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Abstract. We develop a formalism and a computational procedure to treat the
process of multiphoton ionization (MPI) of atomic targets in strong laser fields. We
treat the MPI process nonperturbatively as a scattering phenomenon by solving a set
of coupled integral equations. As the basic building blocks of the theory we use a
complete set of field-free atomic states, discrete and continuous. This approach should
be able to provide both the total and differential cross-sections of MPI of atoms with
one or two electrons. As a test, we apply the proposed procedure to a simple model of
MPI from the square well potential.
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1. Introduction

In recent years, the process of multiphoton ionization (MPI) of atomic and molecular
species has been a subject of intensive experimental and theoretical studies (see reviews
by Protopapas et al (1997), Lambropoulos et al (1998), Chu and Telnov (2004) and
Posthumus (2004) and references therein). Rapid progress in this field has been largely
driven by advancement of high-power and short-pulse laser techniques. The laser
intensities which may go beyond 10'®* Wcem 2 make it possible to observe many striking
phenomena such as MPI or above-threshold ionization.

Accurate theoretical description of ionization processes occurring in laser fields
of such intensities is bound to go beyond a simple perturbative picture. The first
nonperturbative theory of MPI was proposed by Keldysh (1964), Faisal (1973) and Reiss
(1980). Their theory (known as KFR) treated the process of MPI as a transition of an
electron from an initial bound state into a final state described by the classical Volkov
wave function. The KFR approach provided simple analytical formulas for the MPI rate
which were found in a qualitative agreement with experiment. Various modifications of
the KFR theory were made, in particular those accounting for the rescattering process
(Becker et al 1994, Bao et al 1996).

The KFR theory treated the laser field purely classically. In the following years
the MPI problem was reformulated in an entirely quantum form. The first step in this
direction was taken by Guo and Aberg (1988) and Guo, Aberg and Crasemann (1989).
Their MPI theory (referred hereafter as GAC) was treating the photoionization process
as a QED scattering phenomenon. The emphasis in this theory was put on a proper
QED description of an electron interacting with the laser field (the quantum version of
the Volkov states). Further development of the QED picture of the MPI phenomenon
was made by Gao et al (2000) and Chen et al (2003) who refined the original GAC theory
by including the non-laser modes of the electromagnetic field. This approach, although
solving the problem in principle, was found to be somewhat difficult to implement even
for simplest atomic targets such as one- and two-electron atoms. For instance, Chen

et al (2003) had to make further approximations in order to carry out their calculation
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of MPI on atomic hydrogen.

In the present paper we propose a scattering formalism for MPI which we intend
to use for practical computations on real atomic systems. In this development we are
inspired by a series of works by Burke and collaborators who combined the the Floquet
description of the laser field with the R-matrix scattering theory. Following the seminal
work (Burke et al 1991), this approach has been successfully implemented for calculating
the total MPI rate and the level shift in atomic hydrogen (Dorr et al 1992), helium
(Purvis et al 1993), the negative hydrogen ion (Dorr et al 1995) and molecular hydrogen
(Colgan et al 2001). Most recently the R-matrix Floquet theory was combined with the
basis spline technique to describe the two-electron MPI from the helium atom in the
ground (Feng and van der Hart 2003) and excited states (van der Hart and Feng 2001).
In addition to the total MPI rate, some differential cross-sections can be also calculated
within the Floquet formalism as was demonstrated by Potvliege and Shakeshaft (1988)
and Potvliege (1998) for atomic hydrogen. It is the most detailed fully differential
cross-sections that are of particular interest to experimentalists and that we intend to
calculate in our approach.

