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Abstract

We apply a non-perturbative procedure for the calculation of the total photoion-
ization cross-section of two-electron atomic systems. The procedure is based on the
Floquet-Fourier representation of the time-dependent Schrodinger equation. With
the use of the Hylleraas-type basis functions, the total photoionization cross-sections
obtained are within the accuracy of a fraction of a percent, which, we believe, is the
most accurate estimate for the cross-sections available. The total photoionization
cross-sections for neutral helium deviate notably from the benchmark experimental
data of Samson et al. [J. Phys. B 27 887 (1994)].
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1 Introduction.

Photoionization of two-electron atoms has been studied theoretically by differ-
ent authors starting from the pioneering paper [1]. Review of early literature
on this subject can be found in [2]. Subsequently, a large number of com-
putations of helium photoionization cross-sections was reported [3—6]. These
calculations produced a collection of results varying typically by 5% from each
other. On the experimental side, the benchmark set of data was reported by
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Samson and co-workers [7,8]. Agreement between the theoretical and exper-
imental data was within the same margin of 5%. In the following years, the
theoretical interest shifted towards calculation of differential characteristics of
the photoionization process and to studies of double photoionization. Here,
several approaches have been advocated including the many-body perturba-
tion theory [6,9], convergent close-coupling method [10,11], time-dependent
close-coupling method [12-14], R-matrix approach [15,16], and methods based
on the computation of the dipole response function [17] or B-spline implemen-
tations of the exterior complex scaling [18,19].

Due to this shift of focus, there have been no further attempt to produce a
consistent set of photoionization cross-sections of He with an accuracy of better
than several percent. In the meantime, accurate helium photoionization cross-
sections would be highly desirable due to importance of He in astrophysics and
its use as a standard gas in determination of the photoionizaiton cross-sections
of other atomic and molecular species.

In the present paper we report a calculation of the total photo-ionization cross-
section from the ground state of Helium, which we believe provides results
accurate to within a fraction of a percent. We were able to attain this level
of accuracy by reformulating the description of the photoionization process in
terms akin to those used in the bound-state calculations, and by borrowing one
important tool used in the bound-state calculations- the Hylleraas basis set.
It is use of this tool which allows unprecendented accuracy of the bound-state
calculations in few-electron systems. Use of this tool allows also, as we hope to
dempnstrate, achieve quite high accuracy in the photoionization calculations,
even in the regime of quite high intensities of the applied electromagnetic field.

To achive this goal we combine the so-called complex rotation method (CRM)
and the Hylleraas basis technique.

There is a long history of using the CRM method in the photoionization calcu-
lations. One way of calculating the photoionization cross-section is to combine
the CRM technique with the perturbation theory with respect to interaction
of the atom with the electromagnetic field. In such a perturbation theory, the
CRM provides the basis of the field-free atomic states. It was demonstrated
in [20] that relying on the spectrum of the CRM eigenvalues, one can con-
struct a representation of the complete Green’s function of the atom. This, in
turn, allows to write down a convenient representation for the projection op-
erator corresponding to the continuous spectrum of the atom [21]. Using this
projection operator, one can compute probabilities of transitions into contin-
uum under the action of some perturbation, in particular, the interaction of
the atom with the electromagnetic field. Calculations of total photoionization
cross-sections of the helium atom based on this technique have been reported
in [22,23].



Alternative, completely nonperturbative approach to the description of EM-
radiation- atom interaction, which also relies on the ideas of the CRM tech-
nique has been proposed in [24]. This approach becomes feasible in the so-
called Floquet-Fourier representation of the time-dependent Schrodinger equa-
tion [25]. This representation allows to reduce the problem of solving the time-
dependent Scrhrodinger equation to a somewhat simpler task of finding solu-
tion to a set of differential equations. The complex rotation method (CRM)
is a convenient tool which allows to solve this problem efficiently. Thus, start-
ing from the pioneering work of [24], the combination of these methods has
been used in a number of works devoted to the study of atom-EM radiation
interaction [26-28].

