A solution space for a system of BPZ equations: rigorous results and applications

Steven Flores

University of Helsinki

In collaboration with Peter Kleban, Jacob Simmons, Robert Ziff, and Eveliina Peltola

July 16th, 2015
A useful correlation function

With $N \in \mathbb{Z}^+$ and $\phi_{r,s}$ the CFT primary (r, s) Kac operator, we consider the $2N$-point boundary CFT correlation functions

$$F(x) := \left\{ \begin{array}{l} \langle \phi_{1,2}(x_1) \phi_{1,2}(x_2) \cdots \phi_{1,2}(x_{2N}) \rangle, \\
\langle \phi_{2,1}(x_1) \phi_{2,1}(x_2) \cdots \phi_{2,1}(x_{2N}) \rangle, \\
\end{array} \right.$$

$x := (x_1, x_2, \ldots, x_{2N}), \quad x_1 < x_2 < \ldots < x_{2N}$.

These functions satisfy a certain elliptic system of $(2N+3)$ PDEs. We wish to answer the following questions about this system:

Goals:

1. What is the dimension/content of the solution space?
2. Which solutions have statistical mechanics applications?
3. How to find bulk CFT correlation functions from item 1?
Central charge and SLE$_\kappa$ speed

For convenience, we parameterize the CFT central charge $c \leq 1$ by the SLE$_\kappa$ speed $\kappa > 0$ as shown above, and we write

$$\psi_1 := \begin{cases}
\phi_{2,1}, & \kappa < 4 \\
\phi_{1,2}, & \kappa \geq 4
\end{cases}, \quad \theta_1 := \begin{cases}
h_{2,1}, & \kappa < 4 \\
h_{1,2}, & \kappa \geq 4
\end{cases} = \frac{6 - \kappa}{2\kappa}.$$
Conformal Ward identities

The correlation function $F(x) = \langle \psi_1(x_1) \psi_1(x_2) \cdots \rangle$ is covariant with respect to Möbius (conformal) maps. Therefore, we have

- **Translations**
 \[
 \sum_j \partial_j F = 0
 \]

- **Dilations (and rotations)**
 \[
 \sum_j [x_j \partial_j + \theta_1] F = 0
 \]

- **Special conformal transformations**
 \[
 \sum_j [x_j^2 \partial_j + 2\theta_1 x_j] F = 0
 \]

The Möbius map must preserve coordinate order on the real axis.

This collection of PDEs is called **conformal Ward identities**.
BPZ equations

The CFT null-state condition says that for each $j \in \{1, 2, \ldots, 2N\}$, $F(x) = \langle \psi_1(x_1) \psi_1(x_2) \cdots \rangle$ also satisfies the BPZ equation

$$\left[\frac{3 \partial_j^2}{2(2\theta_1 + 1)} + \sum_{k \neq j}^{2N} \left(\frac{\partial_k}{x_k - x_j} - \frac{\theta_1}{(x_k - x_j)^2} \right) \right] F = 0.$$

Taken together with the three conformal Ward identities, F solves an elliptic system of $(2N + 3)$ PDEs. Some questions:

Goals:

1. What is the dimension/content of the solution space?
2. Which solutions have statistical mechanics applications?
3. How to find bulk CFT correlation functions from item 1?
Statement of main results

Let S_N be the vector space (over \mathbb{R}) of real-valued (classical) solutions F for the system obeying the power-law bound

$$|F(x)| \leq C \prod_{i<j}^{2N} |x_j - x_i|^\mu_{ij}(p), \quad \mu_{ij}(p) := \begin{cases} -p, & |x_j - x_i| < 1 \\ +p, & |x_j - x_i| \geq 1 \end{cases}$$

for some constants $C, p > 0$ (possibly depending on F).

Theorem: Suppose that $\kappa \in (0, 8)$. Then

- $\dim S_N = C_N$, with C_N the Nth Catalan number,

$$C_N := \frac{(2N)!}{N!(N + 1)!}.$$

- S_N has a basis of solutions with known explicit formulas.