It should be noted that the Floquet theories mentioned above treat the MPI process
as a decay problem. On the other hand, the scattering MPI theories (Guo and Aberg
1988, Guo et al 1989, Chen et al 2003, Gao et al 2000) use the Volkov states to describe
intermediate states of the target between absorption of the photons. This makes it
difficult to apply these theories to non-trivial atomic systems, e.g. the helium atom.
In the present paper, as building blocks of the collision theory, we use atomic field-
free states including those states with one and two electrons. For two-electron atomic
systems, an accurate set of target states can be generated by the so-called convergent
close coupling (CCC) method. This method has been extensively tested for processes
with two electrons in the continuum such as electron scattering on atomic hydrogen
(Bray 1994) and low-field double ionization of helium (Kheifets and Bray 19985, Kheifets
and Bray 1998a). We intend to use the same set of target states for MPI of He in the

non-perturbative strong-field regime.
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The rest of the paper is organized as follows. In Section 2 we give a formulation
of the MPI theory in terms of the field-free atomic states, treating MPI as a scattering
phenomenon. In Section 3 we make a connection of the present formalism with the
Floquet theory. In Section 4 we consider a model square-well problem. We conclude in

Section 5 by outlining a set of problems we intend to consider in the future.
2. MPI as a scattering process.

Let us consider a system consisting of a number of photons (with a given frequency
w and momentum vector k, corresponding to those of an incident plane-wave), and
a target (atom or ion). We shall describe the field fully quantum-mechanically. The

Hamiltonian of the system can be written as:

A

H= -E[atom + I;[ﬁeld + I:Iint; (1)

where ﬁatom and I:Iﬁeld have usual meaning of the Hamiltonians of atom and free field.
The atomic Hamiltonian is taken in a non-relativistic form. The corresponding states
of the system consisting of the non-interacting atom and field are denoted as |a,n),
where a set of quantum numbers a defines the state of the atom and n is the number of
photons. The following notations will be kept throughout the paper: Greek letters will
be used to designate the states of a whole system “the atom plus external field”, while
the Latin letters will be used for the atomic states. The atomic system of units is in use
withe=m=h = 1.

The part of the Hamiltonian ffint which describes the interaction of the atom and
the field can be written as (see e.g. Sobelman (1972)):

. 1. A?
Hupy=—-A-p+—, 2
¢ c p+202 )

where A is a quantized vector potential and p is the momentum operator. We restrict
ourselves with the dipole approximation in which the operator A does not act on the
atomic coordinates. We will also ignore all the processes of spontaneous emission and
absorption of photons. Therefore, here and below, A describes the laser photons only.

This approach is justified as we are interested in processes induced by strong fields.
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The matrix elements of the vector potential operator taken between the
noninteracting states of the system “atom plus laser photons” are given by the well-

known formulas (see e.g. Sobelman (1972)):

orecn,
(a,n|A-plb,n—1) =4/ Ten

27r(n+ 1)c?

(a,n|A-plbn+1) = (ale - p|b) (3)

where e is the polarization vector. In strong fields n ~ n — 1 > 1 and the coefficients

in Equation (3) can be simplified to

2mnc? 2n(n+1)c2  Fe
\/ R~ \/ ~N—, (4)

w w 2w

where F is the electric field strength related to the energy density as F?> = 8rnw. This

leads to the following formulas for the matrix elements of the operator Hiy:

A F A
<aan|Hint|banj:1> = —%(a|ep|b>, (5)
~ F?
(a,n|Hipy|b,n +2) = w(a\b}
~ F2
(a,n|Hin|b, n) = 4—w2(a|b>

The two bottom matrix elements can be eliminated by using an orthogonal set of the
atomic states such as {(a|b) = 0.
The evolution of the system “the atom plus external field” is described by the

scattering 7T- matrix taken in the post-form
TP = (5| Him| V7)), (6)

where a = a,n and 8 = b,n + 1 are combinations of the atom and photon variables.
The bra-vector |3) is a free state of the non-interacting atom and field described by the
Hamiltonian I:IO = I:Iatom + I:Iﬁeld. An exact eigenstate of the system ¥} is reduced in
the distant past, by way of forming appropriate wave packets, to a physical situation
when n photons strike an atom in an initial bound state a.

