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Abstract. We investigate the effect of a static electric field on photoionization of the He atom in the ground

1S and low-lying 2.5 and 2P excited states. The field-affected ionization potential and photoionization cross-

section are determined from the complex eigenvalues of the time-dependent Schrédinger equation solved

by the complex rotation method in the Floquet ansatz. Accuracy of the method is enhanced by the use of

the Hylleraas basis set. For the ground state of helium, we find that the total photoionization cross-section

remains constant or decreases as a function of the DC field strength until this field reaches a certain critical

value. For the low-lying excited states, effect of the static field is similar to the ordinary DC Stark effect.

PACS. 32.80.-t Photon interactions with atoms — 32.80.Fb Photoionization of atoms and ions — 42.50.Hz

Multi-photon processes

1 Introduction

The effect of an external DC electric field on the process of
interaction of a two-electron atomic system and AC elec-
tromagnetic field has become a subject of intense experi-
mental and theoretical studies. For the hydrogen negative
ion, for example, there is a wealth of both experimental
[1,2 ] and theoretical [3-5] results concerning influence of
the external DC electric field on the process of photode-
tachment.

Effect of a DC field on the photoionization from the

ground state of helium was studied in [6], [7] and [8]. These

authors were interested in the photoionization cross-sections
in the region of 2inl' resonances. Due to the Stark mixing
of the levels in the final state, application of the external
DC field opens new photoionization channels. For exam-
ple, in the absence of the external DC field the states
of 1 D¢ symmetry cannot be reached via the process of
one-photon ionization from the ground state. The external
DC field mixes the states of the 1 D¢ and 1 P° symmetries
and makes this process possible. It was found [6] that this
effect leads to the redistribution of the photoionization

rates between various final channels. Thus, for example,
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the photoionization cross-section for the ! P° channel may
decrease with the DC field, while, that for the ! D¢ may
increase. Experimentally, the effect of a static electric field
on the resonant photoionization of He was recently stud-
ied [9]. This study lead to a discovery of a propensity rule
for selective double photoexcitation of helium in DC fields
[10].

In the cited theoretical works on the resonant pho-
toionization of He, the AC field was treated perturbatively.
A convenient framework for such a treatment is provided
by the complex rotation method (CRM) [11]. Knowledge
of the eigenvalues of the complex-rotated Hamiltonian al-
lows one to construct a representation [12] for the projec-
tion operator on an interval of the continuous spectrum
of the Hamiltonian of the system. This representation can
then be used for efficient perturbative computation of the

cross-sections.

In the view of the current interest in behavior of atomic
systems in strong fields (see, e.g. [13]), non-perturbative
techniques, suitable for describing response of atomic sys-
tems to strong external fields are becoming increasingly

important.

Several approaches providing such a description for
systems with more than one electron have been proposed
in the literature. An approach based on the combina-
tion of R-matrix and Floquet techniques [14,15] allows
to describe non-perturbatively behavior of multielectron
atomic systems such as He [16], hydrogen negative ion
[17]) or Hs molecule [18] in the presence of strong AC

fields.

Direct solution of the time-dependent Schrodinger equa-
tion (TDSE) for systems with more than electron in ex-
ternal laser field is also possible. Such procedure has been
used to study effects of strong AC field on He [19] and
molecular hydrogen [20]. An efficient method of solving
the TDSE for two-electron systems has been presented in
[21], allowing to consider processes of ionization and exci-
tation by short laser pulses in helium and negative hydro-
gen ion. The multiconfiguration time-dependent Hartree-
Fock approach, allowing to describe behavior of a few-
electron system in the presence of the strong laser field
was proposed recently [22]. The above methods provide,
in principle, a comprehensive non-perturbative description
of the behavior of the systems with at least two electrons

in the presence of strong external AC fields.

Providing such a description for a multielectron sys-
tem in the case of the external DC field requires a dif-
ferent set of ideas. One can try, for example, to combine
the existing electronic structure theories (based e.g., on
the single- or multi-configuration Hartree-Fock methods)
with the methods suitable for the description of the de-
caying states [23,24]. This can be done, for example, in
the spirit of the Feshbach projection operators formalism
by introducing complementary @ and P spaces [25]. Al-
ternatively, to determine total ionization rates and level
shifts in multielectron systems in the presence of exter-
nal DC field, one may use the complex rotation method.
Justification of this method for the case of an atom in
the presence of external DC field has been laid out in the

pioneering works [26-28]. Once the validity of the CRM
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in this problem has been established, it became possible
to use highly accurate matrix methods from the theory
of the bound state calculations. Positions and widths of
the Stark resonances in various systems (such as He, H™,
Ps™) could thus be computed with accuracy comparable
to the accuracy of the bound state calculations [29,30].
Further development these ideas received in the work of
[31] where the so-called exterior complex rotation method
has been applied for the theoretical study of the ionization
rates and Stark shifts of molecular hydrogen in external

DC or low-frequency laser fields.

