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Atoms with one and two active electrons in
strong laser fields

i. a. ivanov and a. s. kheifets

4.1 Introduction

Recent years have witnessed a remarkable progress in high-power short laser pulse
generation. Modern conventional and fee-electron laser (FEL) systems provide
peak light intensities of the order of 1020 W cm−2 or above in pulses in femtosecond
and sub-femtosecond regimes. The field strength at these intensities is a hundred
times the Coulomb field, binding the ground-state electron in the hydrogen atom.
These extreme photon densities allow highly non-linear multiphoton processes,
such as above-threshold ionization (ATI), high harmonic generation (HHG), laser-
induced tunneling, multiple ionization and others, where up to a few hundred
photons can be absorbed from the laser field. In parallel with these experimental
developments, massive efforts have been undertaken to unveil the precise physical
mechanisms behind multiphoton ionization (MPI) and other strong-field ionization
phenomena. It was shown convincingly that multiple ionization of atoms by an
ultrashort intense laser pulse is a process in which the highly non-linear interaction
between the electrons and the external field is closely interrelated with the few-
body correlated dynamics [1]. A theoretical description of such processes requires
development of new theoretical methods to simultaneously account for the field
nonlinearity and the long-ranged Coulomb interaction between the particles.

In this chapter, we review our recent theoretical work in which we develop
explicitly time-dependent, non-perturbative methods to treat MPI processes in
many-electron atoms. These methods are based on numerical solution of the time-
dependent Schrödinger equation (TDSE) for a target atom or molecule in the
presence of an electromagnetic and/or static electric field. Projecting this solution
onto final field-free target states gives us probabilities and cross sections for various
ionization channels.
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The chapter is organized as follows. In Section 4.2 we present the key ingredients
of our formalism and its numerical implementation. The next sections cover various
applications:

Section 4.3: Two-photon double ionization of helium
Section 4.4: DC-assisted double photoionization of He and H−

Section 4.6: ATI and HHG in quasi one- and two-electron atoms
Section 4.5: Strong-field ionization of lithium
Section 4.7: Time delay in atomic photoemission

4.2 Theoretical model

We seek a solution of the time-dependent Schrödinger equation for an atom in the
presence of an external electromagnetic (EM) field:

i
∂�

∂t
= (

Ĥatom + Ĥint(t)
)
�, (4.1)

where Ĥatom is the field-free Hamiltonian and the operator Ĥint(t) describes interac-
tion of the atom and the EM field. The Hamiltonian of the field-free atomic system
can be a completely ab initio operator as in the cases of the hydrogen and helium
atoms or the hydrogen molecule. For many-electron targets, we apply a frozen
core approximation and freeze all the atomic electrons except the valence shell
which can contain one or two electrons. This reduces the atomic Hamiltonian to
an effective one- or two-body operator. The interaction Hamiltonian Ĥint(t) can be
written in various gauges, which are all formally equivalent. We will be using the
length and velocity gauges that take the following forms for an n-electron target:

Ĥint(t) =
{

E(t) · ∑n
i=1 r i , length

A(t) · ∑n
i=1 p̂i , velocity.

(4.2)

Here the vector potential and the electric field are related via

A(t) = −
t∫

0

E(τ ) dτ.

The time dependence of the electric field is chosen to be

E(t) = f (t)E0 cos (ωt + φ),

where φ is a carrier envelope phase (CEP), ω is the carrier frequency, and f (t) is an
envelope function that is smooth and slowly varying over the interval (0, T1), thus
ensuring that no artificial transient effects are introduced in the calculation. The field
is switched off for t < 0 and t > T1. In the case of a long pulse T1 � T = 2π/ω,



neither a precise form of f (t) nor the value of the CEP are important. For short
pulses T1 � T , the pulse shape and the CEP both have a considerable effect.

We seek a solution of the TDSE on the basis of one- or two-electron wave
functions

�(r, t) =
∑

j≡{nlm}�∈core

aj (t)Rnl(r)Ylm(θ, φ) (4.3)

�(r1, r2, t) =
∑

j≡{n1n2 l1l2 JM}�∈core

aj (t)
[
1 + P̂12

]
Rn1l1 (r1)Rn2l2 (r2)|l1(1)l2(2) JM〉 (4.4)

for atomic systems with one and two valence electrons, respectively. In the
one-electron case, the angular dependence is carried by the spherical functions
Ylm(θ, φ), whereas in the two-electron case it is assumed by the bipolar harmonics
|l1(1)l2(2) JM〉 [2]. The spatial exchange operator 1 + P̂12 ensures the proper sym-
metrization of the wave function (4.4). Convergence of expansions (4.3–4.4) with
respect to the angular momenta depends on the nature of the problem at hand and
the ionization regime that we consider. It is known that this converges is generally
faster if the velocity gauge is employed for the interaction Hamiltonian [3].