The key ingredient of the present work which distinguishes it from previous
implementations of the Floquet-CRM method is the use of the Hylleraas basis
functions. This basis has long been used in variational-type calculations. An
excellent review of applications of the Hylleraas basis to calculations of energies
of two-electron atoms is given in the paper [29]. A well-known trademark of
the Hylleraas basis set is a very high accuracy of the atomic energies. In the
present paper, we show that the same high accuracy which is achieved for
field-free atomic states can also be attained when the atom is placed in a
monochromatic electromagnetic field. In particular, the total photoionization
cross-sections can be calculated with an unprecedented accuracy on the order
of a fraction of a percent.

Thus generated cross-sections were compared with the experimental results
[7]. Within the present accuracy, we discovered a systematic deviation from
the experiment, especially in the region close to double ionization threshold at
the photon energies of ~80 eV. This deviation was confirmed by comparison
with earlier results produced by the convergent close-coupling (CCC) method
(30].

The true potential of the present approach is realized in the strong field regime
where the perturbation theory fails. As demonstrated below, the Floquet-
Fourier-Hylleraas ansatz produces very accurate results in this regime as well.

2 Theory

2.1 General Theory.

The non-relativistic Hamiltonian of the helium atom in the presence of the ex-
ternal monochromatic linearly-polarized electromagnetic field can be written



as:
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where we adopt length gauge to describe interaction of atom and the field, and
D = 7} + 5. Unless stated otherwise, the atomic units are used throughout
the paper.

We write the solution of the time-dependent Schrodinger equation (TDSE)
using the Floquet-Fourie ansatz [25,31,24,32].
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By substituting this expression into the TDSE and equating coefficients with
e tBt—imuwt  we obtain a chain of coupled equations for the Floquet-Fourie
coefficients u,,:
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This set of equations can be solved with the help of the complex rotation
procedure [33-38|. Formally, the CMR can be described as a complex trans-
formation of radial variables r; — r;e®, where 6 is the rotation angle, the sole
parameter defining the transformation.

Under this transformation, the chain of equations (3) is converted into
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According to the general theory of CRM [33-36], the set of equations (4) can
be solved by means of variational techniques if the rotation angle 6 is properly
chosen.

As usual in the variational calculations, we introduce a basis set of square in-
tegrable functions |n, k) where the index n refers to the number of the Floquet
block and the index k denotes a particular L? function in the subspace of the
n-th block so that u,, = Z Cnk|m, k). With these notations, the set of Eqs.(4)

can be rewritten in a matrix form as:
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where it is understood that summation is carried over the repeated k-index.
Here V = F-D, and R, T and U stand for the overlap, kinetic energy and
potential energy matrices, respectively.

One should say here a few words about the choice of the basis allowed by
the structure of the system (5). Suppose first, that in each of the subspaces,
corresponding to different Floquet blocks, we chose some compete set of func-
tions, such that for any u, in Eq.(4) we had: u, = ) _ ¢um|n, m). Let the set
of |n,m)’s be the same for all Floquet subspaces. Then, if we have retained
N Floquet blocks in the system (4) and keep M terms in the expansion for
each u, in Eq.(4) we have altogether NM unknowns ¢, in the system (4). To
get a correctly posed eigenvalue problem, we should have the same number of
equations. This number is provided by projecting each of the equations (4) on
one of the |n,m)’s with m = 1... M. This way of reducing the set of equations
(4) to the form of matrix eigenvalue problem is correct, but too general for
our purposes. It can be seen, that one can considerably diminish the result-
ing dimension of the matrix eigenvalue problem by using certain symmetry
properties of the system Eq.(4). It is easy to see, that this system allows the
following class of solutions: u,,’s with even n are of even parity, while u,,’s with
odd n are of odd parity. Parity here is understood with respect to the spatial
inversion. Of course, there is a class of solutions with the opposite property:
u,’s with even n are of odd parity, while u,’s with odd n are of even parity.
The solution we are looking for (which is to describe behavior of the even ' S5¢
state of helium) evidently belongs to the first class. We can threfore, choose
the basis set as follows.

