Surface Plasmon Excitation at a Au Surface by 150–40000 eV Electrons

Wolfgang S.M. Werner*
Institut für Allgemeine Physik, Vienna University of Technology, Wiedner Hauptstraße 8–10, A 1040 Vienna, Austria

Michael R. Went and Maarten Vos
Atomic and Molecular Physics Laboratories, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200 Australia
(Dated: June 12, 2007)

Spectra of electrons with energies between 5 and 40 keV reflected from a homogeneous Au surface have been measured and analyzed to give the normalized distribution of energy losses in a single surface and volume excitation, as well as the total probability for excitation of surface plasmons. The resulting single scattering loss distributions compare excellently in (absolute units) with data from previous work taken at lower energies (150-34000 eV). An empirical relationship is derived for the total surface excitation probability as a function of the energy. For high energies the surface scattering zone represents only a small fraction of a typical electron trajectory and hence interference effects should be small at these energies. Since we find that both the energy dependence of the surface plasmon excitation probability and the shape of the single scattering loss distributions are the same at high and low electron energies, we conclude that there is no evidence for interference effects in the entire energy range studied.
PACS numbers: 78.20.Ci,79.20.Uv,68.49.Jk
Keywords: Au, electron, scattering, inelastic, elastic, surface plasmon.

While electron energy loss spectroscopy (EELS) in the transmission electron microscope is routinely used to determine the dielectric function of solids for over thirty years [1], extraction of the dielectric function from reflection electron energy loss spectra (REELS) has met with certain difficulties connected with the elimination of multiple scattering effects from experimental spectra. In particular the fact that both surface as well as volume excitations need to be considered for REELS complicates data analysis. Two different approaches to extract the single scattering loss distribution and the optical constants from REELS are presently being investigated: (1.) the deconvolution procedure proposed by Tougaard and Chorkendorff [2], in combination with the semiclassical dielectric response model by Yubero and Tougaard [3] (referred to as TCY hereafter); and (2.) Ritchie’s original model for the single scattering loss distribution in a surface excitation [4–10] applied to deconvoluted spectra obtained by a bivariate reversion of two REELS spectra [11–14]. Both approaches are fundamentally different in that TCY assume that it is strictly impossible to separate the contributions of surface and volume excitations in a REELS spectrum due to interference effects between the in- and outgoing part of the electron’s trajectory[3, 15, 16]. In the approach based on bivariate reversion of two spectra, separation of the surface and volume components of a REELS spectrum represents the first step. Surface and volume components decomposed in this way have been found to agree well with single scattering loss distributions derived within Ritchie’s theory for measurements in the energy range between 150 and 3400 eV [11, 12].

In the present paper, high energy REELS data (in the range between 5 and 40 keV) are analyzed and the results are compared with the earlier analysis at lower energies. This is expected to give a clearer insight on the importance of interference effects since the relationship of the mean travelled pathlength and the width of the surface scattering zone is quite different at such high energies. The width of the surface scattering zone is given in atomic units as \(\langle z_{ss} \rangle = \sqrt{2E/\omega_s} \), where \(E \) is the electron energy and \(\omega_s \) is the surface plasmon frequency [4]. The quantity \(\langle z_{ss} \rangle \) varies between \(\sim 1 \) Å at 100 eV and \(\sim 10 \) Å at 40 keV. On the other hand, Monte Carlo (MC) simulations for the distribution of pathlengths in a REELS experiment show that the mean travelled pathlength \(\langle s \rangle \) varies between \(\sim 10 \) Å at 100 eV and \(\geq 2000 \) Å at 40 keV. This implies that for the present data set, the ratio \(\langle z_{ss} \rangle / \langle s \rangle \) covers quite a large range between 0.1 and 0.005.

The high energy (5, 10, 20 and 40 keV) REELS analyzed in the present work were obtained on a polycrystalline Au sample in the high-energy electron scattering spectrometer at the Australian National University at a base pressure of \(1 \times 10^{-10} \) mbar[17]. Sample cleaning was performed by Xe\(^+\) ion bombardment and sample cleanliness was monitored by recording low energy REELS spectra (at 1 keV) and comparing these with literature data. The incidence angle was 45°, the emission angle amounted to 45° (all angles with respect to the surface normal), the scattering angle was 120°, the analyzer (half polar) opening angle amounts to about 0.5°. The en-
energy resolution varied with energy but was always better than 0.5 eV (FWHM of the elastic peak). The low energy (150–3400 eV) spectra were taken in a ThermoVG Microlab 310-F at a base pressure of 1×10^{-10} mbar on a polycrystalline Au film sputter deposited onto a Si wafer. Experimental details are given in Ref. [18]. Here we merely note that the incoming electrons hit the sample along the surface normal, while the analyzer (with a half polar opening angle of about 12°) observes the sample under an angle of 60°. The FWHM energy resolution for the low energy data was about 1.5 eV.