The radial orbitals enetering Eqs. (4.3–4.4) are represented by a square-
integrable L2 basis. This basis can be formed in two different ways. One way
is to use a set of B-splines of a certain order (k = 7) with the knots located on a
sequence of points lying in [0, Rmax]. Another way is to build a set of positive and
negative energy pseudostates of size N , which diagonalizes the target Hamiltonian.
A basis-based calculation converges when N is sufficiently large.

As an alternative computational strategy, we may discretize the Hamiltonian and
the wave functions on a radial grid of sufficient density and extent Rmax and seek
a direct solution in the form:

�(r, t) =
∑
lm

Rlm(r, t)Ylm(θ, φ) (4.5)

�(r1, r2, t) =
∑

l1l2JM

Rl1l2JM (r1, r2, t)|l1(1)l2(2)JM〉, (4.6)

Both grid-based and basis methods of finding the radial solution of the TDSE give
us a coupled system of differential equations. The TDSE is solved directly relative
to the functions Rlm(r, t) or Rl1l2JM (r1, r2, t) if we use a grid-based technique,
Eqs. (4.5–4.6), or the coefficients of the basis set expansions are obtained if we
employ a basis set method, Eqs. (4.3–4.4). In both cases, we can write this system
of differential equations in a vector form:

i ȧ = (Hatom + H int) · a, (4.7)



where Hatom and H int(t) are matrices of the atomic Hamiltonian and the operator of
electromagnetic interaction, respectively. A short time propagator for this system
can be obtained by using the leading term of the Magnus expansion [4]

a(t + �) ≈ exp

[
−i

∫ t+�

t

H(τ ) dτ

]

≈ exp [−i H(t + �/2)�] a(t) + o(�2).

To compute an exponential of a large matrix efficiently, we employ the so-called
Arnoldi–Lanczos method (ALM) [5, 6]. This technique represents the vector
a(t + �) as a sum of vectors H(t)a(t), H2(t)a(t), . . . Hm(t)a(t), forming the
Krylov subspace. The procedure is unconditionally stable and explicit, which
allows us to treat large-scale computational problems efficiently. As an alternative
approach, we can approximate the exponential operator in the Magnus expansion
by [1 − i H(t + �/2)�/2][1 + i H(t + �/2)�/2]−1 with the same accuracy to
within the terms of the order of �2. To evaluate the matrix inverse, we employ
the so-called matrix iteration method (MIM) [7], which makes use of the fact that
the operator in the denominator can be split as: 1 + i H(t + �/2)�/2 = A + B,

where A = 1 + i Hatom�/2 and B = i H int(t + �/2)�/2, and expanded into the
Neumann series:

(A + B)−1 = A−1 − A−1 B A−1 + A−1 B A−1 B A−1 . . . (4.8)

Terms of this expansion are easily computed to any order. On every step, one has to
compute only an inverse of the operator A, which can be done fast and efficiently.

The bound atomic or molecular state, which gives the initial condition for this
system of differential equations, is obtained by using a relaxation procedure in
imaginary time for the grid-based calculation, or is prepared by direct diagonaliza-
tion of the Hamiltonian in the case of a basis set calculation.

Knowing the solution of the TDSE after the end of the pulse t = T1, we obtain
various differential ionization probabilities by projecting this solution on a set of
states describing the given ionization channel. This procedure is fairly straightfor-
ward in the case of an effective one-electron system where the continuum wave
functions can be easily calculated. It is much more difficult in the case of double
ionization of the helium or hydrogen molecule, where continuous spectra corre-
sponding to single and double ionization may overlap. This issue is addressed in
the corresponding sections below.

