Nonthermal electron acceleration in high Mach number collisionless shocks

T. Amano, M. Hoshino

Earth and Planetary Science, University of Tokyo
Particle Acceleration in Space

- presence of “nonthermal” particles is a common feature of active astrophysical environments
- “How these particles are accelerated?” is one of the most important problems in space and astrophysical plasma physics
- collisionless shocks, magnetic reconnection probably play a dominant role for production of energetic particles
Diffusive Shock Acceleration

[e.g., Bell 1978, Blandford & Ostriker 1978]

- the most plausible mechanism producing cosmic rays (at least up to the knee energy ~ 100 TeV)
- particle gains its energy by diffusing across the shock front many times

![Diagram of shock acceleration](image.png)

- **Head-on collision**
 - gain energy
- **Overtaking collision**
 - lose energy

MHD waves

Upstream V_1

Downstream V_2
Electron Spectra at SNR Shocks

- Thermal Distribution
- 0.1-1 MeV
- 0.1 KeV
- Unspecified Injection
- 1st Order Fermi Acceleration
- Radio

High energy cutoff due to:
1) escape
2) radiation loss
3) shock age

Concave spectrum due to shock modification?

X-ray
Electron Injection and Physics of High Mach Number Shocks

- Interplanetary Shocks, Bow Shocks ($M_A \sim 10$)
 - Fermi-accelerated electrons are rarely observed
- Supernova Remnant Shocks ($M_A \sim 100-1000$)
 - Ultra-relativistic electrons (> 10 TeV) are often found by X-ray synchrotron emission
- What is the difference?
 - There will be some injection mechanisms accelerating electrons from ~ 0.1 keV to ~ 100 keV at strong shocks
 - We have no theory quantitatively explains this strong acceleration
Particle-In-Cell Simulations (1D)
Shock Surfing Acceleration ($\theta_{Bn}=90^\circ$)
[Hoshino & Shimada 2002]

- **Shock Surfing Acceleration**

 - Buneman instability via the interaction between the electron and the reflected ions

 Trapped electrons can be accelerated by the motional E-field
Quasi-Perpendicular Shock ($\theta_{Bn}=80$)
[Amano & Hoshino, 2007]

- **Shock Surfing Acceleration**

 energetic electrons are generated at the leading edge of the foot

 [e.g. Shimada & Hoshino 2000, Hoshino & Shimada 2002]

- **Shock Drift Acceleration**

 energetic electrons are reflected by the shock (acting as a magnetic mirror)
Shock Drift Acceleration (SDA)
[Wu et al. 1984, Leroy & Mangeney 1984]

- adiabatic reflection
 - elastic reflection in the de Hoffman-Teller frame
 \[\Delta p = 2mV_1 / \cos \theta_{Bn} \]
- increase of \(V_1 \) and \(\theta_{Bn} \)
 - increases energy gain
 - decreases the number of reflected particles

serious problem for high Mach number shocks

particles outside the loss cone are reflected by the shock
(because of the mirror force)
Energetic Particle Trajectory

Shock Drift
(para. and slow $\sim \Omega_{ci}^{-1}$)

Shock Surfing
(perp. and fast $\sim \Omega_{ce}^{-1}$)

total, perp, para energy history
Surfing and Drift Acceleration

- pre-acceleration via SSA initiates SDA
- *production of non-thermal electrons is essential*
Is the energy gain via SSA+SDA process is large enough?

- the reflected electron beam excites Alfven waves when
 \[
 \frac{v_r}{V_1} \gtrsim \frac{1}{2} \frac{1}{M_A} \frac{m_i}{m_e}
 \]

- wave amplitude: \(\delta B/B_0 \)
 - \(\sim 0.1 \) (\(Ma=100 \))
 - \(\sim 1.0 \) (\(Ma=1000 \))

for \(\eta=10^{-4}, \theta_{Bn}=80 \)

\[
\left(\frac{\delta B}{B_0} \right)^2 \sim \eta \frac{m_e}{m_i} \left(\frac{M_A}{\cos \theta_{Bn}} \right)^2
\]

\textit{typical } M_A (100-1000) \textit{ range of SNR shocks}

\textit{the critical Mach number above which upstream Alfven waves can be self-generated}
Modeling and Application to SNR
Electron Injection Model
comparison with simulation

- free parameter
 - spectral index = 3.5
 - shock potential = 0.4 K_{i0}

- additional parameters
 - maximum energy of SSA
 $E_{\text{max}} = 100 \; K_{e0}$
 - escape probability
 $P_{\text{esc}} = 4.0 \; \Omega_{ci}$

nonstationarity of shock front is the main cause of the rapid decrease at $\theta_{Bn} \geq 80$
Application to SNR Shocks
comparison between model and observation

- **Observation** [e.g. Bamba et al. 2003]
 - injection efficiency $\sim 10^{-4}$-10^{-3}
 - non-thermal energy / thermal energy ~ 30
 - shock angle dependence $\theta_{Bn} \geq 80$ (for small B)

- **Model with Real Mass Ratio** [Amano & Hoshino 2007]
 - injection efficiency $\sim 2 \times 10^{-4}$ (peak)
 - non-thermal energy / thermal energy ~ 10
 - peak appears at shock angle $75 \leq \theta_{Bn} \leq 80$

SN1006
Summary

- Our simulation results clearly show that SSA initiates SDA at high M_A quasi-perpendicular shocks, which leads to the electron injection.
- The obtained energy is large enough to be accelerated by DSA.
- Based on the simulation results, a theoretical model of SSA + SDA is presented.
- The model shows a quantitative agreement with the observational characteristics of SN 1006.