Figure 1 compares the high energy spectra with a pair of spectra taken at lower energies (1000 and 3400 eV). The data are represented by the open circles and have been normalized with the intensity of the elastic peak. Successive spectra are shifted by 0.005eV for clarity.

The features seen in the experimental spectra can be quantitatively described by a simple theory by realizing that the recorded intensity consists of groups of electrons that have experienced a certain number (n_b) of volume (or bulk) excitations and (n_s) surface excitations. The relative number of electrons within each group is given by the reduced partial intensity α_{n_s,n_b}. The energy loss distribution of each group is given by $w_s^{(n_s)}(T') \otimes w_b^{(n_b)}(T - T')$ [11], where $w_s^{(n_s)}(T)$ and $w_b^{(n_b)}(T)$ represent the $(n_s - 1)$–fold and $(n_b - 1)$–fold selfconvolution of the normalized single scattering loss distributions. Here $w_s(T)$ is the differential surface excitation probability (DSEP) and $w_b(T)$ denotes the differential inverse inelastic mean free path (DIIMFP), and the symbol \otimes represents a convolution. The spectrum $y(T)$ is a superposition of all groups[11]:

$$y(T) = \sum_{n_s=0}^{\infty} \sum_{n_b=0}^{\infty} \alpha_{n_s,n_b} w_s^{(n_s)}(T') \otimes w_b^{(n_b)}(T - T') \quad (1)$$

It turns out that the partial intensities for surface and bulk scattering are uncorrelated to a good approximation $\alpha_{n_s,n_b} = \alpha_{n_s} \times \alpha_{n_b}$ [20]. The bulk partial intensities can be calculated by an MC simulation [21], the surface partial intensities follow from the expression for the average number of surface excitations in a single surface crossing [10]

$$\langle n_s \rangle = \frac{a}{\mu \sqrt{E}} \quad (2)$$

where $\theta = \text{arccos} \mu$ is the polar direction of surface crossing and a is a material parameter, the so–called surface excitation parameter. Assuming that plural surface scattering is governed by Poisson statistics, the reduced surface partial intensities are found as:

$$\alpha_{n_s} = \frac{\langle n_s \rangle^{n_s}}{n_s!} \quad (3)$$

The reduced volume partial intensities for the present set of experimental data were calculated with the Monte
FIG. 3: Comparison of the (normalized) DSEP and HIMFP retrieved with Eqn. (4) from the high energy REELS spectra (5 and 40 keV, arccos $\mu_i = 45^\circ$, arccos $\mu_o = 45^\circ$, thin solid curves) with the results obtained earlier [11] (1000 and 3400 eV, arccos $\mu_i = 0^\circ$, arccos $\mu_o = 60^\circ$, thick solid curves). The data for the DSEP have been scaled by a factor of 0.25, for clarity.

The unique solution of Eqn. (1) for the unknowns $w_s(T)$ and $w_o(T)$ can be found by analyzing two spectra with different sequences of partial intensities $\alpha_{ns,ns}$ and $\beta_{ns,ns}$, using the formula [11, 25]:

$$w(T) = \sum_{k=0}^{2} \sum_{l=0}^{2} a_{k,l} Y_{k,l}(T) - \int_{T'=0}^{T} \sum_{k=0}^{2} \sum_{l=0}^{2} b_{k,l} Y_{k,l}(T - T') w(T')dT'$$ \((4) \)

where the quantity $Y_{k,l}(T)$ is the (k,l)-th order cross convolution of the two REELS spectra. The coefficients $a_{k,l}$ and $b_{k,l}$ are functions of the partial intensities of the two spectra [25] and are different for the surface and bulk single scattering loss distribution, the formula for retrieval of the DIIMFP and DSEP is identical and given by Eqn. (4).

The result of application of this procedure to the (5000-40000 eV) and (1000-3400 eV) spectrum pairs shown in Figure 1 is presented in Figure 3. The resulting single scattering loss distributions for the high and low energy pair are in good agreement within the experimental accuracy. Note that this comparison is in absolute units.