4.3 Two-photon double ionization of helium

The direct (non-sequential) two-photon double-electron ionization (TPDI) of
helium is the simplest and the most fundamental strong-field ionization process



with several active electrons, which requires a non-perturbative treatment of the
external field as well as a proper account of correlation in the two-electron con-
tinuum. Because of the canonical importance of this process, a large number of
theoretical methods have been developed and applied to TPDI of He in recent
years. These studies allowed us to achieve considerable progress in understanding
the qualitative features of the TDPI phenomenon. However, as far as the quanti-
tative description of TDPI is concerned, the available theoretical results paint a
somewhat controversial picture. Even though the total TPDI cross section has been
measured in He by using the HHG [8, 9] or FEL [10] sources of radiation, the
experimental results still remain debatable [11].

In our approach to the TPDI process in He [12], we seek a solution of
the two-electron TDSE in the form of the expansion (4.4) in which functions
Rl1l2JM (r1, r2, t) are expanded on a basis built from the one-electron radial orbitals
φN

nl (r). The latter are obtained by diagonalizing the He+ Hamiltonian in a Laguerre
basis of size N [13]:

〈φN
nl |ĤHe+|φN

n′l′ 〉 = Enlδnn′δll′ . (4.9)

In the present work, we consider an electric field of the order of 0.1 a.u. cor-
responding to 3.5 × 1014 W/cm2 intensity. For this not very high field intensity,
we can retain in the expansion (4.4) only the terms with total angular momen-
tum J = 0–2. To represent each total angular momentum block, we proceed
as follows. For all S, P , D total angular momentum states we let l1, l2 vary
within the limits 0–3. The total number of pseudostates participating in build-
ing the basis states was 20 for each l. To represent J = 0, 1, 2 singlet states
in expansion (4.4), we used all possible combinations of these pseudostates.
Such a choice gave us 840 basis states of S-symmetry, 1200 basis states of
P -symmetry and 1430 states of D-symmetry, resulting in a total dimension of
the basis equal to 3470. Issues related to the convergence of the calculation with
respect to the variations of the composition of the basis set are described in detail
in [14].

Initial conditions for the solution of TDSE are determined by solving an eigen-
value problem using a subset of basis functions of the S-symmetry only. This
produces the ground-state energy of −2.90330 a.u. We integrate TDSE up to a
time T1 when the external field is switched off. Then we project the solution
onto a field-free CCC wave function �(k1, k2) representing electron scattering on
the He+ ion. Details of the construction of these functions can be found in [15].
This projection gives us a probability distribution function p(k1, k2) of finding the
helium atom in a field-free two-electron continuum state k1, k2 at the time t = T1.
From this probability, we can compute various differential and total integrated cross
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Figure 4.1 Total integrated cross section of TPDI of helium as a function of
photon energy. The present TDSE-CCC results (in velocity gauge) are displayed
with filled squares. The asterisks display an analogous TDSE calculation with an
uncorrelated final state. The literature data are plotted with the following symbols:
ECS [16] – open squares, FEDVR-a [17] – open circles, FEDVR-b [18] – filled
circles. The experimental data (filled squares) are from [8, 10].

sections (TICS) of TPDI. The latter is computed as

σ (ω) = C

W

∫
p(k1, k2) d k̂1d k̂2dk1dk2. (4.10)

Here W = ∫ T1

0 E4(t)dt , and C = 12π2a4
0τω2c−2 is the TPDI constant expressed

in terms of the speed of light in atomic units c ≈ 137, the Bohr radius a0 =
0.529 × 10−8 cm and the atomic unit of time τ = 2.418 × 10−17 s.

The TICS results for TPDI of He are presented in Fig. 4.1, along with the most
recent calculations reported in the literature: exterior complex scaling (ECS) [16],
finite element discrete variable representation (FEDVR-a) [17] and (FEDVR-b)
[18] and the experiment [8, 10]. In the same figure, we also plot an alternative set
of our results obtained by projecting the solution of the TDSE on the uncorrelated
two-electron final state. This state is represented by the product of the two Coulomb
waves. Both sets of our TDSE calculations are fairly close. The issue of the final-
state correlation in the TPDI process is discussed in detail in [19].

4.4 DC-assisted double photoionization of He and H−

Single-photon double ionization (double photoionization – DPI) of helium has been
studied extensively over the past decade. Basic mechanisms of this process are now



well understood, both qualitatively and quantitatively, with accurate theoretical
predictions being confirmed experimentally under a wide range of kinematical
conditions [20, 21]. The emphasis in DPI studies is now shifting towards the
multiphoton processes in stronger electromagnetic fields or/and more complex
atomic and molecular targets where electron correlation may play a more prominent
role. In our work [14], we introduced another factor which would complicate the
DPI process: a static electric field. We consider the DPI of helium subjected to
an external DC field with the strength ranging from a few hundreds to a few tens
of the atomic unit. Since the two-electron escape is a ‘balancing act’ between the
inter-electron repulsion and the nucleus drag, the static field may upset this delicate
balance or open up new possible two-electron escape routes. This can result in a
net decrease or increase of the DPI cross section and changing energy and angular
distribution of the photoelectron pair.