In the present paper we shall try to describe a two-
electron system non-perturbatively in the presence of both
AC and DC electric fields. As a theoretical tool, we also
employ the CRM, albeit in a slightly different guise. We
shall use the so-called Floquet ansatz to represent the
wave function of the atom in the external monochromatic
AC field. The resulting set of equations is solved with the
use of the CRM by means of ordinary variational tech-
niques. In this approach, both AC and DC fields are con-

sidered non-perturbatively.

A completely rigorous mathematical proof of the va-
lidity of the CRM in the present context is still lacking
[32]. There is, however, a strong evidence supported by
numerous successful applications to atomic systems like
hydrogen [33-36], that the CRM in its usual form applies
to the situations in which the AC electromagnetic field is

present.

The net gain in applying the combination of the CRM

and Floquet methods to the two-electron systems in ex-

ternal fields is the possibility to treat both the AC and DC
fields non-perturbatively. This is an important advantage,
especially in the view of the current interest in behavior of
atomic systems in strong fields (see, e.g. [13]). To achieve
this gain, however, one must overcome rather severe com-
putational problems related to the size of the target state
basis size. The obvious requirement to the basis set is an
accurate description of the field-free atomic states and the
ordinary DC Stark effect. Once this goal is achieved, the
dimension of the matrices thus obtained is to be further
increased to describe accurately the influence of the AC
field (see more details below). The overall dimension of
the problem may, threfore, make the whole approach im-
practicable. A solution of this problem is to choose the
basis so that the DC Stark effect for each Floquet block
is described as economically as possible, with the use of
the minimal number of the basis functions. The Hylleraas
basis set, well-known for its efficiency in representing field-
free atomic states [37], is a natural choice here. We might
mention also the work of [21] where this property of the
Hylleraas basis to economize the dimension of the basis
set has been used for the solution of the time-dependent
Schrédinger equation for a two-electron system placed in

external AC field.

An analogous approach to strong AC fields has been
developed in [38] where the so-called perimetric coordi-
nates have been used. The authors applied this approach
to the negative hydrogen ion in a very strong AC field. In
particular, they were able to estimate the onset of the AC

stabilization for this system. Basis functions expressed in
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the perimetric coordinates (supplemented with the three
Euler angles) constitute the basis which, from the formal
point of view, is equivalent to the Hylleraas basis employed
in the present paper. There is, however, one important dif-
ference. As it was noted [38], the approach based on the
perimetric coordinates and Euler angles leads to consid-
erable problems of technical character, especially if one
attempts to construct a state with the large total angu-
lar momentum. For the strong external fields which mix
various symmetries, an account of the states of large mo-
menta can become quite important. The Hylleraas basis
set, employing spherical coordinates for both electrons, is
much easier to implement, in particular for the states with

large angular momenta.

In the present paper, we are interested in photoion-
ization of He outside the resonant region where a suffi-
ciently strong external DC field can change the ioniza-
tion potential and the photoionization cross-section. We
illustrate the use of the basis by performing an accurate
non-perturbative calculation of the ionization potentials
and the photoionization cross-sections of the He atom in
the ground 1S state and lower-lying 25 and 2P singlet
and triplet excited states. These parameters are extracted
from the positions and widths of the corresponding de-
caying (resonant) states of the He atom in the presence of
external DC and AC fields. Utility of the present method
was demonstrated in our earlier work where we calculated
the total photoionization cross-section of He without a DC

field [39).

The present paper is structured as follows. In Sec. 2
we present the formalism, introduce the Hylleraas basis
set and outline our computational strategy. In Sec. 3 we
compile our numerical results for the singlet and triplet
states. We conclude by speculating on the possible use of

the present technique for other related problems.

2 General Theory

The non-relativistic Hamiltonian of the helium atom in

the presence of the external monochromatic linearly-polarized

AC electromagnetic field and the external DC electric field

can be written as:

- 2 2 2 2 1
H= &+&————+7+D-(FAC coswt+Fpe),
2 2 71 T2 |I'1 —I'2|

(1)
where D = r;+r5. In the present work we adopt the length
gauge to describe interaction of the atom and the field. We
also rely on the dipole approximation so that the quantity
Fac is coordinate independent. Unless stated otherwise,
the atomic units are used throughout the paper.

