by means of the Clebsch-Gordan
coefficients: [I1(1)12(2) L) = Y (lymaloma| LM )Y}, m, (11)Yiym, (n2). Index j is used as a
shortcut for the set of quantulrrnllglzlmbers ny,l, ne, ly, L specifying a basis vector. The radial

orbitals in Eq. (7) are pseudostates obtained by diagonalizing the He™ Hamiltonian in a

Laguerre basis [15]:
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Here E; is the energy of a pseudostate and N is the size of the basis.

The pseudostates with positive energies provide a square integrable representation of the
continuous spectrum [23]. In the present work, this feature of the pseudostates is exploited
in a two-fold manner. First, we use the pseudostates for the construction of the basis
set Eq. (7). Thus constructed basis set is orthogonal and diagonalizes the non-interacting
Hamiltonian (i|Hp|j) = &ij\;, where ); is a sum of corresponding pseudostate energies.
Specific details about this procedure will be given below. Second, we employ the pseudostates
(not necessarily the same set) within the CCC formalism to construct the two-electron field-
free final states representing various ionization channels.

After the set of the basis functions (7) is chosen, we can rewrite the TDSE as a set of
ordinary differential equations for the components a;(t):

iar — Avar = D (k[Viz + Hil7)aj, (8)
J
To impose the initial condition for the set of equations (8), we perform a separate diago-
nalization of the field-free Hamiltonian on the same basis. We assume that at the moment
t = 0 the atom is in its ground state and find the vector a(0).

We integrate Eq. (8) up to a time 77 when the external fields are switched off. Then
we project the solution of Eq. (8) onto a field-free CCC basis. Thus, the probabilities to
find the helium atom in any specific field-free state can be computed including the doubly
ionized states which are of particular interest to us in the present work.

In the CCC formalism, the interacting two-electron state is represented by a close-coupling
expansion over the channel states each of which is composed of a target pseudostate f and

a Coulomb wave k:
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Here (kf|T|k'j) is half-on-shell T-matrix which is found by solving a set of coupled
Lippmann-Schwinger equations. [23]. It is convenient to strip wave function (9) of its
angular dependence using a partial wave decomposition:

Z Uig(0) (k) (Imlgmg | T M) Yim (R), (10)
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where (Imlgm¢|JM) are the Clebsch-Gordan coefficients. The two-electron wave-function
VU;45) (k) is defined in terms of the reduced matrix elements of the T-matrix as:
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\I/lf(J)(k) = ||k’l ’nflf; J> + Zi kl2dkl< ||k’ll ’I’lej>, (11)

gt
where ||kl nsls; J) is a product of a Coulomb wave function k! and a pseudostate nsl; coupled
to a total angular momentum J.

The CCC wave functions (9)—(11) are written as a solution of a scattering problem with
the index f referring to a bound state of the target hydrogen-like ion (He™ in the present
case). However, if we choose a target pseudostate f of some positive energy Ey, then the
CCC wave functions ¥;¢s)(k) can be used to construct a wave function of the state with
two electrons in the continuum:

‘I’(k1, k2)= Z (l1m1l2m2|JM>Y}1ml (’231)Y22m2 (kz)ei[alf(kz)wll(kl)]‘l’llf(J)(kl)<k2l2||nflf> :
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Here d;, (k1) and &;,(k2) are the Coulomb phases with Z; = 1 and Z; = 2 respectively, and
(kolf|lnsly) is an overlap of the pseudostate and the Coulomb wave function with the same
energy E; = k3/2 and the angular momenta I, = [;. This recipe of constructing the state
with two electrons in continuum has been applied for calculations of DPI of helium-like

targets in earlier works [29, 30].

III. NUMERICAL DETAILS
A. Solution of TDSE

In the present work, we consider modestly strong electric fields: the AC field of the order
of 0.1 a.u. corresponding to 3.5 x 10'* W/cm? intensity, and the DC field not exceeding
0.03 a.u. This allows us to retain terms with total angular momentum J = 0 — 2 in
expansion (6). To represent each total angular momentum block, we proceed as follows. For
all S, P, D total angular momentum states we let l;,ls vary within the limits 0 — 3. The
total number of pseudostates participating in building the basis states was 20 for each [.

To represent J = 0, 1,2 singlet states in expansion (6), we used all possible combinations of
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these pseudostates. Such a choice gave us 840 basis states of S-symmetry, 1200 basis states
of P-symmetry and 1430 states of D-symmetry, resulting in a total dimension of the basis
equal to 3470.