The somewhat noisy nature of the DSEP extracted from the high energy data is a consequence of the fact that the determinant $\Delta = \alpha_{1,0} \beta_{0,1} - \alpha_{0,1} \beta_{1,0}$ is quite small for the high energy case ($\Delta_{5000,40000} = 0.09$) indicating that in the retrieval of the high energy DSEP a small difference between large numbers is being evaluated [11]. In other words, since the contribution of surface excitations is quite small for both spectra of the high energy pair, the procedure is close to its numerical limit for extraction of the DSEP. For the low energy pair the determinant is closer to unity ($\Delta_{1000,3400} = 0.35$) and the data for the DIIMFP and DSEP exhibit the same noise level.

Using the DIIMFP and DSEP retrieved from the high energy spectral pair together with the partial intensities calculated by means of MC simulations, the experimental data were fitted to Eqn. (1), using the average number of surface excitations $\langle n_s \rangle$ as a fitting parameter and employing Eqn. (3). The resulting fit is represented by the solid curves in Figure 1. It is seen that in this way the experimental spectra over a wide energy range and different scattering geometries, giving rise to qualitatively different sequences of partial intensities (see Figure 2),
are quantitatively accounted for. The corresponding values of $\langle n_s \rangle$ are presented in Figure 4 as a function of the energy. The low energy data consist of two series of measurements conducted a year apart to check the experimental uncertainty.

Chen [26] proposed that the probability of a surface plasmon excitation would be given by $\langle n_s(\mu, E) \rangle = a/\sqrt{E\mu}$ with a value of $a = 3.06 eV^{1/2}$ for Au. Fitting our data with this type of dependence we obtain a reasonable fit with $a = (3.09 \pm 0.05)eV^{1/2}$, in good agreement with the value calculated by Chen. Kwei and coworkers [27] concluded that the dependency should be of the form: $\langle n_s(\mu, E) \rangle = a_2/E^b\mu$, with values for Au of $a_2 = 1.7612 eV^{1/2}$ and $b = 0.4404$ for an ingoing and $a_2 = 1.4946 eV^{1/2}$ and $b = 0.4208$ for an outgoing surface crossing along the surface normal. Fitting our data with this formula we obtain an excellent fit with $a_2 = (1.76 \pm 0.05)eV^{1/2}$, $b = 0.43 \pm 0.02$, surprisingly close to the values calculated by Kwei and coworkers.

For the high energy data set any eventual interference effect between the ingoing and outgoing part of the trajectory and the concurrent interference between surface and bulk excitations predicted by YTC [3, 15, 16] is expected to be strongly reduced since the surface scattering zone is much smaller than the average pathlength travelled for high energies, $\langle z_{ss} \rangle/\langle \delta \rangle \sim 0.005$. The surface scattering zone for the high energy data is even much smaller than the pathlength travelled without an inelastic collision, the inelastic mean free path λ which is about 250\AA at 40 keV implying that $\langle z_{ss} \rangle/\lambda \sim 0.2$. Indeed, the influence of surface excitations for the high energy spectra is much less pronounced at higher energies as seen in Figure 1 and 4. The retrieved DIIMFP and DSEP nonetheless match the ones at lower energies within the experimental (and numerical) uncertainty. Furthermore, the energy dependence of the total surface excitation probability exhibits the same behaviour for low and high energies, as can be seen from Figure 4. From these findings it is concluded that interference effects in REELS spectra are too weak to be observed with experiments as the one described in the present paper for the entire energy range investigated, i.e. from 150 eV to 40 keV. Note that this conclusion is also in perfect agreement with Vicanek’s theoretical assessment that such interference effects may be pronounced for individual reflected electrons, but cancel out in a measured REELS due to the broad pathlength distribution giving rise to strong fluctuations in the interference effects that are smeared out accordingly [28].

It should finally be noted that the single scattering loss distributions have been used to extract the optical constants of Au from REELS [14] giving good agreement with independent sources of optical data such as density functional theory calculations [29, 30] and optical measurements [31] or transmission electron energy loss measurements [32]. On the other hand, Figure 1 demonstrates that the extracted DIIMFP and DSEP, in combination with realistic partial intensities (see Figure 2) consistently describe REELS spectra measured over a large energy range and for different scattering geometries, using a single fit parameter, the average number of surface excitations $\langle n_s \rangle$. The latter quantity also compares well with independent theoretical assessments [26, 27], as can be seen from Figure 4.

Acknowledgments

Financial support of the present work by the Austrian Science Foundation FWF through Project No. P15938-N02 is gratefully acknowledged. Work at the Australian National University was made possible by a grant of the Australian Research Council.