The theoretical method employed below is based on
the work [33]. The time-dependent Schrédinger equation
(TDSE) allows the following set of solutions in the so-

called Floquet-Fourier ansatz [40,41,33,14].

U(t) = e B¢ Z upe” vt (2)

Substituting this expression into the TDSE one obtains a

chain of coupled equations for the coefficient functions u,,:

Fac-D

(E-T—-U—-D-Fpc+nw)u, = 5

(un—l + Un—i—l) ’

3)
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where n = 0,+1..., F, T and U stand, respectively, for
the quasi-energy and the operators of kinetic and potential
energy. To solve this set of equations we employ the com-
plex rotation method (CRM) [42-44,11,32,45]. Formally,
the CRM can be described as a complex transformation
of radial variables r; — r;e®, where 8 is the so-called ro-
tation angle, parameter defining the transformation.
Under this transformation, the chain of equations (3)

is converted into

(E - Te 20 _Ue " —D.Fpce® + nw) Uy, =

Fac-D eif

B (Un—1+upt1)  (4)

According to the general theory of CRM [42-44,11], the
eigenvalue problem (4) can be solved by means of varia-
tional techniques if the rotation angle 6 is properly chosen.

The (complex) eigenvalues of this problem:

F=F, —iL

- 5)

provide information about the energy (E,) and the width
(or decay rate I') of the atomic state in the field.

In the case of very weak DC fields, when the decay
due to the interaction with the AC field plays predomi-
nant role, the latter quantity can be related to the total
photoionization cross section (in a.u.) by means of a well-

known relation:

I 8ral'w
im
Fac—0 FZq

(6)

g =

As the limiting procedure in the last equation suggests,
this equation is valid only if it is legitimate to consider the

AC field perturbatively.

Below we shall consider the case when DC and AC
electric field vectors are parallel, this direction we choose
as the z-axis. We shall restrict our attention only to the
manifold of states with M = 0, where M is a projection
of the total orbital momentum on the quantization z-axis
(in the present setup M is a conserved quantity).

To solve the eigenvalue problem (4) variationally we
introduce a basis set of square integrable functions |n, k)
where the index n refers to the number of the Floquet
block and the index k denotes a particular L? function in
the subspace of the n-th block so that u,, = Z Cnk|n, k).
With these notations, the set of Egs. (4) can l:fe rewritten

in a matrix form as:

e—2i0 _ Unk

nk
-T nik, €

n1k1

((E + nw) R

—i0
niki ) Cnk —

6
k _if k€
= FocDyg e%cnr + Y FacDyy, ok (7)
n2=n=+1

where it is understood that summation is carried over the
repeated k-index. Here Fac and Fpc are field strengths
of the AC and DC electric fields, respectively, D is the
matrix of the operator D, = z; + 22, and R, T and U
stand for the overlap, kinetic energy and potential energy
matrices, respectively.

In practical calculations we must, of course, truncate
system (7), considering only a finite number of the Floquet
blocks. In the present work, we consider only intensities of
AC electromagnetic field not exceeding 0.1 a.u. For such
AC field intensities the contribution of the Floquet blocks
with |n| > 1 in Eq. (7) can be neglected. As usual in the
variation calculations, this statement can be verified by

performing extended calculation including, e.g., Floquet
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blocks with n = +2. Such verification has been performed
confirming the above statement. We shall give more details
of this calculation below. For the moment we shall assume
that in the region of the AC field strengths reported here it
is legitimate to retain only the Floquet blocks with |n| <1
in the set of equations (7).

Our next step is to choose the basis set |n, k) in 7. We

employ the Hylleraas basis set consisting of the functions:

Gnana N (F1,72) = 117 152 oy =12 Ve 0211 (1)15(2) L),

(8)
where a, b are some constants (to be specified below), n1,
ng2, N are integers and the angular part

|l1(1)12(2)L>= Z Cllllgllzmg}/lﬂm(nl)yzzﬂm(nz)’ (9)

mimsa

represents two spherical functions (of orders Iy, l5) coupled
to represent a state with a given total angular momentum
L. Of course, basis functions 8 must be properly sym-
metrized with respect to exchange of the electron coordi-
nates. When choosing parameters in 8, we were guided by
the following rule [37,29]. All the basis functions with the
parameters satisfying the inequality (the so-called Pekeris
shell)

ny + na + N < Nmax (10)

were included in the calculation. The parameter Npx de-
termines the overall size of the basis. There is another well
established rule for choosing angular momenta, /1, I in 8.
For states with the natural parity, /;, lo are best chosen
so that l; + I = L. Both these criteria help to avoid the
numerical problems due to near-degeneracy of the basis

set when its dimension becomes large. Some details of the

calculations of the Hamiltonian matrix with the functions

(8) are given in the Appendix.