The DC-assisted DPI of He is described by the TDSE containing interaction
with the external electromagnetic (AC) and static (DC) fields:

Ĥint(t) = f (t)(r1 + r2) · (EAC cos ωt + EDC). (4.11)

For simplicity, we consider the case when both the AC and DC fields are parallel
and controlled by the same smooth switching function f (t), which turns them on
and off during one period of the AC field oscillation T = 2π/ω and keeps them
constant on the time interval (T , 4T ). The total duration of the atom-field interaction
is therefore T1 = 6T . Solution of the TDSE is sought on the pseudostate Laguerre
basis [13]. The field-free evolution of the two-electron continuum is described
by the CCC wave function �(k1, k2) representing electron scattering on the He+

ion [15]. By projecting the solution of the TDSE on this function, we obtain a
probability distribution function p(k1, k2) of finding the helium atom in a field-free
state (k1, k2) at the time t = T1. The DPI cross section is related to the distribution
function p(k1, k2) normalized to the field intensity:

σ (k1, k2) = 8πω

c

p(k1, k2)

W
, (4.12)

where W = 2
∫ T1

0 E2
AC(t)dt and c ≈ 137 is the speed of light in atomic units. The

total integrated cross section (TICS) is given by:

σ (ω) = 1

2

∫
σ (k1, k2) d k̂1d k̂2dk1dk2. (4.13)

In the present work, we consider modestly strong electric fields: the AC field of the
order of 0.1 a.u. corresponding to 3.5 × 1014 W/cm2 intensity, and the DC field not
exceeding 0.03 a.u. This allows us to retain terms with total angular momentum



Figure 4.2 Left: TICS of DPI of helium as a function of an external DC field for
photon energies of 85 eV (bottom line) and 90 eV (top line). Right: same for H−
at the photon energy of 15 eV.

J = 0 − 2 in expansion (4.4). To represent each total angular momentum block, we
proceed as in the case of the TPDI calculation described in the previous Section 4.3.

On the left panel of Fig. 4.2 we display the TICS results for DPI at photon
energies of 85 eV (bottom curve) and 90 eV (top curve) and various applied DC
field strengths. For both frequencies, the TICS exhibits a decrease with the DC
field. Such a behaviour is not uncommon for two-electron systems in the external
DC electric field when there are alternative routes of decay. We documented a
similar behaviour of the total (single plus double) photoionization cross section as
a function of the external DC field for helium [22].

A much weaker bound system, H−, displays a qualitatively different DC field
dependence of TICS [23]. This dependence is displayed on the right panel of
Fig. 4.2 for the photon energy of 15 eV. As is seen from this figure, the application
of even a relatively weak DC field to H− can produce a considerable change in TICS.
As a function of the DC field strength, the TICS reaches a minimum at approxi-
mately EDC = 4 × 10−3 a.u. and then starts to grow. The growth of TICS indicates
that tunneling ionization due to the DC field is becoming a dominant process. The
role of electron correlations at this stage is not very significant. Indeed, an ioniza-
tion probability behaviour similar to Fig. 4.2 can be obtained already in a simple
Keldysh-type model of ionization in the presence of both DC and AC fields [23].

4.5 Strong-field ionization of lithium and hydrogen

Various regimes of strong-field ionization can be conveniently categorized by the
adiabaticity Keldysh parameter, which relates the frequencies of atomic motion
and the laser field, γ = ω/ωtunnel [24]. Alternatively, the Keldysh parameter can
be expressed in terms of the atomic ionization potential IP and the ponderomotive



potential Up, γ = √
IP /2Up. The MPI regime is characterized by γ � 1, where

the characteristic tunneling time of the atomic electron over the Coulomb barrier
ω−1

tunnel is much larger than the timescale ω−1 on which electromagnetic field varies
considerably. Such a fast ionization process should be described using the quantum-
mechanical language of simultaneous absorption of several laser photons. The
opposite limit of γ 	 1 is reached when the laser field is changing slowly as
compared to the characteristic tunneling time. Such a slow adiabatic process can
be described quasi-classically using the language of field strength and electron
trajectories driven by this field [25].