Instead of choosing the same set |n, m) for each Floquet block, we choose two
sets: a set |Neyen, M), consisting of basis functions of even parity, is used as a
basis to represent u,’s with even n’s. Another set |nqqq, m), composed of odd
parity functions is used as a basis to represent u,’s with odd n’s. Suppose
that in the expansions of u,’s with even n’s we retain Mgy, terms, and in
the expansions of u,,’s with odd n’s - M,4q terms. Let the number of Floquet
blocks with even and odd n’s be respectively Neyen and Nyqq. Than we have
Neven Meven + Noaa Moqq unknown coefficients c,,,,,. We obtain the same number
of equations by projecting equations (4) on |neyen, M), m = 1... Meye, for even
n and on |negq, m),m = 1...Myeq for odd n. Projection of equations with
even n on the |nyqq, m) and of equations with odd n on the |neyen, m) gives
identically zero and does not add new equations. More details about the basis
functions |neven, m) and |nqqq, m) is given below.

According to the general theory of CRM, some of the energy values (generally
complex) for which system (5) has a solution are related to the position and
width of the resonance state via E = E, — iI'/2, where E, is position of the
resonance and I' its width. This leads one to solving a generalized eigenvalue
problem. Effectiveness of finding eigenvalues of such a problem depends cru-



cially on the choice of the basis used to represent the matrices in Eq.(5). So
far, the development has been fairly general and well-known, following, e.g.,
the ideas presented in [24]. We introduce now a major technical improvement,
consisting in the choice of the basis functions.

2.2 Basis set.

The basis set used in the present paper was constructed from the Hylleraas
type functions:

G, N (71, T2) = 71 152 |7y — | N e 7021 (1)15(2) L), (6)

where a,b are some constants (to be specified below), ny,ns,N are integers and
the angular part
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represents two angular momenta [y, > coupled to a state with a total angular
momentum L. The basis functions (6) must be properly symmetrized with
respect to exchange of the electron coordinates. When choosing parameters in
Eq.(6), we followed the following rule of thumb [29,39]. All the basis functions
with the parameters satisfying:

ni + U + N < Nmax (8)

were included in the calculation (this inequality defines the so-called Pekeris
shell). The parameter Ny, determines the overall size of the basis. There is
also a semiempirical rule for choosing angular momenta l;,ls in the Eq.(6).
Thus, for states of the natural parity, /;,lo are best chosen so that I; + I, =
L. Both these criteria help to avoid the numerical problems due to near-
degeneracy of the basis set when its dimension becomes large.

3 Numerical Results
3.1 Field-free case

In the present work, our main goal is to obtain accurate photoionization cross-
sections from the ground state of neutral helium for not very large electromag-
netic field intensities. Accordingly, our main interest is focused on the states



of § and P symmetries. Threfore, our first goal is to choose such a basis that
solution of the eigenvalue problem (5) yields accurate energies for the ground
1S and first excited 1 P° state of the helium atom in the absence of the field.

This goal was achieved as follows. We chose parameters Ny, = 18, a = b = 2
for the S-states and Ny, = 13, a,b = 1,2 for the P-states. The reason
for enlarging the basis set for the excited P-states is that the electrons in
such states are generally on different distances from the nucleus. This choice
combined with restriction on angular momenta, given by the Eq.(8) resulted
in Ng = 372 basis functions for the S-states and Np = 660 basis functions for
the P-states.

The next step was to solve the generalized eigenvalue problem for the field-
free case. In Eq.(5) we put F' = 0, w = 0, and limited ourselves to the blocks
with m = 0, n = %1, the n = 0 block being composed of the states of 15¢
symmetry, and n = £1 blocks composed of the states of ! P symmetry. All the
numerical results reported below were obtained using the quadruple precision
arithmetics.