3 Numerical Results

To describe accurately the helium atom in the presence of
the DC electric field we use a sufficient number of basis
functions of S, P, D, F, G and H symmetries to represent

each Floquet block in system 7.

3.1 Singlet states

For the singlet states, the basis set satisfying the criteria
mentioned above can be constructed as follows. Each of
the parameters a, b in Eq.(8) was allowed to assume two
values: 1 and 0.5. This is the so-called split exponential
basis needed to describe accurately singly excited states
152l where there are two different radial scales. For each of
the Floquet blocks in set 7 we retain all the basis functions
of 18¢,1Pe, 1De, 1Fo 1Ge !l H° symmetries for which the
parameter Ny, in 10 is equal to 9. Such a choice gives us
for each Floquet block a total of 260, 336, 90,70,53 and 30
basis functions of 1§¢, 1 P°, 1 D¢, 1 F°, 1G*° and ' H® sym-
metries respectively. Since we consider only Floquet blocks
with n = 0,+1, the overall dimension of the eigenvalue
problem (7) is 2517. All calculations reported below have
been performed using quadruple precision arithmetic.

An estimate of the accuracy of the present calcula-
tion can be inferred from the field-free case when both
the DC and AC fields are switched off. Such a calcula-

tion gives the following energies of the states of interest:
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-2.90372443 a.u. (the ground state), -2.14597414 a.u. (the
1s2s15¢ state) and -2.12384295 a.u. (the 1s2p' P° state).
Comparison with the well-known values from the litera-
ture [37,46] shows that we may claim an accuracy of the
order of 10~7 a.u. for the ground and 1s2p'P° excited
states, and 1072 a.u. for the 152s'S¢ state. We can adopt
the larger of these numbers as a conservative estimate of
the accuracy our basis gives in the field-free case. Such
an accuracy may not seem to be very impressive by the
usual standards of the Hylleraas basis calculations but,
as we mentioned above, we have to find a compromise
between the accuracy and computational time since in-
clusion of several Floquet blocks increases the dimension
of the eigenvalue problem (7). The quoted estimate of the
accuracy will be found sufficient for the accurate calcula-
tion of the combined effects of DC and AC fields on these

states.

Before proceeding to calculations with both the DC
and AC fields included (that is, to the calculation includ-
ing several Floquet blocks in 7), we have yet to make sure
that our basis describes accurately the ordinary DC Stark.
To verify this, we put Fac = 0 in 7, restricted the system
of equations to only one Floquet block (with n = 0), and
diagonalized the resulting eigenvalue problem. The com-
position of the only Floquet block with n = 0 was the same
as we described above. The results which this procedure
gave for the positions and widths of the ground state and
the excited 152s15¢, 1s2p' P° states agree very well with
the known literature values. For example, for the DC field

strength Fpc = 0.05 a.u. we obtained the ground state en-

ergy of —2.90546493 a.u. Comparing this value with the
quoted above field-free result obtained in the same basis,
we find a level shift of 0.00174 a.u. This result is to be
compared with the value of 0.00175 a.u. obtained in the
work [25]. For the DC field strength Fpc = 0.15 a.u. we
obtained the width of the ground state of 0.000417 a.u.
which is to be compared to 0.000425 a.u. reported in the
paper [24]. Thus, even for the DC field strengths as large
as 0.15 a.u., our basis provides quite an adequate descrip-

tion of the DC Stark effect.

Having assured validity of the description which our
basis provides for the field-free He atom and the DC Stark
effect, we may proceed to a complete calculation includ-
ing several Floquet blocks in 7. As we mentioned above,
we included in the calculation the Floquet blocks with
n = 0,%1. To make sure that for the AC field strength
considered (of the order of 0.1 a.u.) this choice provides
an adequate approximation, we ran a calculation with
Fpc =0, Fac = 0.1 a.u., retaining in the Eqgs.(7) Floquet
blocks with n = 0, &1, £2. The composition of the Floquet
blocks was as described above with the difference, that for
the case of Fpc = 0 we may leave in the Floquet blocks
with n = 0,n £ 2 only even basis functions, and in the
blocks n = +1 only odd basis functions. Such calculation
gave for the position and width of the ground state reso-
nance -2.90338569 a.u. and 0.00014714 respectively, which
agrees quite well with the data from the Table 1 obtained

with the use of the Floquet blocks with n = 0, 1.