With increasing field strength and intensity, the width and height of the atomic
Coulomb barrier is reduced until it is completely suppressed by the external field.
Such a barrier suppression takes place independently of the value of the Keldysh
parameter. The lithium atom driven by a femtosecond laser in the near infrared
(NIR) spectral range exhibits an unusual example of barrier suppression in the
entirely quantum MPI regime. Such a process cannot be treated quasi-classically
and analyzed in convenient terms of competing electron trajectories. Instead, a full
quantum-mechanical treatment should be given. Because of the large field intensity,
such a treatment should be non-perturbative and explicitly time-dependent. Given a
large number of field oscillations in the laser pulse and the complexity of the target,
an accurate theoretical description of the MPI of Li becomes a challenging task.

In our work [26], we met this challenge by seeking a grid-based solution of the
one-electron TDSE by the ALM method, with the local Hamiltonian furnished by
an optimized effective potential [27]. We used the velocity gauge to describe the
atom-field interaction. The system was enclosed in a box of size Rmax = 2000 a.u.
On the outer boundary of the box the transparent boundary condition was imposed
ensuring that edge effects do not appear. The wave function was represented as a
series in spherical harmonics (4.3). We included terms with angular momenta up
to �max = 20 in this expansion. The electron distribution functions were computed
by projecting the solution of the TDSE after the end of the pulse on the ingoing
distorted waves calculated in the same effective potential.

Results of our calculation are presented in Fig. 4.3 in the form of the photoelec-
tron angular distribution in the polarization plane of laser light. In the momentum
distributions shown in this figure, the nominal position of the four-photon line
is marked by a dashed semicircle. Four is the minimal number of laser photons
ω = 1.58 eV to bridge the ionization potential of the lithium atom IP = 5.39 eV.
At larger intensities, an additional ring-like structure can be identified due to the
five-photon absorption, which is a clear sign of the ATI process. In this pro-
cess, the photoelectron continues to absorb laser photons when it is already in
the ionization continuum. Overall, we see a good agreement between the calcu-
lated and experimental spectra in the field intensity range of nearly an order of



Figure 4.3 Electron momentum distribution parallel (longitudinal) and transversal
(perpendicular) to the laser polarization direction. Top row: experimental data
obtained by recoil-ion momentum detection. Bottom row: calculated spectra using
the ALM model. The laser pulse peak intensity Ip, the ponderomotive potential
Up, and the Keldysh parameter γ are given above each column. The colour scale
of the momentum spectra is logarithmic. Dashed semicircle visualizes the nominal
position of the four-photon line.

magnitude. Another example of a high non-linearity ionization process is pre-
sented by the hydrogen atom driven by an intense NIR laser light [28]. With the
intensities reaching 5 × 1014 W/cm2, the ATI process takes place with as many as
50 photons being readily absorbed from the laser field. Theoretical description of
such a process necessitates a complex numerical simulation in order to achieve a
quantitative agreement with the experiment, which was documented at the 10%
level in the present case.

In our approach to this problem, as in the case of strong-field ionization of
lithium, we employed the Arnoldi–Lanczos propagator scheme. The radial orbitals
were defined in a box of size Rmax = 2000 a.u. With the velocity gauge interaction,
the terms with l < �max = 25 had to be kept in the expansion (4.3) to ensure
convergence.

Our results are presented in Fig. 4.4. The left panel displays an example
of a calculated ATI spectrum corresponding to the laser peak intensity of 4 ×
1014 W/cm2. Each oscillation on this curve corresponds to a single photon absorp-
tion. The theoretical data, averaged over the transverse Gaussian profile of the
laser beam, are displayed on the right panel for a range of field intensities in com-
parison with the experimental data [28]. The full set of experimental data points
is simultaneously fitted using only two adjustable parameters: an overall scaling
factor and an intensity scaling factor. The former factor accounts for the absolute
detector efficiency and the target density, which were not independently measured.



Figure 4.4 The ATI spectrum of atomic hydrogen driven by a 750 nm femtosecond
laser. Left: a raw calculated spectrum for laser peak intensity of 4 × 1014 W/cm2.
Right: post-processed theoretical spectra for various peak intensities (solid lines)
plotted versus corresponding experimental data (error bars). The laser intensity
ranges from 1.2 to 5.4 × 1014 W/cm2.

