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We analyze an angular dependence of the Wigner time delay near the Cooper minimum (CM)
of the sub-valent ns shell in argon, krypton and xenon. Such an angular dependence is a result
of interplay between the relativistic and correlation effects. The correlation with the outermost
np valence shell induces a CM in the sub-valent ns shell which is otherwise a CM free. A phase
difference between the two spin-orbit split ionization continua Ep1/2 and Ep3/2 makes the Wigner
time delay angular dependent. Both these effects are accounted for within a relativistic formulation
of the random phase approximation (RRPA) and the time-dependent density functional theory
(RTDDFT). Comparison between these two approaches illustrates a very strong sensitivity of the
observed effect to the computation detail, especially the account of the ground state correlation.

PACS numbers: 32.80.Rm, 32.80.Fb, 42.50.Hz

I. INTRODUCTION

An electron group delay in a dispersive potential rel-
ative to the free space propagation, also known as the
Wigner time delay [1], has been introduced to character-
ize a time-resolved electron scattering. A similar defini-
tion has been adopted in time-resolved photoionization
where the Wigner time delay is defined as the energy
derivative of the whole phase of the photoionization am-
plitude. The latter may include several competing and
interacting channels [2]. With this extended definition,
the Wigner time delay has become a subject of intense
investigation following the pioneering experiments [3, 4].
These and the subsequent measurements [5–11] concen-
trated on the valence shells of noble gas atoms. The
photoelectron detection in these experiments was either
indiscriminate with respect to the emission angle or se-
lected the photoelectrons in the direction of the laser
field polarization. In more refined experiments [12, 13],
angular dependence of the Wigner time delay was also
recorded. In He, the lightest noble gas atom, the angular
dependence of the time delay is caused solely by the prob-
ing field of the two-photon pump-probe measurement.
Indeed, the Wigner time delay in the primary ionization
channel 1s → Ep is expressed via the energy derivative
of the corresponding phase shift τW = dδp(E)/dE and
thus carries no angular dependence. The probing field
splits the Ep continuum into the two competing chan-
nels E′s and E′d, each supported by its own spherical
harmonics. This makes the measured atomic time de-
lay τa = τW + τCC angular dependent. Here τCC is the
continuum-continuum correction introduced by the prob-
ing field [14] and it is this rather universal correction that
carries the angular dependence. In heavier noble gases
with the np valence shell, the Wigner time delay itself
becomes angular dependent due to competition of the
two primary ionization continua Es and Ed [15]. This
competition becomes particularly intense near a Cooper
minimum of the stronger ionization channel np → Ed
[16] or a Fano resonance due to a discrete excitation in
the sub-valent ns shell [13]. In both cases, the angular
dependence of the Wigner time delay becomes especially

strong.

In this paper we analyze yet another situation when
the Wigner time delay becomes angular dependent. This
is the case of the correlation induced Cooper minimum in
the sub-valent ns shell in noble gas atoms: Ar 3s, Kr 4s
and Xe 5s. Conventionally, the Cooper minimum (CM)
in the valence shells of noble gas atoms is attributed to
the sign change of the radial overlap of the bound np and
continuous Ed orbitals. The origin of the CM in the sub-
valent ns shells is more complex. It is induced by inter-
shell correlation with the neighbouring np shell which
passes through its own kinematic CM. This type correla-
tion is very well documented. It can be accounted for by
various theoretical approaches such as the random phase
approximation with exchange (RPAE) [17] and its rela-
tivistic implementation (RRPA) [18], the multi-channel
multi-configuration Dirac-Fock method (MMCDF) [19],
the relativistic time-dependent density functional the-
ory (RTDDFT) [20] and, most recently, by the multi-
configuration Tamm-Dankoff (MCTD) method [21]. In
the relativistic formulation, photoionization of the ns
shell leads to the two spin-orbit split continua Ep1/2 and
Ep3/2, each of which is supported by its own scattering
phase and the spherical harmonics. When the scatter-
ing phases differ substantially, this difference leads to a
noticeable angular dependence of the time delay. We
demonstrate such a situation near the CM where the
scattering phases in both ionization channels undergo a
shift of one unit of π. In the progression of atoms from
Ar to Xe, this phase shift becomes noticeably separated
between the Ep1/2 and Ep3/2 continua resulting in in-
creasingly strong angular dependence of τW.