The cutoff $\kappa < 8$ is natural in SLE_κ (but not so much in CFT?).
Asymptotics of solutions

Why should this theorem be true? To prove it, we consider limits of $F \in S_N$. The CFT fusion rule $\psi_1 \times \psi_1 = \text{i.d.} + \psi_2$ suggests

$$F(x) = \left\langle \psi_1(x_1) \psi_1(x_2) \psi_1(x_3) \psi_1(x_4) \cdots \right\rangle \sim_{x_2 \to x_1} C(x_2 - x_1)^{-2\theta_1} \left\langle \psi_1(x_3) \psi_1(x_4) \cdots \right\rangle + \cdots, \quad C \in \mathbb{R}.$$

The $(2N - 2)$-point function on the right side should be in S_{N-1}. Thus, we expect the asymptotic behavior (recall $\theta_1 = (6 - \kappa)/2\kappa$)

$$F(x_1, x_2, x_3, x_4, \ldots) \sim_{x_2 \to x_1} (x_2 - x_1)^{1-6/\kappa} G(x_3, x_4, \ldots),$$

and similarly for any other pair $x_{i+1} \to x_i$ of adjacent points. Do all elements of S_N exhibit this asymptotic behavior? Yes!
Lemma: Suppose that $\kappa \in (0, 8)$ and $F \in \mathcal{S}_N$. Then for all $i \in \{1, 2, \ldots, 2N - 1\}$, the limit

$$\lim_{x_{i+1} \to x_i} (x_{i+1} - x_i)^{6/\kappa - 1} F(x) \quad \text{exists, is independent of } x_i, \text{ and is in } \mathcal{S}_{N-1}.$$

Question: What happens if we apply another such limit, and then another, and so on?
A sequence of limits

As we take successive limits, points of different limits must not collide. For this, we link points pairwise with disjoint arcs in \mathbb{H}, and we bring together only the endpoints of an arc that does not nest another arc. After taking the limit, we delete its arc:
A sequence of limits

We take $N - 1$ more limits. Each limit brings together the two endpoints of one non-nesting arc. Eventually, no arcs are left:

Thus, we obtain a sequence of maps sending

$$S_N \rightarrow S_{N-1} \rightarrow \cdots \rightarrow S_1 \rightarrow S_0 = \mathbb{R}.$$

Their composition is evidently a linear functional $\mathcal{L} : S_N \rightarrow \mathbb{R}$.

Equivalence classes

Let $[\mathcal{L}]$ be the equivalence class of all functionals with the same diagram as \mathcal{L} (so they differ only in the orders of their limits).

Lemma: If $\kappa \in (0, 8)$, then $[\mathcal{L}]F$ is well-defined for all $F \in S_N$.

There are C_N arc connectivity diagrams, and thus C_N such equivalence classes. The Catalan numbers make their appearance!

$N = 2$
$C_2 = 2$

$N = 3$
$C_3 = 5$

![Diagram 1](image1.png)

Another lemma

With exactly C_N distinct equivalence classes $[L_1], [L_2], \ldots, [L_{C_N}]$, we can obtain an upper bound on $\dim S_N$:

Lemma: Suppose that $F \in S_N$. If $\kappa \in (0, 8)$, then the map

$$v : S_N \to \mathbb{R}^{C_N}, \quad v(F)_\alpha := [L_\alpha]F$$

is a linear injection, so $\dim S_N \leq C_N$. (But is this an equality?)
Coulomb gas solutions

For $\beta \in \{1, 2, \ldots, C_N\}$, we define the **Coulomb gas function** as (Feigin, Fuchs, Dotsenko, Fateev, Dubédat, Kytölä, Peltola)

$$
\mathcal{F}_\beta(\kappa \mid x_1, x_2, \ldots, x_{2N}) := \left[\frac{\nu(\kappa)\Gamma(2 - \frac{8}{\kappa})}{\Gamma(1 - \frac{4}{\kappa})^2} \right]^N \\
\times \left(\prod_{j<k}^{2N} (x_k - x_j)^{2/\kappa} \right) \int_{\Gamma_N} du_N \int_{\Gamma_{N-1}} du_{N-1} \cdots \int_{\Gamma_2} du_2 \\
\times \int_{\Gamma_1} du_1 \left(\prod_{l=1}^{2N} \prod_{m=1}^N (x_l - u_m)^{-4/\kappa} \right) \left(\prod_{p<q}^N (u_p - u_q)^{8/\kappa} \right),
$$

and a **Coulomb gas solution** as a linear combination of $\{\mathcal{F}_\beta\}$.