We note, that in the presence of the weak electromagnetic field, account of
the blocks with n = 41 corresponds to absorption and emission of one pho-
ton. We shall use this fact below to extract the photoionization cross-section
from our calculation. For the moment, we are concerned with testing the accu-
racy of our basis. Diagonalization of the eigenvalue problem (5) with F' = 0,
w = 0 in the basis described above produced the following results for the
complex energies: E = —2.903724384 + ¢ 1.3 x 10~® (the ground state) and
E = —2.123843094 + i 7.6 x 107% (1s2p' P° state). A small imaginary part
which, in the absence of the field, should of course be zero could be taken as
an indication of an accuracy of our basis set. Either this criteria or a direct
comparison with the well-known results of highly accurate calculations [29]
shows that we have achieved an accuracy on the order of 1078 a.u. This accu-
racy, as will be demonstrated below, is sufficient to obtain the photoionization
cross-sections with at least three significant figures.

3.2 Total photoionization cross sections

To calculate the total photoionization cross sections we adopted the follow-
ing strategy. The eigenvalue problem (5) was solved with the Floquet blocks
n = 0, £1 retained, the composition of each block was the same as described
above for the field-free case. Diagonalization of the eigenvalue problem (5)
produced energy shift and total width for the ground state. By definition, the
photoionization cross-section from this state is related to the total width T"



Table 1
Results for the ground state eigenvalue of problem (5) as functions of parameters
Nmax in Eq.(8), w =80eV, F =0.1 a.u.

N3.. NE.. Total dimension of the ReF(a.u.) I (a.u.)
eigenvalue problem (5)
17 11 1300 -2.90307660 0.000487738
18 12 1692 -2.90307661 0.000487698
19 13 2204 -2.90307659 0.000487689
via
o = lim 8ralTw/F?, (9)
F—0

where F is field strength, w its frequency, « is the fine structure constant. We
need threfore to extract from our calculation the coefficient with F? in the
asymptotic law defining the weak-field behavior of the width:

[(F)=ToF>+T1F*+ ... (10)

To implement this strategy, we need an extrapolation procedure since the
calculation based on the system (5) is performed for a non-zero field strength.
Although finite, this field strength should not be too small to compute I' with
sufficient accuracy.

The issue of accuracy can be addressed as usual in variational-type calcula-
tions, by merely increasing the basis size and verifying that the results do not
change appreciably. Such a test was performed for a photon energy w = 80
eV and a field strength F' = 0.1 a.u. by varying the parameter Np,, in Eq.(8)
for the S and P states. The diagonalization of the problem (5) was performed
with the Floquet blocks n = 0,41 retained. All the remaining details of the
basis (nonlinear parameters etc.) were the same as in the field-free case re-

ported above. The calculation was performed for the value of the rotation
angle 6 = 0.3.

The test results are presented in Table 1. One can observe that, just as in the
field-free case, the accuracy is on the level of 1078 a.u., which implies that T’
has at least four significant digits in this interval of field strengths.

The issue of the stability of the results with respect to the number of the Flo-
quet blocks included in diagonalization of (5) is addressed in the next section
where we consider effects of going beyond the first order perturbation theory.
We shall say in advance that, for the field strengths considered, inclusion of



Table 2
Extrapolation of the I'’s to the zero-field limit.

T'/F? (a.u.)

w (V) F=007au F=01lau F=013au F =0 (Extrapolation)

40 0.4208622 0.4201601 0.4192063 0.4215215
80 0.0488002 0.0487698 0.0487239 0.0488112
85 0.0392854 0.0392618 0.0392330 0.0393202
91 0.0306858 0.0306720 0.0306524 0.0306961
95 0.0262180 0.0262082 0.0261936 0.0262224
111 0.0147116 0.0147084 0.0147033 0.0147116
205 0.0013719 0.0013726 0.0013729 0.0013687

the Floquet blocks with n = £2 in diagonalization of (5) does not alter the
numerical accuracy appreciably.