All results reported below refer to the frequency of

the AC electromagnetic field w = 111 eV. Our numeri-
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cal results are listed in the Tables 1 (ground state) and
2 (excited states). To test the accuracy of these results,
we performed a separate calculation retaining the Floquet
blocks with n = 0,n+1,n+2 in system 7. The composition
of each Floquet block in this calculation was as described
above. Such calculation, performed for Fac = 0.1 a.u. and
Fpc = 0.005 a.u. gave -2.1534632 a.u. and 0.0006848 a.u.
(position and width of the 1s2s 1S state) and -2.1174750
a.u. and 0.0024231 a.u. (position and width of the 1s52p
1P state). This is to be compared with the results pre-
sented in the Table 2. It can be seen that the difference of
these results does not exceed 5 x 10~¢ a.u. For the ground
state, variation of the results with respect to the number of
the Floquet blocks was also found to be within these lim-
its. Combining this estimate and the estimates presented
above for the field-free case and ordinary DC Stark effect,
we adopt the latter figure as an estimate for the accuracy

of the data reported in the Tables 1, 2 and 3.

Figure 6 gives a graphical representation of the ground
state energy and width as functions of the DC field strength

for two different values of the AC field strength.

Most noticeable feature of this figure is that the width
does not increase (or even decrease) as a function of the
applied DC electric field until the field strength reaches
some critical value (approximately 0.1 a.u.). The corre-
sponding low DC-field value of the total photo-ionization
cross-section, computed with the use of 6, coincides within

a fraction of a percent with the experimental value [47].

The accuracy of the present calculation does not allow

us to assert that the width indeed appreciably declines

with DC electric field. It does allow us, however, to con-
clude that it remains virtually constant for the DC elec-
tric field strength below 0.1 a.u., starting to grow rapidly
for larger field strengths. Such a behavior is reminiscent
of the widths of doubly-excited resonance states of two-
electron systems in the presence of the DC external field.
It was found, for example, for the doubly excited reso-
nance states in helium [48], negative hydrogen ion [30],
positronium negative ion [49] or molecular hydrogen [31].
For these systems, such a behavior was explained as a
result of a competition of two possible routes of decay
(the autoionizing one and the one due to the presence of
the DC field). In all these systems which are highly cor-
related atomic species, the interference of the two decay
processes may lead to observed decrease of the width as
a function of the DC field strength. It is only for larger
field strengths that the DC field effect becomes dominant
and we find a typical pattern of a monotonous growth
of the width with field (found e.g., for hydrogen atom).
It is quite possible that an analogous situation occurs in
the present case where the role of autoionization process
is played by the ionization due to the presence of the AC
field. To make this discussion more precise we should recall
that for not very large field strengths there are two dis-
tinct processes which can lead to ionization of an atom by
an external electric field. These processes are perturbative
multiphoton ionization and tunneling. The third process,
the so-called above barrier ionization, occurs for the field
strengths far larger than those considered in the paper.

Which process plays the major role is determined by the
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Keldysh parameter «y [50] which is proportional to the fre-
quency of the laser field. The case v >> 1 corresponds to
the multiphoton ionization regime whereas in the oppo-
site case 7 << 1 the tunneling regime dominates. In the
present case, both these mechanisms are equally impor-
tant. It is easy to see that for the parameters of the AC
field considered in the paper we have y >> 1, hence ioniza-
tion due to AC field proceeds mostly by the multiphoton
ionization process. The DC field ionization, on the con-
trary, proceeds by tunneling. The statement made above
may threfore be reformulated as the following hypothesis.
In some regions of the parameters characterizing the prob-
lem, the interference of these two processes may actually
lead to the decrease of the total ionization width. To cast
this hypothesis into somewhat more quantitative terms,
we could use the so-called Kramers-Henneberger represen-
tation of the equations governing interaction of atom with
the AC field [51-53]. We recall that this representation is
equivalent to the use of the coordinate system oscillat-
ing with the frequency w of the AC field: r — r + a(t),
where o = Fac cos wt/w2. Under this transformation the
Hamiltonian operator (1) assumes the form:

2 2 1

HAyn =T - -
Iry—a| [|r2—a

|r1 — 1

+Fpc - (r1 +r2—20), (11)

where T is kinetic energy operator. The right-hand side
of Eq.(11) is a periodic function of time which can be
expanded as a Fourier series. If we retain in this expan-
sion only the zero order harmonic, we shall obtain the

so-called effective time-independent Hamiltonian. Clearly,

such an approximation provides a valid picture if AC field
frequency is considerably larger than the characteristic
frequencies of the electron motion. In our problem the
latter quantity can be roughly estimated as 20 eV (the
distance from the ground to the first excited state). Then,
for the AC field frequency of 111 eV which we consider
in the paper, we can presumably use the described above
approximation of the effective time-independent Hamilto-
nian. The DC field ionization in this picture can be viewed
as a tunneling process in the effective potential of this
Hamiltonian. The actual form of this potential may be
quite complicated already for one-electron atoms [54]. As
our results suggest, the tunneling rate in this potential
may vary non-monotonously with the strength of the ap-
plied DC field. On the basis of this picture we may expect
to observe similar behavior for all frequencies consider-
ably larger than the characteristic frequency ( 20 eV) of

the electron motion.

Another feature to notice for the ground state is that,
as can be seen form Table 1, the level shifts due to AC
and DC fields are opposite in signs so that for stronger
AC fields the ground state level appears to be less shifted

for a given DC field strength.

As far as the excited states are concerned, for the fixed
AC field strength, the positions of the states 1s2s 1S and
152p 1 P reveal a familiar pattern of the DC Stark effect for
the closely spaced levels. For small values of the DC field
strength we observe the typical avoided crossing behavior.
With increase of the DC field, when DC Stark level shifts

become larger than the energy separation between the lev-
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els, we observe a linear Stark effect. This is illustrated in
the Figure 6 for Fac = 0.05 a.u.

The overall shapes of the curves do not change appre-
ciably with AC field strength, to save space we present the
plots only for one value of the AC field strength (0.05 a.u.
for the singlets and 0.1 a.u. for the triplets below).

The widths considered as functions of the DC field
strength at a constant AC field strength also exhibit a
typical DC Stark effect behavior growing monotonously
with the DC field strength. As compared to the ground
state, an order of magnitude weaker DC field is required
to cause an appreciable change in the energy parameters
of the excited states. This is not surprising given a much

more diffuse orbitals of the excited states.

3.2 Triplet states

Calculation for the triplet states differed only in minor de-
tails of the composition of the basis. As for singlet states,
to describe each Floquet block in system 7 we used the
split-exponential Hylleraas type basis functions (8) with
L < 5. As for singlets, each of the parameters a, b in Eq.(8)
was allowed to assume two values: 1 and 0.5, chosen so to
facilitate description of the states 1s2s and 1s2p. For each
of the Floquet blocks in set 7 we retain the basis functions
of 38¢,3P°, 3De 3F°, 3@G¢, 3 H° symmetries for which the
parameter Ny, in the 10 is equal to 9. Such a choice leads
to the following composition of the basis set for each of the
Floquet blocks: 220 35¢, 336 2 P°, 78 3D¢, 70 3F°, 47 3G*
and 30 3H° basis functions, resulting in the total of 781

basis functions for each of the Floquet blocks. The results

for the triplets reported below were obtained with the use
of the n = 0, +1 Floquet blocks in system (7). Overall di-
mension of the eigenvalue problem to be solved was 2343.
To ensure that such a basis is adequate for our purposes,
we repeated all the steps, described above for the singlets.
For the field-free case we obtain the following results for
the energies of the states of interest: -2.175229378 a.u.
(1s2s 3S) and -2.133164357 a.u. (1s2p 3P). Comparing
these values to the well-known nonrelativistic results [46]
allows us to conclude that in the field-free case the basis
described above allows to reach the accuracy of the order
of 1072 a.u. for the 1s2s 35 state and 10~7 a.u. for the
152p 3 P state. Remaining checks (accuracy of the descrip-
tion of the ordinary DC Stark effect, stability with respect
to the number of the Floquet blocks, etc.) were performed
similarly to those described in the previous section. We
will not, threfore, enter into the details, and quote only
the final estimate of the accuracy to be of the order of
5 x 1079 a.u. both for positions and widths. The numeri-
cal results for the triplet states are presented in the Table
3, and Figure 6.

The energy separation of the triplet resonances is con-
siderably larger than of the singlets. The avoided cross-
ing behavior is, threfore, not so clearly pronounced as
for singlets. The widths of the triplet states exhibit a

monotonous growth with the DC field.