- For all $\beta \in \{1, 2, \ldots, C_N\}$, we have $\mathcal{F}_\beta \in \mathcal{S}_N$.
- $\nu(\kappa) := -2 \cos(4\pi/\kappa)$ is the $O(\nu)$ model loop-gas fugacity.
- We phase the integrand’s power functions so $\mathcal{F}_\beta(\boldsymbol{x})$ is real.
Coulomb gas solutions

- The integration contours of \mathcal{F}_β pair the x_j in βth connectivity:

 \[N = 2 \]
 \[C_2 = 2 \]

 \mathcal{F}_1 \mathcal{F}_2

 \[N = 3 \]
 \[C_3 = 5 \]

 \mathcal{F}_1 \mathcal{F}_2 \mathcal{F}_3 \mathcal{F}_4 \mathcal{F}_5

- If $\kappa \leq 4$ so these integrals diverge, then we analytically continue them by replacing all contours with Pochhammer contours:

 \[\frac{1}{4 \sin^2(4\pi/\kappa)} \]
Rank of \mathcal{B}_N

To prove $\dim S_N = C_N$, we show that $\mathcal{B}_N := \{\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_{C_N}\} \subset S_N$ is linearly independent. We do this indirectly:

$$v(\mathcal{B}_N) := \{v(\mathcal{F}_1), v(\mathcal{F}_2), \ldots, v(\mathcal{F}_{C_N})\} \subset \mathbb{R}^{C_N}$$

is linearly independent iff \mathcal{B}_N is linearly independent because v is injective. We find $v(\mathcal{F}_\beta)_\alpha := [\mathcal{L}_\alpha]\mathcal{F}_\beta$ is given by the diagram

$$[\mathcal{L}_\alpha]\mathcal{F}_\beta = \nu^{l_{\alpha,\beta}} = \text{number of loops}$$

(two in this example)

Again, we have the “$O(\nu)$ loop fugacity” $\nu(\kappa) := -2 \cos(4\pi/\kappa)$.
The meander matrix

Meander matrix: The $C_N \times C_N$ Gram matrix $M_N(\nu)$ of the “bilinear form” $[\mathcal{L}_\alpha] \mathcal{F}_\beta$. The (α, β)th entry of $M_N(\nu)$ is $\nu^{l_{\alpha,\beta}}$.

Example: The $N = 2$ meander matrix M_2:

$$
\begin{pmatrix}
\nu^2 & \nu \\
\nu & \nu^2
\end{pmatrix}
$$
The main theorem

The determinant of the meander matrix is usually nonzero (and if it vanishes, then there is a “fix”). This implies the following:

Theorem: Suppose that $\kappa \in (0, 8)$. Then

1. CG functions form a basis for S_N if and only if κ is not among the finite set of zeros of the meander determinant.
2. $\dim S_N = C_N$, with C_N the Nth Catalan number.
3. Each element of S_N is either a Coulomb gas solution or a limit as $\kappa \to \kappa$ of a Coulomb gas solution.
4. The map $v : S_N \to \mathbb{R}^{C_N}$ with components $v(F)_{\alpha} := [L_{\alpha}]F$ is a vector-space isomorphism.
5. The set $B_N^* := \{[L_1], [L_2], \ldots, [L_{C_N}]\}$ is a basis for S_N^*.

(Item 5 follows almost immediately from the bijectivity of v.)
Some physical applications

Next, we use the above methods and results to find particular elements of S_N with these physical applications.

1. The pure partition functions of multiple SLE_κ.
2. Crossing-event probabilities, generalizing Cardy’s formula.
Application: multiple SLE_κ

Critical Q-state FK-Potts model (i.e., percolation with Q colors) on a regular lattice in a $2N$-gon \mathcal{P} with every other side fixed:

Boundary clusters touch fixed sides. Random boundary arcs trace the boundary clusters and join the vertices of \mathcal{P} pairwise.
Multiple Schramm-Loewner evolution

After conformally sending \mathcal{P} onto \mathbb{H} and shrinking the lattice spacing, the boundary arcs fluctuate to the law of multiple SLE_κ.

$$Q = 4 \cos^2 \left(\frac{4\pi}{\kappa} \right), \quad \kappa > 4, \quad Q \in \{1, 2, 3, 4\}.$$

This is a stochastic process that grows N random curves into \mathbb{H} from $2N$ marked points in \mathbb{R}. (It is a generalization of SLE_κ.)