To check convergence of the basis, we performed a separate calculation in which we added
a subset of 20 pseudostates with [ = 4. To represent J = 0, 1 states in expansion (6), we used
all possible combinations of the enlarged set of the pseudostates. To represent J = 2 states
we used only pseudostates satisfying the condition /; 4+ l; = 2. This choice was motivated
primarily by the desire to keep the size of the calculation manageable. Such a choice gave
us 1050 basis states of S-symmetry, 1600 basis states of P-symmetry and 610 states of D-
symmetry, resulting in a total dimension of the basis (6) equal to 3260. We found that with
the use of this modified basis set for the solution of the TDSE, the ionization probabilities
varied typically by an order of one percent.

As noted above, the initial conditions for the system of equations (8) are determined by
solving a separate eigenvalue problem using a subset of basis functions of the S-symmetry.
This produced the ground state energy of -2.90330 a.u. as compared with the “near exact”
ground state energy of -2.90372 [31].

The switching function in the Hamiltonian (5) was chosen in such a way that the ampli-
tudes of the fields remained constant during the time interval (7', 47), where T' = 27 /w was
a period of the AC electromagnetic field. The fields were ramped on and off smoothly over
one AC field period. The total duration of the atom-field interaction was therefore T7 = 67

The set of ordinary differential equations (8) was solved on an interval (0,7;) with the

use of the Runge-Kutta method subject to the initial condition at ¢ = 0.

B. Projection on final CCC states.

In the present study, we are concerned with the process of single-photon DPI of helium.
Accordingly, the final states of a field-free atom should correspond to doubly ionized states
of helium lying in the P-continuum. Such states were constructed as prescribed by Eq. (12)
with J = 1, M = 0. For the geometry considered in the paper (linearly polarized AC and

DC fields directed along the quanization axis) M is a conserved quantity. The pseudostate



basis n;l; in Eq. (11) was restricted to 30 states in each partial wave with 0 <1; < 3.

A set of the final states corresponding to various photoelectron energies F;, Fs was
prepared. The energies E; and FE5; were taken to lie on a rectangular grid F; =
1,2,3,4,5,6,7,8,10, 13, 20,40, 100 eV. By projecting the solution of the TDSE on the states
of this grid we were able to obtain a probability distribution function p(k, ks) of finding
the helium atom in a field-free state (ki, k) at the time ¢ = T;. From this distribution
function, various other relevant distributions can be deduced. By integrating over directions
of the momenta (12:1, 12:2), one can obtain the energy distribution function P(E;, E,) giving
the probability to find electrons with energies F;, Es.

The DPI cross-section is related to the distribution function p(k;, k2) normalized to the

field intensity:
8mw p(k1, k2)

O'(kl,kg) = - W

: (13)

Ty
where W = 2 / F2o(t) dt and ¢ = 137 is the speed of light in atomic units. The total
0

integrated cross-section (TICS) is given by:

1 L
ow) =3 / o (K, ko) dierdksdkydks, (14)
Differential DPI cross-sections are usually defined using the explicit energy conservation
which does not hold for ionization processes driven by short pulses. In this case, one has to
apply a suitable ”energy averaging” procedure as the one prescribed in Ref. [32]. With this
procedure, the single differential cross-section (SDCS) can be defined as:

do(w) 1
dE1 - 2(]1(]2 cos2 o

/U(kl,kl tan(oz)f@) d’;ﬁldiﬁg kldkl, (15)

where the momenta g;, g, are defined on the energy shell: E; = ¢?/2, E — E; = ¢2/2 and
tan @ = ¢2/q;. The partial wave expansion (12) allows for an analytical angular integration
in Egs. (14) and (15). The ki, k2 integrations were performed using the Simpson rule and
an interpolation procedure.

The cross-sections (14) and (15) become the customarily defined TICS and SDCS in the
limit of infinite interaction time 77 — oco. In the present paper, we consider short pulses

with 77 = 67. We must therefore exercise certain caution when interpreting the present



cross-section results. The TICS given by Eq. (14) defines a quantity proportional to the
total DPI probability. The SDCS defined by Eq. (15) gives an averaged characteristic of the
curvature of the surface P(E;, E>) near its intersection with the energy conservation plane

E1+E2:E.