4 Conclusion

We performed a study of the ground and low lying excited

states of the helium atom in the presence of the DC and
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AC electric fields. Our theoretical method relies on the
recasting of the time-dependent Schrédinger equation into
the Floquet representation with subsequent application
of the complex rotation method [33]. To this theoretical
foundation we added an efficient technical device — the
Hylleraas basis set. Use of this set allowed us to make
the solution of the present, rather complicated problem

computationally feasible.

The study has been performed for singlet and triplet
ground and low-lying excited states. Behavior of the po-
sitions and widths of the excited 1s2s, 1s2p states is very
similar to the picture observed for the ordinary DC Stark
effect in two-electron systems. For the ground state, we
noticed that until the magnitude of the applied DC field
reaches approximately the magnitude of the AC field, the
DC field has virtually no effect on the width. With some
caution, the observed effect can be described as a decrease

of the width with the DC field.

The technique used in the present work (a combination
of the Hylleraas basis and the Floquet ansatz) allowed us
to achieve quite a high accuracy in determining energy
parameters of a rather complicated system: two-electron
atom placed in external DC and AC fields. Use of Hyller-
aas basis allowed us to achieve this accuracy keeping the
problem computationally manageable. The approach used
is of a non-perturbative character and may be applied to
the case of an atom in strong external fields. The algo-
rithm of the calculation of the matrix elements used in

the present paper allowed us to handle easily states of

quite large angular momenta (states with total angular
momentum L < 5 were included in the present work).
These features may be exploited further. They may
allow us, for example, to describe another interesting phe-
nomenon, the stabilization of two-electron systems in the
presence of a very strong AC electric field [13]. For such
strong fields (field intensities for stabilization to occur in
He was found to be of the order of 2 x 10'®* W cm~2 [55]
one needs to include a large number of the Floquet blocks
in system 7. Then, the ability of the Hylleraas basis to
represent states of a system with relatively small number

of basis functions may become quite useful.

5 Appendix

In this section we give some details of the calculation of the
matrix elements of the Hamiltonian on the Hylleraas basis.
We shall use the notation |N,n1,l;,na,l2; L) to designate
the ket given in the coordinate representation by equation
(8).

It is easy to see that for the matrices U and R in the

Eq.(7) calculation of the matrix elements (N;, 114, l1i, na;, l2;; L|C’|Nj, ni,

(where C is either unit operator for the overlap matrix,
or potential energy operator for the U-matrix, can be
reduced to the calculation of the basic matrix elements
of the type (Nj,nui,l1s, N2, las; LINj, 04,115, M55, 1255 L),
where the primed numbers N}, n}; may differ from N; and
n; (e.g., for Coulomb repulsion term in the Hamiltonian
N;=N;—1).

The calculation of the kinetic energy matrix elements

can be performed quite analogously if one observes that
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the following easily derived identity holds for any (suffi-

ciently smooth) function f(ri,rs)

(A1 + Ag)|ry —ro| N f(r1,12) =

(1= e =N ( Ay + A) (e, m2)

+2N(N —2)|r; — 2|V 72 f(r1,12)

P w2+ A xa) )]

(12)

where A is the Laplace operator. Using the fact that

for our basis vectors |N,n1,l1,ns, la; L) the function f(rq, r2)

is a product of two Slater-type functions, it is easy to see
that equation (12) reduces the calculation of matrix ele-
ments of the energy operator in the basis of the vectors
|N,n1,l1,n2,1l2; L) to calculation of the basic matrix el-
ements (Nj,n14,l1i, N2i, lag; LINJ, 1y 5, 115, n55,laj; L). The
latter can be calculated analytically with the help of the

following expansion

vy — 1| = r>>‘ i an(0) Py (cos(612)) (13)
n=0

T< .
where &« = —, r~ and r> being as usual the larger and
r>

the smaller of the two coordinate vectors r; and rs respec-

tively, and

T'(n—X/2) n!
T(=7/2) 2n) ™

F(n—)/2,-)/2—-1/2;n+3/2;a?)

an(a) =4"a"

(14)

In the last equation F(n — \/2,—\/2 —1/2;n + 3/2;a?)
is a hypergeometric function.