The latter factor gives a fit value for the absolute peak intensity, while leaving the
relative intensities of the various data runs at their independently measured values.
As shown in Fig. 4.2, we obtain agreement at the 10% level between the experi-
mental data and the theoretical prediction over a wide range of electron energies
and laser intensities.

4.6 High harmonics generation

High harmonics generation (HHG) is a non-linear atomic process that manifests
itself in the appearance of odd-order multiple frequencies in the spectra of an atom
placed in an intense electromagnetic field. Many essential features of the HHG
process can be explained using the so-called three-step or recollision model [29].
The three steps of this model refer to (i) tunneling ionization of an atomic electron
at the moment when the laser field reaches its peak intensity, (ii) acceleration
of the photoelectron by the laser field and its return to the parent ion and (iii)
recombination with the nucleus and emission of a single HHG photon. The resulting
HHG has a typical pattern: the first few quickly decreasing harmonics followed by
a plateau ending with a relatively sharp cut-off at the maximum harmonic number,
Ncut-off = (IP + 3.17Up)/ω � 1. Up until recently, investigations of the HHG
process have been limited to selecting a rare gas atom driven by an NIR laser
field to ensure the tunneling ionization regime with the Keldysh parameter γ 
 1.
However, a similar HHG regime with Ncut-off � 1 can be realized in alkaline earth



Figure 4.5 Harmonics spectrum of Li driven by a 330 fs laser pulse with the
wavelength λ = 3500 nm. Left panel: the HHG spectrum from the ground 2s state
at the laser field intensity 8 × 1011 W/cm2 (shaded area) and the 2p excited state
at 2 × 1011 W/cm2 (solid line). Right panel: the 2p HHG spectrum with the n�
excited states manifold included (solid line) or excluded (shaded area) from the
expansion (4.3).

atoms, which have a much smaller ionization potential, if they are driven by a
mid-infrared laser field. In such systems, a strong resonant enhancement of HHG
can be observed [30], which is an important factor for possible applications in
tabletop sources of highly coherent XUV radiation.

In our approach to the HHG process in alkaline earth atoms (Li [31], Li and
K [32], K and Rb [33]), we adopt a single active electron approximation and seek
a solution of the TDSE (4.1) with the Hartree–Fock potential of the frozen atomic
core on a one-electron basis (4.3). Once the solution of the TDSE is found, the
harmonics spectrum is calculated as the Fourier transform of the time-dependent
dipole operator [34]:

|d(ω)|2 =
∣∣∣∣∣∣

1

t2 − t1

t2∫
t1

e−iωtd(t) dt

∣∣∣∣∣∣
2

. (4.14)

Here, d(t) = 〈�(t)|z|�(t)〉 is the expectation value of the dipole operator and
�(t) is the solution of the TDSE (4.1). In practical computations, the limits of
integration t1, t2 are chosen to be large enough to minimize the transient effects.
In the calculations presented below, we used t1 = 20T , t2 = 30T , i.e., the last
10 cycles of the pulse duration.

An example of resonantly enhanced HHG spectra is presented on the left panel
of Fig. 4.5, which correspond to the Li atom prepared in either the ground 2s or
excited 2p state [31]. In the former case, several orders of magnitude in the HHG



intensity can be gained, provided the driving laser field is turned down to avoid the
excited state depopulation. To prove the resonant excitation 3p → n� as the main
mechanism of the HHG enhancement, we performed several additional computa-
tions with the functions Rlm(r, t) in expansion (4.3) explicitly orthogonalized to
the states of the n� manifold. Exclusion of these states causes a sharp drop of the
HHG intensity, as is seen on the left panel of Fig. 4.5.

Another way to enhance the HHG spectrum is to extend its cut-off beyond the
three-step model limit Ncut-off . This can be achieved by tailoring the waveforms of
the driving laser pulse. In our recent work [35] we considered an electron moving
in a periodic EM field:

E(t) = 2Re
K∑

k=1

ake
ik�t , (4.15)

where the requirement of the fixed fluency implies that 4
∑K

k=1 |ak|2 = E2
0 , with

the field strength E0 related to the intensity of the pure cosine wave form via
I = 3.5 × 1016E2

0 . Here the field intensity is measured in W/cm2 and the field
strength is expressed in atomic units.