C. Accuracy of the method

Apart from issues related to the convergence of the basis set (7) addressed in Sec. IITA,
the principal limitation of the accuracy of the present method lies in the fact that the bases
used for the solution of the TDSE and construction of the CCC field-free final states are
different sets of functions which span different portions of the Hilbert space. Let P be a
projector on a subspace spanned by the CCC vectors, corresponding to a given set of the
final states. To deterimine the probabiity of finding Helium atom in any of these states we
compute the matrix element (¥(¢)|Pg|¥(¢)), where ¥(t) is solution of the TDSE obtained
with the help of the basis used in the present work. Let Py be the projector on the subspace
spanned by all basis vectors (7). Since this basis is finite and the projector P, is not a
unit operator, the TDSE we actually solve is not Eq. (1) but rather z%—‘f = PyHP, V. This
circumstance may lead to spurious time-dependence in the computed probabilities. Indeed,
for the free evolution of the Helium atom, when external fields are absent, the probabilities
should be constant which is possible only if []SA(I;TO + ‘712)161;, PB] = 0 (using the notation of
Egs. (3),(4)), an equality which is not automatically satisfied.

This can be put in a different form. Consider time-evolution of the helium atom in the

absence of external fields. This evolution can be presented as a sum
Ua(t) =D crexp Py, (16)

where U, and Ej are solutions of the eigenvalue problem for the field-free helium Hamiltonian
in the basis (7). The eigenvectors ¥y are not strictly orthogonal to the CCC field-free states.
The overlap of the solution of the TDSE and the CCC state will therefore contain terms
Z cr exp ¥ (W oc| ¥y ), which may introduce spurious beats in the probabilities unless the

overlaps (¥ccc|¥g) peak narrowly enough.



The error introduced by these beats may be reduced to an acceptable level if we choose
a large enough basis to represent the CCC expansion. The representation we employ in the
present calculation uses 30 pseudostates for each partial wave with 0 < I; < 3. A typical
distribution of the overlaps of the P-symmetry is shown in Figure 1. The CCC wave function

describes a state with both electrons having equal energies E; = E;=20 eV.
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FIG. 1: Square of the overlap of the CCC wave function describing a final P-state with E; = Fy =
20 eV and the P— symmetry eigenfunctions of for field-free helium Hamiltonian in the basis of the

pseudostates (7).

TABLE I. Absolute values of the overlaps of the CCC and TDSE wave functions for different 77 .

By (V) I B (eV) Iy (111 Esls| TDSE)|
T, = 6T T, =T
0.350 0 5.62 1 0.2544-2 0.2669-2
0.110 1 5.86 0 0.3378-2 0.3013-2
0.694 2 5.97 3 0.1102-2 0.9934-3
0.349 3 5.94 2 0.7079-3 0.4471-3
0.140 2 5.83 1 0.3436-3 0.6116-3
0.140 2 5.83 3 0.1253-2 0.1311-2

As one can see, for this CCC wave function the overlaps are narrowly peaked around the

value of 40 eV. Only few of them (4 in the figure) produce significant contribution to the
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sum in Eq. (16). Since the energies of these dominating states are close to each other, one
can expect the beats in the cross-sections to be insignificant. This is illustrated in the Table
where we present the absolute values of the overlaps of various components of the partial
wave expansion (10) of the CCC wave function and the solution of the TDSE obtained for
two cases. In the first calculation, the external fields are switched off and the overlaps are
computed at the same time 77} = 67. In the second calculation, we let the system evolve
freely after switching off external fields for the duration of one period of the AC field and
compute overlaps at the time 77 = 77T. As one can see from the Table, the variation in
larger amplitudes, which contribute predominantly to the probabilities, does not exceed
10 %. This translates to the TICS results calculated with the following field parameters:
w=285eV, Ty = 6T, Foc = 0.1 a.u. and Fpc = 0. When overlaps are computed at the
time of 71 = 67, 7T and 8T, the resulting TICS values are 5.70 kb, 5.22 kb and 5.91 kb,
respectively. Based on these figures, we adopt the value of 10% as a typical accuracy we can

achieve in the present calculation.

IV. RESULTS.

A typical electrons energy distribution is shown in Figure 2 as a contour plot for the
following field parameters: w = 85 eV, T} = 67, Fac = 0.1 a.u. and Fpc = 0. Here Fiz¢
is the peak value of the AC field. Various shades of gray in the contour plot correspond to
various magnitude of the function P(FE;, F») as indicated on the right panel. Dashed line
in the figure represents the energy conservation F; + Ey = E, where £ = 6 eV is the total
excess energy for the given photon energy of 85 eV.