With the help of expansion (13) the basic matrix el-
ements are calculated much the same way as ordinary

Slater integrals (to which they reduce of course if we put in

equation (13) A = —1). The calculation is much simplified
by the fact that for all needed matrix elements the param-
eter A in (13) is an integer satisfying A = N > —1. Due
to this fact the hypergeometric function in the equation
(14) reduces to a polynomial, allowing thus to perform
radial integrations analytically without lost of precision.
Angular integrations are performed using standard angu-
lar momentum technique. Calculation of the dipole matrix

elements in Eq.(7) proceeds analogously.
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Table 1. Energy and width (in a.u.) of the 1s®> 'S state of the helium atom in the presence of DC and AC electric fields (field

strengths in a.u., w = 111 V)

1218
Fpc E r
Fac =0.1
0 -2.9033858  1.4708-4

0.05 -2.9051265 1.4683-4
0.1 -2.9105049 1.4675-4

0.15 -2.9202165 5.6224-4

Fac =0.13

0 -2.9031524  2.4849-4
0.05 -2.9048932 2.4803-4
0.1 -2.9102718  2.4746-4

0.15 -2.9199840 6.5271-4

-2.904 | 16E-4 20041 1 7E-4
/{5E-4 /{6E-4
2.908 | -2.908 |
_ L 4E4S A 15E-475
5 29121 G S 2912+ S
G 13B4Z & {4E-4 7
2.916 | |ga 2.916 13-4
2920l 1E-4 2E-4
0.00 0.03 0.06 0.09 012 0.15 0.00 0.03 0.06 0.09 0.12 015
Fpoc (a.u.) Fpc (a.u.)

Fig. 1. Energy (solid line) and width (dashed line)(in a.u.) of the 1s? 1S state of the helium atom as functions of the DC field
strength. The AC field is applied with the frequency w = 111 eV and the field strength Fac = 0.1 a.u. (left) and 0.13 a.u.

(right).
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Table 2. Energy and width (in a.u.) of the 1s2s'S and 1s2p* P sates of the helium atom in the presence of DC and AC electric

fields (field strengths in a.u., w =111 eV)

1s2s'S 1s2p' P
Fpc E r E r
Fac =0.05
0 -2.1458914  2.68-5 -2.1237419  2.06-4
0.0005 -2.1459910 2.78-5 -2.1236884  2.02-4
0.001  -2.1462856 3.15-5 -2.1234445  2.69-4
0.002  -2.1474064 5.81-5 -2.1225276  5.22-4

0.003 -2.1491111  1.316-4 -2.1211653  9.11-4

0.004 -2.1512526  2.710-4 -2.1195121  1.412-3

0.005 -2.1537179  4.851-4 -2.1177007  2.018-3

0.01 -2.1691494  2.8079-3 -2.1074370 6.7483-3
Fac =0.1
0 -2.1456444 1.073-4 -2.1235583  7.028-4

0.0005 -2.1457441 1.106-4 -2.1234755  7.229-4

0.001 -2.1460361  1.210-4 -2.1231002  8.639-4

0.002 -2.1471592  1.710-4 -2.1223129  1.0124-3

0.003 -2.1488631  2.738-4 -2.1209489  1.3719-3

0.005 -2.1534658 6.837-4 -2.1174776  2.4209-3
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Table 3. Energy and width (in a.u.) of the 15253S and 1s2p®P states of the helium atom in the presence of DC and AC

electric fields (field strengths in a.u., w = 111 eV)

152538 1s2p3P
Foc E r E r
Fac =0.05
0 -2.1751464 2.71-5  -2.1330972 1.37-4

0.001 -2.1753039 2.79-5 -2.1330044 2.08-4
0.002 -2.1757721 3.26-5 -2.1327312 4.20-4
0.003 -2.1765385 4.82-5 -2.1322930 7.63-4

0.005 -2.1788889 1.514-4 -2.1310398 1.796-3

Fac =0.1

0 -2.1748985 1.083-4 -2.1328972 5.379-4
0.001 -2.1750562 1.106-4 -2.1328036 6.084-4
0.002 -2.1755248 1.199-4 -2.1325282 8.172-4
0.003 -2.1762920 1.427-4 -2.1320865 1.157-3

0.005 -2.1786438 2.662-4 -2.1308210 2.179-3

210 —_
/ 6E3 |
212t
~ 1s2p 'P . SE3
B S 4E3 )
& 214f =
= 3B3|
M —
216} 2E3 1
1s2s'S 1E-3 1s2s'S
218 0E0 ‘ ‘ ‘ ‘ ‘
OB0 2E-3 4E3 6E3 8E3 B2 OBO  2E-3 4E3 6E-3 8E3  1E-2
Foc (a.u.) Foc (a.u.)

Fig. 2. Positions and widths (in a.u.) of the 1s2s 'S and 1s2p ' P states as functions of the DC field strength. The AC field

frequency is w = 111 eV, strength Fac = 0.05 a.u.
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Fig. 3. Same as Fig. 6 for the 1s2s S and 1s2p 2P states. The AC field frequency w = 111 eV, strength Fac = 0.1 a.u.