In the present work, we describe this effect by the two
complimentary techniques, the RRPA and RTDDFT.
Both techniques account for the same physical processes
by mixing the one-electron-one-hole excitations in the fi-
nal ionized state. The difference is in treating the ex-
change between the electron-hole pairs. In the RRPA it
is included explicitly into the exchange Coulomb matrix
whereas in the TDDFT it is absorbed into the exchange-
correlation functional. In addition, this functional takes
into account the ground state correlation which is not ac-
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counted for in RRPA. In the following, we shall demon-
strate that the effect of this correlation is very significant
which makes RTDDFT more accurate than RRPA.
The paper is organized as follows. In Sec. II we outline

relativistic formulation of the Wigner time delay and de-
scribe our computational implementation of the RRPA
and RTDDFT methods. In Sec. III we present our nu-
merical results for the photoionization cross-section, an-
gular anisotropy β parameter and the Wigner time delay
τW. We conclude in Sec. IV by relating our findings with
a possible experimental verification.

II. FORMALISM

We follow the derivation of our previous work [22]
where the angular dependence of the Wigner time de-
lay in the np shell was analyzed. In this formalism, the

electric dipole photoionization amplitude T
(1)
10 is evalu-

ated by expansion over the spherical spinors with the
spin ν = ± 1

2 and angular momentum µ = ± 1
2 projec-

tions. By adapting this formalism to the present case,
we can write the photoionization amplitudes in the two
spin-orbit split channels from a bound ns1/2 state:
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For brevity of notations, we use a shortcut [T 1±
10 ] ≡

[T
1µ=±

1

2

10 ]. Here and throughout the text, Ylm ≡ Ylm(k̂)
is the spherical harmonic evaluated in the direction of
the photoelectron emission. The quantization direction
ẑ is chosen along the polarization axis. We also intro-
duced the reduced matrix element modified by the phase
factors:

Dlj→l̄j̄ = i1−l̄eiδκ̄
〈

ā‖Q(λ)
J ‖a

〉

(2)

This reduced matrix element between the initial state
a = (nκ) and a final energy scale normalized state a =
(E, κ̄) is written as

〈

ā‖Q(λ)
J ‖a

〉

= (−1)j+1/2[j̄][j]

(
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)

× π(l̄, l, J − λ+ 1)R
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Here π(l̄, l, J − λ+ 1) = 1 or 0 for l̄+ l+ J − λ+ 1 even

or odd, respectively, and R
(λ)
J (ā, a) is the radial integral.

The signs ± in Eq. (1) indicate the spin projections
ν = ±1/2 while m = 1/2 indicates the angular mo-
mentum projection. The analogous amplitudes with
the m = −1/2 projection will have a similar structure
with the simultaneous inversion of the spin projection
T+ ↔ T− and the second index of the spherical harmonic
Y21 → Y2−1. Each amplitude has its own associated pho-
toelectron group delay (Wigner time delay) defined as

τW =
dη

dE
, η = tan−1

[
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]

. (4)

The spin averaged time delay can be expressed as a
weighted sum
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(5)
The angular momentum projection inversion m = 1/2 →
m = −1/2 does not affect this expression because of the
axial symmetry of the photoionization process by linearly
polarized laser field.
Knowing the ionization amplitudes we can also evalu-

ate the angular anisotropy β parameter expressed as [17]

βns1/2 =
|DEp3/2

|2 − 2
√
2Re[D∗

Ep3/2
DEp1/2

]

|DEp3/2
|2 + |DEp1/2

|2 , (6)

and the total photoionization cross-section which has the
following form in the length gauge of the electromagnetic
interaction [18]:

σns1/2 =
4π2

3
αa20ω

[
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|2 + |DEp1/2

|2
]

. (7)

Here α is the fine structure constant and ω is the photon
frequency.
We note that in the non-relativistic limit
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and the β parameter acquires a constant value of 2. So
a deviation of β from this value is a clear relativistic ef-
fect. We also note that in the limit (8) the amplitude

[T 1−
10 ]

m= 1

2

ns1/2
vanishes and the Wigner time delay becomes

angular independent as it is supported by a single spher-
ical harmonic Y10.

III. NUMERICAL RESULTS

Our RRPA calculations comprized 18 relativistic chan-
nels:

ns1/2 → Ep1/2, Ep3/2 (9)

np1/2 → Es1/2, Ed3/2

np3/2 → Es1/2, Ed3/2, Ed5/2

(n− 1)d3/2 → Ep1/2, Ep3/2, Ef5/2

(n− 1)d5/2 → Ep3/2, Ef5/2, Ef7/2

(n− 1)p1/2 → Es1/2, Ed3/2

(n− 1)p3/2 → Es1/2, Ed3/2, Ed5/2

except for Ar where the subvalent d-shell was absent and
hence only 12 photoionization channels were included.
As in our previous work [22], we employed the RRPA
computer code developed by Johnson and co-workers
[18]. The RTDDFT dipole matrix elements have been
obtained with an atomic B-spline code [27, 28], with
all allowed dipole channels included. The B-spline ba-
sis set [29] is of order ten and defined on a radial grid
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FIG. 1: Photoionization cross-section in the region of the
Cooper minima of Ar (top), Kr (middle) and Xe (bottom).
Comparison is made with experimental data for Ar [23], Kr
[24] and Xe [25, 26]. For Xe, the MCTD calculation [21] is
also presened.