In Figure 3 we display results for TICS of DPI at photon energies of 85 and 90 eV and
various applied DC field strengths. For both frequencies, the TICS exhibits decrease with
the DC field. Such a behavior is not uncommon for two-electron systems in the external
DC electric field when there are alternative routes of decay. For instance, it was observed
for autoionizing states of helium for DC field strengths not exceeding certain critical val-
ues [33-35]. We documented recently a similar behavior of the total (single plus double)

photoionization cross-section as a function of the external DC field for helium [36].
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FIG. 2: Electron energy distribution P(E;, E3) for the following field parameters: w = 85 eV,

T, = 6T, Fac = 0.1 a.u., Fpc = 0.
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FIG. 3: Total integrated cross-section of DPI of helium as a function of an external DC field for

photon energies of 85 eV (solid line) and 90 eV (dotted line)

More detailed picture of the effect of the external DC field on DPI can be obtained if we
follow the evolution of the electron energy distribution function P(E;, E5) with the strength
of the DC field. This evolution is illustrated in Figure 4. For zero DC field, the energy
distribution is shown in Figure 2.

Figure 4 shows monotonous decrease of the differential probability P(FE;, E2) in the
(E1, E3)-plane. This decrease is not quite uniform. Rather pronounced feature visible in

Figure 4 is a steady decrease of the probability to find both electrons with small energies
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FIG. 4: Electron energy distribution P(E}, E2) for w = 85 eV, Faoc = 0.1 a.u. and T} = 67". The
DC field strength Fpc is 0.007, 0.01, 0.02, and 0.03 a.u. (from left to right and top to bottom).

Various shades of grey have the same meaning as in Fig.2.

(white region near the origin). This reflects the fact that the DC field accelerates both
electrons making it less probable to detect the electrons with small energies. Another no-
ticeable characteristics is a rather rapid flattening of the surface P(E}, E) as a whole. This
is probably a reflection of the fact that decay due to the presence of the DC field proceeds
by tunneling. This process goes without energy conservation and may act, therefore, as an
homogenizing agent, making the spectrum of outgoing electrons flat. This feature of the DC
field can be more clearly noticed in Figure 5, where we plot the SDCS for various DC field
strengths. The SDCS plot illustrates the behavior we outlined above. The decline of TICS

occurs primarily due to the decline of the probability to detect electrons on the edges of the
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distribution. We attribute this effect to the action of the DC field which tends to flatten
the energy spectrum. We believe that this plot renders correctly the general features of the
SDCS behavior with the DC field. The observed effect of the DC field on the SDCS is well
above the quoted accuracy of 10%. The plot also shows small oscillations in the SDCS’s
which are probably just a reflection of the spurious time-dependence of the probabilities

discussed above.

4.4

SDCS (Kb/eV)

0.0 . | . | . | . | . |

E (eV)

FIG. 5: Single differential cross section do/dE of helium at various external DC field strengths.
The AC field has the frequency w = 85 eV and the peak value Fac = 0.1 a.u. The DC field
strength Fpc is zero (solid line), 1 x 1072 a.u. (dots), 2 x 10~2 a.u. (long dash) and 3 x 102 a.u.
(short dash).

As far as overall decline of TICS with the DC field is concerned, we have no such intuitive

picture as in the case of SDCS. As we already mentioned in the Introduction, the double
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ionization is a rather fragile balance between the inter-electron repulsion and the interaction
with nucleus. If we adopt the classical view of the phenomenon, only a small fraction of the
trajectories lead to the escape of both electrons. Our findings seem to indicate that external

DC field changes the balance in favor of the trajectories leading to the one-electron escape.

V. CONCLUSION.

We have performed calculations of DPI of He for the photon frequencies of 85 and 90
eV in the presence of an external DC field. Our computational procedure is, in essence, a
combination of the numerical integration of the TDSE in external AC and DC fields, and
the CCC representation of the final field-free state.

We found that dependence of the TICS upon external DC field strength exhibits a
monotonous decline. This decline occurs primarily due to the flattening of the energy spec-
trum of the outgoing electrons.

In the future, we intend to apply the combined TDSE-CCC technique to various time-
dependent processes driven by short pulses of strong electromagnetic fields. In particular, we
will study the two-photon double ionization of the helium atom and other targets subjected

to radiation from a free-electron laser.
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