The stochastic DEs of multiple SLE_κ require a (deterministic, positive-valued) SLE_κ partition function $F \in S_N$ for input.
Pure SLE$_\kappa$ partition functions

We expect that there are C_N positive-valued elements of S_N, Z_1, Z_2, ..., Z_{CN}, called \textbf{pure SLE$_\kappa$ partition functions}, such that

$$F = Z_\beta \iff \begin{cases} \text{multiple-SLE$_\kappa$ curves a.s. close pairwise into arcs} \\ \text{joining polygon vertices in the } \beta \text{th connectivity.} \end{cases}$$

Non-rigorous physical arguments reveal the asymptotic behavior of each $Z_\beta(x)$ as $x_{i+1} \to x_i$. This leads to the following guess...
Connectivity weights

\[[\mathcal{L}_\alpha] = \langle \quad \rangle \rightarrow \Pi_\alpha = \langle \quad \rangle \]

Definition: For all \(\kappa \in (0, 8) \), let the \(\alpha \)th connectivity weight \(\Pi_\alpha \) be the element of \(S_N \) dual to \([\mathcal{L}_\alpha] \in \mathcal{B}_N^* \), that is,

\[[\mathcal{L}_\alpha] \Pi_\beta = \delta_{\alpha, \beta}, \]

and \(\mathcal{B}_N := \{ \Pi_1, \Pi_2, \ldots, \Pi_{CN} \} \) be the basis for \(S_N \) dual to \(\mathcal{B}_N^* \). We find explicit formulas for all of the \(\Pi_\beta \) by isolating them from

\[\mathcal{F}_\alpha = \sum_{\beta=1}^{CN} \nu^{l_{\alpha, \beta}} \Pi_\beta, \quad 1 \leq \alpha, \beta \leq CN. \]

Conjecture: \(\Pi_\beta \) is the \(\beta \)th pure SLE\(_\kappa \) partition function \(Z_\beta \).
Application: crossing probabilities

Critical Q-state FK-Potts model (i.e., percolation with Q colors) on a regular lattice in a $2N$-gon \mathcal{P} with every other side fixed:

What is the probability of a particular topological configuration of crossing paths (red) between the various fixed sides of \mathcal{P}?

For critical percolation ($Q = 1$) in the rectangle ($N = 2$), the answer is given by the (famous) Cardy-Smirnov formula.
Crossing events in $2N$-gons

- Sides of \mathcal{P} alternate from fixed to free. This is a **fixed/free side-alternating boundary condition (FFBC)**.

- Boundary clusters (filled gray) touching the fixed sides join those sides in one of C_N crossing configurations.

- Boundary arcs (colored red) trace the boundary clusters’ perimeters and fluctuate to the law of multiple SLE_κ.

- Probability of αth crossing configuration $\mathcal{E}_\alpha \sim$ Probability of multiple SLE_κ curves closing in αth connectivity $\sim \Pi_\alpha$.
Independent vs. mutual wiring FFBC events

There may be many different FFBC events. They may arise in, for example, the Potts model, from coloring the fixed sides of \mathcal{P}.

- mutually wired: constrain all lattice sites in a pair of fixed sides to be in the same state,
- independently wired: do not impose the above constraint on the pair of fixed sides.

Let \mathcal{E}_β be the FFBC where any two fixed sides that are joined together in the βth connectivity are mutually wired together.
The crossing probability formula

Prediction (supported by computer simulation) for probability of \(\alpha \)th crossing event \(\mathcal{E}_\alpha \) conditioned on \(\beta \)th FFBC event \(\mathcal{E}_\beta \):

\[
\mathbb{P}(\mathcal{E}_\alpha \mid \mathcal{E}_\beta) = \frac{\text{partition function for crossing event } \mathcal{E}_\alpha}{\text{partition function for FFBC event } \mathcal{E}_\beta}
\]

\[\Rightarrow \quad \mathbb{P}(\mathcal{E}_\alpha \mid \mathcal{E}_\beta) = Q^{l_{\alpha,\beta}/2} \frac{\Pi_{\alpha}(\kappa \mid x_1, x_2, \ldots, x_{2N})}{\mathcal{F}_\beta(\kappa \mid x_1, x_2, \ldots, x_{2N})}.\]

\(x_j \) = image of the \(j \)th vertex under a conformal map \(\mathcal{P} \) onto \(\mathbb{H} \).
Now we consider the bulk CFT correlation function, with $2N$ holomorphic coordinates and $2N$ antiholomorphic coordinates,

$$F(z, \bar{z}) = \langle \psi_1(z_1, \bar{z}_1) \psi_1(z_2, \bar{z}_2) \cdots \psi_1(z_{2N}, \bar{z}_{2N}) \rangle \in S_N \otimes \bar{S}_N.$$

A generic element of $S_N \otimes \bar{S}_N$ is a multivalued function of the domain $\mathbb{C}^{2N} \times \bar{\mathbb{C}}^{2N}$, where $\bar{\mathbb{C}}^{2N}$ is an independent copy of \mathbb{C}^{2N}.

$$\mathbb{C}_\times^{2N} := \{ z = (z_1, z_2, \ldots, z_{2N}) \mid z_j \neq z_k \text{ if } j \neq k \}.$$

More precisely, a generic element of $S_N \otimes \bar{S}_N$ is a function of $\mathcal{U} \times \bar{\mathcal{U}}$, where \mathcal{U} denotes the universal cover of \mathbb{C}_\times^{2N}.