When the interaction is turned on, the initial state of the system a becomes
autoionizing as it can couple with the continuum state of the atom accompanied by

a lesser number of photons. A scattering formalism which describes such autoionizing
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states has long been known since the work of Fano (1961). Here we adopt this formalism

in full. We seek a solution of the Scr” Odinger equation

(H—-E,)¥ =0 (7)
in the form
Uy = cala) + D ¢y[), (8)
Y#o
where summation runs through all atomic states and laser modes and |a) = |a,n)

represents the initial state of the system “atomic bound state plus n laser photons”.
Substituting this expansion into (7) and determining the coefficients in a usual way as
to satisfy the proper boundary conditions, one arrives at the following equation for the

wave function ¥}

’Y‘Hmtml
9
e e, o

From Equation (9) one can obtain a set of Lippmann-Schwinger equations for the 7-

matrix describing the interaction of the atom with the photon field which reads:

Hﬁ’Y T
H,Ba z 1nt 10
int + 7 E _ E +Z€ ( )
e

Here the sign of ie gives the rule of bypassing the pole when performing the integration
over the continuum spectrum.

In Figure 1 we give a graphical representation of Equation (10). Here a straight
line with an arrow to the right represents an electron and the dashed lines are used
to depict the photons. A vertex indicated by the dot with two electron lines and one
photon line represents a dipole matrix element (6) which incorporates many-electron
correlation in the target. A rectangular block stands for the T-matrix (10). In the low-
field regime the integral term in the right-hand side of Equation (10) can be ignored and
the atomic ionization is described by the bare matrix element (a,7n|Hin|b,n —1). The
strong field effects are incorporated in the integral term and include multiple absorption

and emission of the laser photons.
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Figure 1. Diagram representation of the Lippmann-Schwinger equation for

multiphoton ionization. The graphical symbols are described in the text.

The sum over the spectrum of Hy in Equation (10) includes summation over various
number of photons as well as summation over bound atomic states and integration
over the continuous spectrum of the atom. To compute the integral in (10) a suitable
quadrature rule must be chosen by introducing a discrete set of target pseudostates. As
the result of such a discretization the set of equations (10) becomes a linear system on
the unknown elements of the 7-matrix. Once this linear system is solved, all information
about the integral and differential features of the MPI process can be obtained from the
on-shell elements of the T-matrix. We note that in the weak field limit summation in
Equation (10) can be restricted to the atomic variables and we arrive to the expression

for the dipole matrix element given by Eq. (12) of Kheifets and Bray (1998b).
3. Connection with Floquet formalism

It is instructive to make a connection between the present formalism and that based
on the Floquet ansatz (Burke et al 1991, Dorr et al 1992, Dorr et al 1995). To make

connections with these works we first apply a unitary transformation:

Ut = exp {—EATA’}\II;L (11)
c
thus introducing the electromagnetic interaction in the lenght gauge. In this

representation the interaction of the electromagnetic field and atomic subsystem assumes

the form

A A~

Hint - F . 'f’, (12)
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with the matrix elements

(a,n|F - #|b,n — 1) = v2mnw(ale - #|b)
(a,n|F - #|b,n +1) = /2n(n + 1)w(ale - #|b) (13)

The resulting wave function of the system “the atom plus external field” is expanded

over a complete set of the free photon states |v):

¥t = / (1) ) dv . (14)
Here v stands for a totality of all quantum numbers defining a state of the photonic
system and 7 denotes the set of variables describing the atomic subsystem. We first
restrict expansion (14) to the photon states |v) = |m) with integer number of the laser-
field photons. Then we substitute \il;’ into the Schrodinger equation. By acting from
the left on both sides of this equation with a bra-vector (n| and by integrating over the

photon variables we obtain a chain of equations on u,(7):
(E — Hypom — nw)tty = (n|Hing|n — Dty + (0| Higg|n + 1 ttpiq (15)

If the photon occupation numbers are large n > 1 then both matrix elements on the
r.h.s. of Equation (13) are equal. By using expressions (4) we arrive at a usual set of

the Floquet equations:

- V
(E — Hagom + nw)u, = g(un,l +Upt1) , n=0,£1..., (16)

where V' = F - r/2. Thus the present formalism is equivalent to the Floquet theory

within a unitary transformation.
4. Square well model

To illustrate utility of our approach we apply it to an MPI process from a one-
dimensional square well. It is this model system that was considered by Burke et al
(1991) in their seminal paper which gave rise to the spectacular success of the R-matrix
Floquet theory. We consider here an electron bound initially in a square well potential
V=-25au. for0 <z <1land V =0forz > 1, with the boundary condition R(0) =0
imposed on the wave functions. This potential supports only one bound state a with an

energy E = —0.4657 a.u. We consider an MPI process when the electric field with the
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frequency w = 0.2 is applied such that at least three photons are needed to ionize the
system. To solve this problem we follow the steps outlined in Sec. 3. The set of equations
(10) is converted into a linear system on the T-matrix elements by choosing a suitable
discretization procedure for the continuous spectrum integration. We omit here details
of this discretization as well as the principal value integration which are very close to
that outlined in Bray (1994). In the intermediate state of Equation (10) we retained
various numbers of photons. For simplicity, we count this number from the baseline of
three photons in the initial state which we denote as a = |a,3). In the intermediate
and final states we can then have negative numbers of photons. For example n = —1
in the final state |y) would mean that four photons have been absorbed. Using this
convention, the calculations we performed can be denoted as (-2,3), (-1,3), (0,3), (-2,4),
(-1,4) and(0,4). Here (-2,3) means that the number of photons in the intermediate and
final states ranges from -2 to 3.

The square well model, although extremely simple, highlights all the subtle points
one encounters when applying equation (10) to a real physical system. The first problem
which arises immediately is the singularity of the matrix elements ffﬁ‘t" when both states
a, B lie in the continuum. In fact, one can show that for any potential for which the
asymptotic behavior of the continuous wave function is given by Ry o sin (kr + 4), the

following result holds:

cos (6; — dy) 1
5 Pk,— . (17)

T d
[ Ruar) 2Ry () dr = V (i, ) +
0

where V (k;, kf) is a regular function and symbol P has a usual meaning of the principal
value integral. This singularity is, of course, just a consequence of the use of the spectral
expansion for the Green function and should disappear from the final result after the
sum through the spectrum is carried out. A convenient way to deal with such integrals
is to introduce a suitable regularization procedure. We used the following regularization

formula:
1 = lim ki = ky
k; — kf T €50 2 + (k, — kf)Z

If the regularization is properly implemented the final results do not depend upon the

P (18)

regularization parameter e. We analyze these results in the form of the partial ionization
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rates computed as

2

I (19)
kg

where the final state is specified by the momentum of a free electron k; and the number
of laser photons n. The total ionization rate is the sum of the partial rates over all the

open channels.

Table 1. Convergence of the partial ionization rate I's from the (0,3) calculation
with respect to the regularization parameter € in Equation (18). The field strength is

F =0.1a.u.
ex 102 T (107 auw) |ex 102 T (107 au.)
100 0.753 3125  1.108
50 0.883 1.563  1.115
25 0.995 0.781  1.119
125 1.061 0.390  1.122
6.25  1.093 0.195  1.125

In Table 1 we show the partial ionization rate I'; from our (0,3) calculation in which
three laser photons are absorbed. The data presented in the Table clearly indicate
convergence as € — (0. In Table 2 we present the total ionization rates for different
field strengths as computed with different numbers of laser photons (-2,3), (-1,3), (0,3),
(-2,4), (-1,4) and (0,4). In these calculations the number of open channels may differ.
For example, in the (-2,3) calculation one may have the final states with three, four or
five photons absorbed. We remind the reader that we count the number of photons from
the baseline of three photons in the initial state.