As to the extrapolation procedure needed to extract the coefficient I'y in
Eq.(10), we chose a scheme based on the three-point Lagrange formula. For
each frequency reported below, we performed calculations for the field strengths
F = 0.07,0.1,0.13a.u. We also used a mid size basis set with N5, = 18,
NP =12, Floquet blocks with n = 0,=+1, all other details of the basis be-

ing the same as in the field-free case above. Results of this calculation and
extrapolation are shown in Table 2.

Using an estimate for the remainder of the series (10), it is a simple matter
to verify that for the field strengths considered the possible relative error
introduced by the extrapolation of I'/F? is on the order of 0.1%. Hence, at
least three digits in our result for the extrapolated ratio I'/ F? and the cross-
sections reported below must be reliable. This level of accuracy can easily
be improved by merely going to extrapolation schemes of higher order and
computing I' for more field values.

In Table 3 we present our results for the cross-sections based on formula (9) in
which we fed the extrapolated ratios from the last column of Table 2. Along
with our data, we present the experimental results of Samson and co-workers
[7,8] and [40] as well as earlier theoretical results from [30] and compilation
[41].

For the photon energy of 40 eV, we also compare our results with a highly
accurate multichannel calculation of [42]. Using a combination of configuration
interaction and close-coupling techniques, these authors obtained the following
values for the total single ionization cross-section: 3.18173 Mb (length gauge),



Table 3
Comparison of the present results and other theoretical and experimental data for
the total photoionization cross section (in Mb).

w Present CCC Experiment  Compilation
eV L \% [7] [40] [41]
40 3.1822  3.188  3.178 3.16  3.183 3.190

80 0.7369 0.7432 0.7403 0.693 0.715 0.702
85 0.6308 0.6364 0.6327 0.595 0.611

91 0.5272  0.5333 0.5284 0.502 0.509

95 0.4701 0.4765 0.4717 0.450 0.452

111 0.3082 0.3097 0.3089 0.300

205 0.0529 0.0533 0.0534 0.0510 0.0533

3.18129 Mb (velocity gauge) and 3,18056 Mb (acceleration gauge). Variation
of these results with the gauge is on the order of 5 x 10* Mb which can be
used as a measure of the accuracy of their calculation. These results are to
be compared with our cross-section of 3.1822 Mb which is within the limits of
5 x 10~* Mb from the length gauge of [42]. We may threfore conclude that we
achieved at least the same level of accuracy in the description of the single-
photon ionization as was reported by [42]. Our calculation, however, covers
the region of larger frequencies, where the double photoionization channel is
open.

The deviation of the present data and the experimental data [7] reaches 6 per-
cent for w = 80 €eV. This fact deserves some attention, we believe, since helium
often serves as a ”standard” in photoionization cross section mesuarements,
and, threfore, precise knowledge of parameters characterizing photoionization
in helium is of considerable practical importance. Agreement between the
present calculation and that of the CCC is much better, difference of the re-
sults of two approaches not exceeding 1%. The accuracy of the CCC result is
hard to estimate directly as this method relies on the numerical solution of a
set of close-coupling equations. The only implicit indication is the difference
between the cross-sections calculated using length (L) and velocity (V) gauges
to describe atom-EM radiation interaction. This difference is typically 1-2%.
Thus, the deviation of the present calculation with the CCC is more likely
to be the problem of the latter as the former is believed to be much more
accurate.

In the paper [19] the authors compared their total photoionization cross-
section with the experimental data [7]. They concluded that the agreement
between theory and experiment was excellent in the whole energy range, ex-
cept in the vicinity of the resonance peaks due to the limited energy resolution
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of the experiment. This agreement was also categorized as very good in the
region where the double ionization continuum was open. As the results of the
work [19] were presented graphically, it is hard to make a quantitative com-
parison between theory and experiment. Visual magnification of their cross-
section plot (Figure 6) reveals that the calculated cross-section is somewhat
larger than the measured one close to double ionization threshold. For larger
photon energies, our results are in good agreement with the results obtained
by [41] who used large-energy asymptotic expansions for the cross-sections.