constructed according to the prescription of Fischer and
Parpia [30], and extending up to 20.0 au. Both the
RRPA and RTDDFT calculations employed the exper-
imental threshold energies. This way we included implic-
itly some two-electron-two-hole excitations in the final
ionized state which otherwise are outside the boundaries
of the both models.

First, we test our numerical results against the exper-
imental values of the photoionization cross-sections for
Ar [23], Kr [24] and Xe [25, 26] as shown in Fig. 1 (from
top to bottom). The RRPA calculation always displays
a deeper CM in comparison with RTDDFT. The experi-
mental data are sandwiched in between the two calcula-

 1.8

 1.9

 2

 38  40  42  44  46  48

A
ni

so
tr

op
y 

β 
pa

ra
m

et
er

Photon energy (eV)

Ar 3s
RTDDFT

RRPA
MMCDF [18]

 1.2

 1.4

 1.6

 1.8

 2

 35  40  45  50  55
A

ni
so

tr
op

y 
β 

pa
ra

m
et

er
  

Kr 4s
RTDDFT

RRPA

 0

 0.5

 1

 1.5

 2

 25  30  35  40  45  50  55

A
ni

so
tr

op
y 

 β
 p

ar
am

et
er

Photon energy (eV)

Xe 5s
RTDDFT

RRPA
MCDT [21]

Expt. [25]

FIG. 2: The angular anisotropy β parameters in the region of
the Cooper minima of Ar (top), Kr (middle) and Xe (bottom).
On the top panel, the MMCDF calculation [19] is shown.
On the bottom panel, the MCTD calculation [21] and the
experimental data [25] are also displayed.

tions for Kr. For Ar and especially for Xe, they clearly
favour RTDDFT.

In Fig. 2 we show the calculated values of the
anisotropy β parameters. We note that β deviates from
its nonrelativistic value of 2 only near the Cooper mini-
mum. This is particularly evident in the case of a lighter
Ar atom where this deviation is very shallow. In heavier
Kr and especially in the heaviest Xe, this deviation is very
strong. In line with the cross-section results, the RRPA
predicts a much deeper minima of the β-parameter near
the CM. The experimental data [25] clearly favour a more
shallow RTDDFT β parameter.

This deficiency of the RRPA method near the CM,
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both for the cross-section and the β parameter, was noted
by Fahlman et al. [25] very soon after theoretical pho-
toionization parameters were tabulated by Huang et al.
[31]. However, the nature of this deficiency has not been
addressed and explained until recently. Aarthi et al. [21]
suggested that this deficiency can be remedied by in-
clusion of (i) the ground state correlation and (ii) cer-
tain two-electron excitation and ionization channels. In-
deed, the MCTD calculation for Xe [21] is much closer to
the experimental data [25] than the RRPA, both for the
cross-section and the β parameter (bottom panels of Fig.
1 and 2, respectively). The RTDDFT technique does
include the ground state correlation by way of the cor-
relation and exchange functional. However, similarly to
RRPA, it does not include any two-electron excitations.
Hence, by making a comparison of MCDT and RTDDFT,
which are very close near the CM, we may conclude that
it is an unaccounted ground state correlation effect that
largely causes deficiency of the RRPA. The inclusion of
the two-electron excitations to MCDT make it closer to
the experiment away from the CM. However, it causes a
very strong gauge divergence of this method. The MCDT
results shown in Fig. 1 and 2 are in the length gauge of
the electromagnetic interaction. The corresponding ve-
locity gauge results (not shown) deviate from the experi-
ment [25] even stronger than RRPA with the β parameter
for Xe reaching nearly -1 near the CM.
The strong effect of the ground state correlation on

the ns photoionization near the Cooper minimum can be
understood from the multi-configuration expansion pre-
sented in [21] for Xe. This expansion contains excitations
in the following generic form:

5p2−ν
1/2 5p

4−µ
3/2 5dν3/25d

µ
5/2 , ν, µ = 0, 2, 4

As is seen from Eq. (9), the 5d3/2 bound state can be ion-
ized to both the Ep1/2 and Ep3/2 continua whereas the
5d5/2 state can only couple to the Ep3/2 one. This shifts
the balance between the two relativistic ionization chan-
nels and changes, most noticeably, the phase dependent
quantities such as the angular anisotropy β parameter.
Because of the account of the ground state correlation,

we believe the accuracy of RTDDFT is superior to that of
RRPA. In the following, we will give a stronger preference
to the former over the latter. We will show the RRPA
results only for the sake of comparison and will use the
RTDDFT calculations for making theoretical predictions
for future experimental verification.
The evolution of the β parameter from Ar to Xe can

be explained by the phase variation of the amplitudes
DEp1/2

and DEp3/2
entering Eq. (7) and illustrated in

Fig. 3. These amplitudes undergo a phase variation of
one unit of π when passing through the CM. In argon, the
lightest of the considered atoms, this phase variation is
sharp and the phase deviation between the two spin-orbit
split channels is small. When the energy derivative of the
phase is taken, it is translated into a very large Wigner
time delay which depends only weakly on the photoelec-
tron emission angle as shown on the top panel of Fig.
4. This is particularly true for the RTDDFT calculation
in which β deviates from 2 only marginally. In heavier
atoms, krypton and particularly xenon, the phase varia-
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FIG. 3: Phase variation of the ionization amplitudes DEp1/2

and DEp3/2 in the region of the Cooper minima of Ar (top),

Kr (middle) and Xe (bottom).

tion becomes more disperse. Consequently, the resulting
time delay becomes smaller but more angular dependent
at the same time. This angular dependence becomes par-
ticularly strong in Xe where a deviation of only 30◦ from
the polarization direction results in a nearly 25% drop in
the peak value of the time delay in the RRPA model. It
is less so in RTDDFT where a noticeable variation of the
time delay is observed at 60◦ relative to the polarization
direction.

IV. DISCUSSION AND OUTLOOK

Our numerical simulations indicate an angular depen-
dence of the Wigner time delay in the region of the corre-
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FIG. 4: Angular variation of the Wigner time delay in the
region of the Cooper minima of Ar (top), Kr (middle) and Xe
(bottom).

lation induced Cooper minimum of noble gas atoms: Ar
3s, Kr 4s and Xe 5s. While this dependence is rather
weak in the lightest argon atom, it is greatly enhanced
in the heaviest target, xenon, where it can be readily
measured experimentally.

The two aspects of this angular dependence should be
highlighted. First, the Wigner time delay is only one
component of the experimentally accessible atomic time
delay τa = τW + τCC. The latter is affected by the mea-
surement induced CC-correction τCC which is also angu-
lar dependent. For an ns target, this angular dependence
stems from the competition of the two ionization continua
Es and Ed [12]. This competition is particularly strong
after the Ed partial wave goes through its kinematic node
at the magic angle θm = 54.7◦. In result, the angular de-

pendence of the atomic time delay in He becomes only
noticeable above 60◦ detection angle. At a lesser devi-
ation from the polarization direction, the atomic time
delay in He is essentially flat. We expect that the same
angular dependence of τCC will be introduced into the
atomic time delay measured in the ns shells of other no-
ble gases. In Ar, the angular dependence of τCC and τW
is comparable. The latter deviates noticeably from the
polarization direction only at the emission angles as large
as 60◦. In krypton, this deviation becomes noticeable al-
ready at the emission angle as small as 30◦. In xenon, at
the emission angle of 30◦, the Wigner component of the
atomic time delay looses nearly 25% of its value whereas
at 60◦ it retains less than one third of it. This makes the
experimental observation of the angular dependent time
delay in Xe plausible.
The second aspect of the present work that needs to

be discussed is a persistent disagreement of the measured
atomic time delay difference between the 3s and 3p shells
of Ar. The initial experiments [4, 5] were found in dis-
agreement with predictions of the RPAE theory [32] while
the most recent measurement [11] seems to show some
closer agreement. Yet another latest report [33] states
the disagreement with theory [34] again. The measure-
ment [11] stands out from other experiments because the
photoelectron emission was confined to the polarization
direction. Other results were taken with the angular inte-
gration over all the possible emission directions. This, in
principle, could affect the agreement with the calculation
[32] which was conducted in the polarization direction.
However, based on our present evaluations, the angular
dependence of the Wigner time delay near the 3s Cooper
minimum in argon is too weak to explain this difference.
Hopefully, more thorough investigations will resolve this
controversy in the future.
In conclusion, the authors wish to thank Hans Jakob

Wörner who pointed their attention to the phenomenon
being investigated in the present work.
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