As one can see from Table 2, for small fields (up to 0.05 a.u.) all six calculations
give virtually identical results. This is to be expected since for such weak fields we
are in the realm of the perturbation theory. One should note, however, that even our
(0,3) calculation does not correspond exactly to the third order perturbation theory.
Indeed, solution of the coupled set of equations (10) amounts effectively to summation
of an infinite subset of the perturbation theory terms as is illustrated in Figure 1. For
small fields, as one can see from Table 2, this account of the high order terms of the

perturbation theory expansion is of no importance as all six calculations give practically
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Table 2. Total ionization rate I' for different field strengths

F=0.025au. F=0.05au F=01au.

p™n pmax (1077 au) T (107° au.) T (107* a.u.)
-2.3 0.1774 0.1262 1.1412
-1,3 0.1774 0.1263 1.1459
0,3 0.1751 0.1215 1.0748
-2,4 0.1766 0.1244 1.1035
-1,4 0.1766 0.1244 1.1086
0,4 0.1744 0.1198 1.0406

identical results for the ionization rate.

The situation changes somewhat for stronger fields (F' = 0.1 a.u. in Table 2). Here
the results of different calculations may vary substantially. Convergence, however, is
soon achieved. The results obtained in our (-2,3) and (-2,4) calculations do not differ
much. Further increase of the number of photons included in the calculation (e.g., -2,5
calculation) does not change the result appreciably. The result of the (-2,4) calculation

can therefore be admitted as our final result for the total ionization rate for ' = 0.1 a.u.

1.0F 0.06
a 1005 &
Il Y
E z
= H0.04 =
2 g
s 1003 &
2 a0
= H0.02 .5
[*} =
<} Q
g H0.01 5
. =
m M

10.00

0.8

Il Il Il Il Il Il Il Il Il
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
F (a.u)

Figure 2. Branching ratios of the partial ionization rate to the total rate for various
open channels in the square well model.

The partial contribution of various open channels to the total ionization rate can

be judged from the data presented in Figure 2 where we plot the branching ratios for
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the channels with various numbers of photons in the final state. Again, one can see
that for not very large field strengths ( F' < 0.05 a.u.) the contributions of the channels
with more than three photons absorbed (labeled n =4 and n = 5 in the Figure) can be
safely neglected. For larger fields their effect is becoming increasingly important.
Finally, in Figure 3, we plot the total ionization rate as a function of the field
strength. We make a comparison with the calculation of Burke et al (1991) shown as a
solid line. The dashed line in the figure indicates the third order perturbation theory.
Our data deviate from the perturbation theory predictions as the field strength increases

but not as much as the result of Burke et al (1991).

le-3

le5

le-7

I (au.)

le9

le-11
0.01 0.1

Field strength F (a.u.)

Figure 3. Total ionization rate as a function of the field strength. The solid line
shows results of the R-matrix Floquet calculation of Burke et al (1991), the dashed
line indicates the perturbation theory result. Present calculation is exhibited by points.

5. Conclusion

We developed a formalism allowing to formulate the MPI problem in terms of a set of
coupled Lippmann-Schwinger equations. This is not the first attempt to describe the
MPI process as a scattering phenomenon. Such a description has already been given in
the literature (Bao et al 1996, Guo and Aberg 1988, Guo et al 1989, Chen et al 2003).
We differ, however, from these works as we do not rely on the Volkov states as a set of
intermediate states in our scattering theory. Instead we employ more manageable set
of field free atomic states. It is of significant advantage for calculating MPI in complex
atomic systems with more than one electron. This approach, however, can only be

realized if one is able to generate a complete set of target states providing an accurate
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quadrature rule. In this respect we can rely on the CCC method which demonstrated
its ability to describe accurately singly- and doubly ionized atomic states. This gives us
confidence that we can implement our method for nonperturbative description of MPI
in complex atomic systems such as the helium atom.

We demonstrated utility of our approach for a model problem of a square well
potential. This simple problem allowed us to test our computational scheme in which
we dealt with various numerical problems, most notably, divergent matrix elements in
the continuum. Much to our satisfaction, we were able to reproduce earlier results given

for the square well problem by Burke et al (1991).
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