We perform two calculations of this kind. In the first, we impose an additional
restriction that only the terms with odd k-values are to be present in Eq. (4.15).
This ensures that the resulting HHG spectrum contains only odd harmonics of the
main frequency. In the second calculation, we retain the terms with both odd and
even k-values in the expansion (4.15). The first calculation was performed with
K = 7, while in the second we chose K = 5.

Results of these calculations, along with the HHG spectrum from a purely cosine
waveform, are shown in Fig. 4.6. As one can see from the figure, the set of the
parameters corresponding to only odd harmonics allows to achieve a 10% gain
in the position of the cut-off. This rather moderate increase is due to essentially
the same structure of the classical returning electron trajectories as in the case of
the cosine wave. The situation is different for the case of even and odd harmonics
present in Eq. (4.15). Here a noticeable extension of the cut-off can be clearly seen.

4.7 Time delay in atomic photoionization

Among other spectacular applications of the attosecond streaking technique, it has
become possible to determine the time delay between subjecting an atom to a short
XUV pulse and subsequent emission of the photoelectron [36, 37]. With these
observations, the question as to when does atomic photoionization actually begin
can be answered by the experiment. We have studied this problem theoretically by
solving the time-dependent Schrödinger equation and carefully examining the time
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Figure 4.6 Harmonics spectra of Li driven by the laser pulses of different wave-
forms: the pure cosine wave (bottom); odd harmonics in Eq. (4.15) with K = 7
(middle) dashed line, for convenience of comparison the quantity log |d(ω)|2 + 10
is shown; odd and even harmonics in Eq. (4.15) with K = 5 (top), the quantity
log |d(ω)|2 + 20 is shown.

evolution of the photoelectron wave packet. In this way we established the apparent
‘time zero’ when the photoelectron left the atom. At the same time, we provided a
stationary treatment to the photoionization process and connected the observed time
delay with the quantum phase of the dipole transition matrix element, the energy
dependence of which defines the emission timing. We applied this timing analysis
to valence shell single photoionization of neon [38] and DPI of helium [39].

In the case of Ne, we solve a one-electron TDSE (4.1) with the field-free atomic
Hamiltonian Ĥatom defined by the parameterized optimized effective potential [27].
The TDSE is solved by radial grid integration using the MIM method. The solution
of the TDSE is used to form the wave packet representing the photoelectron ejected
from a given shell:

�(r, t) =
∑
L

∫
akL(t)χkL(r)e−iEkt dk. (4.16)

Here, akL(t) = eiEkt〈χkL|�(t)〉 are the projection coefficients of the solution of the
TDSE on the continuum spectrum of the atom. This solution corresponds to the
initial condition �(t = 0) → �i , where i indicates the atomic shell to be ionized.
The continuum state χkL(r) = Rkl(r)YL(r/r) is the product of the radial orbital
with the asymptotic

Rkl ∝ sin
[
kr + δl(k) + 1/k ln(2kr) − lπ/2

]

and the spherical harmonic YL(r/r) with L ≡ l, m.
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Figure 4.7 Left panel: the norm of the wave packets N (t) (scaled arbitrarily)
emitted from the 2s and 2p sub-shells of Ne is plotted as a function of time with the
solid and dashed lines, respectively. The XUV pulse is over-plotted with the black
dotted line. In the inset, the norm variation [N (t) − N (T1)]/N(T1) is shown on an
expanded timescale near the pulse end. Right panel: the crest position of the 2s and
2p wave packets is shown with the same line styles. The crest position after the
pulse end is fitted with the straight line, which corresponds to the free propagation.
In the inset, extrapolation of the free propagation inside the atom is shown.

We use two convenient indicators of the evolution of the wave packet. One is
the norm given by the integral N(t) = ∑

L

∫
dk |akL(t)|2. This norm is plotted on

the left panel of Fig. 4.7, with the solid and dashed lines for the wave packets
originating from the 2s and 2p sub-shells, respectively. For better clarity, these
curves are scaled and over-plotted on the electromagnetic pulse. The figure shows
clearly that the evolution of the 2s and 2p wave packets starts and ends at the
same time without any noticeable delay. This is further visualized in the inset
where the variation of the norm [N(t) − N(T1)]/N(T1) is plotted on an expanded
timescale near the driving pulse end. Indeed, the norm starts deviating from zero
with the rise of the XUV pulse and reaches its asymptotic value once the interaction
with the XUV pulse is over.