3.3 FExtended calculation

We now turn to extended calculations with inclusion of a larger number of the
Floquet blocks n = 0, &1, 42 in 5. The aim of this calculation is two-fold. First,
we shall confirm the stated accuracy of the present weak field results, showing
that it is not effected by the number of the Floquet blocks retained in the
calculation. Second, we report some preliminary results concerning behavior
of the widths parameter in stronger fields where inclusion of a larger number
of the Floquet blocks becomes essential due to the non-perturbative nature of
the processes involved.

The basis for the extended calculations was constructed as follows. As we
discussed above, the basis subset, spanning each Floquet block in the system
(5), can be chosen to consist of the functions of a given parity, two adjacent
blocks having opposite parities. Thus, in the low-field calculations described
above, the block n = 0 was composed of even basis functions while two blocks
with n = 41 contained odd basis functions. Inclusion of the blocks with
n = %2 is, threfore, equivalent to adding more even basis functions. We did
it in the following way. In addition to the 1S¢ states we previously had in
the n = 0 block, the states of the symmetries ! D¢ and ! P¢ were included in
the calculation. Thus the blocks with n = 0 and n = £+2 had the following
composition: Npax = 18 for the 1S®basis functions, Np.x = 8 for the 1 P¢
and !De¢-basis functions. As before, the blocks with n = 41 were composed
of basis functions of ! P°-symmetry with Np.x = 13. Thus, the basis set is
considerably enlarged comparing to the one used in the previous section. With
this choice of parameters Ny,,, the overall dimension of the eigenvalue problem
(5) was 2676. Results produced for the ground state of He by diagonalizing
this eigenvalue problem are shown in Table 4

Comparison of the results given in Table 4 supports the assertion we made
in the previous section as to the accuracy of our results for the widths. As
one can see, for the field strengths F' ~ 0.1 a.u., inclusion of the additional
Floquet blocks and basis states of symmetries other than S and P produces
relative variations in the widths on the order of 0.01 percent. This means
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Table 4
Results of the calculation with Floquet blocks n = 0, &1, 2 included in the system

(5).

w=111eV w = 205 eV

F (au.) ReE (au.) T/F? (au.) ReE (au) T/F? (au.)

0.10 -2.90338569 0.014714  -2.90362976  0.0013734
0.13 -2.90315198 0.014715  -2.90356447  0.0013739
0.20 -2.90236955 0.014715  -2.90334589  0.0013743
0.50 -2.89525524  0.014706  -2.90135842  0.0013745
1.0 -2.86985102 0.014665  -2.89426254  0.0013701

that for such field values we are still within the domain of the validity of
the perturbation expansion. For the frequencies presented in the Table, the
domain of the perturbation theory actually extends quite far in the region of
large field strengths. As one can see from the Table 4, the ratio I'/F? starts
changing in a more or less appreciable manner only for field strengths as large
as F' =~ 1 a.u., which is where a truly non-perturbative regime starts.

4 Conclusion

We performed a calculation of the total photoionization cross-sections from
the ground state of helium. We employed a theoretical procedure based on
the Floquet-Fourie representation of the solutions of the TDSE describing the
helium atom in the presence of the linearly polarized monochromatic electro-
magnetic field. The resulting set of Floquet equations was solved by means of
the CRM method supplemented by the Hylleraas basis technique.

We would like to emphasize the accuracy of the present results for the pho-
toionization cross-sections which is on the level of a fraction of a percent,
which, we believe, is the most accurate present estimate for the total cross-
sections. Since, as we mentioned above, helium is often used in experiments
on photoionization as a ”standard”, achieving such an accuracy in describing
the photoinization process in helium provides a set of accurate data, which
can be used in experiments performed with other gases.

Although only few selected photon energies were reported in the paper, far
wider and denser energy grid was covered by the present calculation. These
results might serve as an accurate database and find their use in various as-
trophysics and atomic physics applications. The authors shall gladly commu-
nicate these data on request.
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