Question: By definition, the function F is single-valued on \mathbb{C}_\times^{2N}. Is there such a function in $S_N \otimes \bar{S}_N$? Is it unique? A formula?
The braid group action

We identify a path $\gamma : [0, 1] \to \mathcal{U}$ whose endpoints project to the same point $z \in \mathbb{C}_x^{2N}$ with an element σ of the braid group Br_{2N}:

$$F \in \mathcal{S}_N \otimes \bar{\mathcal{S}}_N$$ is single-valued on $\mathbb{C}_x^{2N} \times \bar{\mathbb{C}}_x^{2N}$ iff invariant under

$$F(\gamma(0), \bar{\gamma}(0)) \xrightarrow{\sigma} F(\gamma(1), \bar{\gamma}(1)), \quad \gamma(0) = z \in \mathbb{C}_x^{2N}.$$

This defines a Br_{2N}-representation: $\rho \otimes \bar{\rho} : \text{Br}_{2N} \to \text{GL} \mathcal{S}_N \otimes \bar{\mathcal{S}}_N$.

\[\sigma_i = \text{ith braid group generator} \]
Holomorphic vs. antiholomorphic

This representation $\rho \otimes \bar{\rho}$ comprises two parts:

1. Holomorphic: $\rho : \text{Br}_{2N} \to \text{GL } \mathcal{S}_N$, $F(\gamma(0)) \xrightarrow{\sigma} F(\gamma(1))$,
2. Antiholomo.: $\bar{\rho} : \text{Br}_{2N} \to \text{GL } \bar{\mathcal{S}}_N$, $F(\bar{\gamma}(0)) \xrightarrow{\sigma} F(\bar{\gamma}(1))$.

They are related by $\bar{\rho}(\sigma_i) = \rho(\sigma_i^{-1})$ for all Br_{2N}-generators σ_i.
An explicit correlation function formula

Using the relation of the previous slide, we can construct an isomorphism of representations

\[T : (\rho \otimes \bar{\rho}, \mathcal{S}_N \otimes \bar{\mathcal{S}}_N) \rightarrow (\rho_{\text{End}\mathcal{S}_N}, \text{End}\mathcal{S}_N). \]

Also, \((\rho, \mathcal{S}_N)\) is irreducible, so Schur’s lemma says that both sides have a unique trivial submodule \(M\). That is, if \(F \in M\), then

\[F(\gamma(0), \bar{\gamma}(0)) = F(\gamma(1), \bar{\gamma}(1)), \quad \text{for all } \sigma \in \text{Br}_{2N} \text{ and } \gamma \sim \sigma. \]

This function is (up to a constant) the correlation function we seek. By prudent guessing, we can find its explicit formula:

\[
\langle \psi_1(z_1, \bar{z}_1) \psi_1(z_2, \bar{z}_2) \cdots \psi_1(z_{2N}, \bar{z}_{2N}) \rangle \\
\propto \sum_{\beta=1}^{C_N} \mathcal{F}_\beta(\kappa \mid z) \Pi_\beta(\kappa \mid \bar{z}) = \sum_{\beta=1}^{C_N} \Pi_\beta(\kappa \mid z) \mathcal{F}_\beta(\kappa \mid \bar{z}).
\]
Summary

In this talk, we have

1. defined $S_N =$ space of power-law-bounded functions solving the PDEs of the CFT correlation function $\langle \psi_1 \psi_1 \cdots \psi_1 \rangle$,

2. determined the dimension of S_N ($\dim S_N = C_N$) and a basis of explicit functions (Coulomb gas functions) for it,

3. used the tools developed in the proof of item 2 to predict explicit formulas for all SLE_κ pure partition functions,

4. used the SLE_κ pure partition functions to predict a formula for Potts model crossing probabilities in polygons,

5. used item 2 results to find a unique single-valued formula for the bulk $2N$-point correlation function $\langle \psi_1 \psi_1 \cdots \psi_1 \rangle$.
The end

Thank you.