Another marker of the wave-packet dynamics is the crest position, defined as a
location of the global maximum of the electron density. The latter quantity is truly
informative only when the electron is outside the atom and the wave packet is fully
formed, having one well-defined global maximum. On the right panel of Fig. 4.7,
we show the crest position of the 2s and 2p wave packets propagating in time. We
see that evolution of the norm and the movement of the crest commence at about
the same time. The movement of the crest becomes almost linear when the norm
reaches its asymptotic value and the wave packet is fully formed. Once fitted with
the linear time-dependence r = k(t − t0) + r0 for large times t > T1 (shown as a
dotted straight line) and back propagated inside the atom, the 2s wave packet seems
to have an earlier start time t0 than that of the 2p wave packet. This difference is
magnified in the inset.



We see that at the origin t2s
0 < 0 and t

2p

0 > 0 are shifted to the opposite direction
with respect to the peak of the driving XUV pulse, which sets the start time of the
photoionization process. We relate the opposite signs of the time delays with the
energy dependence of the corresponding scattering phases δ2s

l=1 and δ
2p

l=2, which is
governed by the Levinson–Seaton theorem [40].

In the case of DPI of He, we solve a two-electron TDSE using the ALM
method. The field-free solution of the TDSE at t > T1 is used to construct a
two-electron wave packet �1(r1, r2, t) with the asymptotics corresponding to the
given photoelectron momenta k1, k2 k2:

�1(r1, r2, t) = P̂k1,k2�(r1, r2, t). (4.17)

Here, the kernel of the projection operator is constructed as

〈r ′
1, r ′

2|P̂k1,k2 |r1, r2〉 =
∫

�

�−
q1

(r1)�−
q2

(r2)�−
q1

(r ′
1)∗�−

q2
(r ′

2)∗dq1dq2, (4.18)

where �−
ki

(r i), i = 1, 2 are one-electron scattering states with the ingoing boundary
condition describing a photoelectron moving in the Coulomb field with Z = 2.

The wave packet function �1(r1, r2, t) is plugged into the one-electron density
function

ρ(r, t) =
∫

|�1(r1, r2, t)|2 [δ(r − r1) + δ(r − r2)] d r1d r2. (4.19)

The maxima of this density function are then traced to determine the trajectories
of both photoelectrons which, at large distances, can be approximated by

ri(t) − kit − r ′
i(t) � kit0i . (4.20)

Here t0i are the time delays and r ′
i(t) are known functions which vary logarithmically

slow with t .
An example of our timing analysis is illustrated in Fig. 4.8. Here we consider

a DPI process in which one photoelectron escapes with energy 32 eV along the
z-axis and another with energy 10 eV along the x-axis, thus sharing the excess
energy of 42 eV, which corresponds to the photon energy ω = 121 eV. A sequence
of snapshots of the one-electron density function (4.19) is taken with an interval
of 2T and the maxima of the electron density are traced in time. With the known
logarithmic function r ′

i(t), this procedure defines the trajectories ri(t) − r ′
i(t) for

both photoelectrons, which are exhibited on the left panel of Fig. 4.8. The raw data,
shown by the points, are fitted with the straight lines kz(t − t0) and kx(t − t0), which
visualize the free propagation. The intersect of these straight lines with the abscissa
gives the corresponding time delays t0i . We ran an analogous simulation for other
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Figure 4.8 Left panel: trajectories of 32 eV and 10 eV photoelectrons propagating
along the z and x axes, respectively. The co-ordinates of both photoelectrons,
measured with intervals of two field cycles, are shown as dots. The straight lines
visualize the free propagating kz(t − t0) and kx(t − t0). Right panel: time delay as
a function of the photoelectron energy.

energy-sharing cases. Thus obtained time-delay data are collated on the right panel
of Fig. 4.8. The error bars indicate the uncertainty of the fitting procedure.

The rapid change of the time delay with increase of the photoelectron energy
corresponds to the crossover between the two leading mechanisms of DPI: the
fast shake-off (SO) and the slow knock-out (KO) processes. The SO mechanism
is driven by a fast rearrangement of the atomic core after departure of the primary
photoelectron. The KO mechanism involves repeated interaction of the primary
photoelectron with the remaining electron bound to the singly charged ion. Thus,
future attosecond time-delay measurements on DPI of He can provide information
on the absolute quantum phase and elucidate various mechanisms of this strongly
correlated ionization process.
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