
Contents lists available at ScienceDirect

Journal of Physics and Chemistry of Solids

journal homepage: www.elsevier.com/locate/jpcs

Simple model dielectric functions for insulators

Maarten Vosa,⁎, Pedro L. Grandeb

a Electronic Materials Engineering Department, Research School of Physics and Engineering, The Australian National University, Canberra 2601, Australia
b Ion Implantation Laboratory, Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, CP 15051, CEP 91501-970, Porto
Alegre, RS, Brazil

A R T I C L E I N F O

Keywords:
Dielectric function
Inelastic x-ray scattering
Compton scattering
Water
Diamond

A B S T R A C T

The Drude dielectric function is a simple way of describing the dielectric function of free electron materials,
which have an uniform electron density, in a classical way. The Mermin dielectric function describes a free
electron gas, but is based on quantum physics. More complex metals have varying electron densities and are
often described by a sum of Drude dielectric functions, the weight of each function being taken proportional to
the volume with the corresponding density. Here we describe a slight variation on the Drude dielectric functions
that describes insulators in a semi-classical way and a form of the Levine-Louie dielectric function including a
relaxation time that does the same within the framework of quantum physics. In the optical limit the semi-
classical description of an insulator and the quantum physics description coincide, in the same way as the Drude
and Mermin dielectric function coincide in the optical limit for metals. There is a simple relation between the
coefficients used in the classical and quantum approaches, a relation that ensures that the obtained dielectric
function corresponds to the right static refractive index.

For water we give a comparison of the model dielectric function at non-zero momentum with inelastic X-ray
measurements, both at relative small momenta and in the Compton limit. The Levine-Louie dielectric function
including a relaxation time describes the spectra at small momentum quite well, but in the Compton limit there
are significant deviations.

1. Introduction

Dielectric functions are pervasive in condensed matter physics.
However, the full energy (ω) and momentum (q) dependence of the
dielectric function ( ω q ω q i ω qϵ( , ) = ϵ ( , ) + ϵ ( , )1 2 with ϵ , ϵ1 2 real) show
intricate structures (see e.g. [1]) and is usually not fully known and
thus widespread use is made of model dielectric functions. Knowledge
of the dielectric function is also essential in medical physics to
understand the penetration of charged particles in an organisms and
the distribution of the associated ‘damage’. The use of the dielectric
function in this context has been reviewed recently [2]. Here we want
to highlight some elementary properties of dielectric functions and
present an alternative model dielectric function that can be of use for
insulators.

2. Model dielectric functions

A frequently used model for metals is the Drude one based on the
free-electron model which assumes that the target electrons have a
homogeneous electron density. This Drude function (ϵD) is based on a

classical approach and the energy loss function (ELF) Im
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and the corresponding real part:

⎡
⎣⎢

⎤
⎦⎥ω q

ω ω q ω
ω ω q ω q

Re 1
ϵ ( , )

= 1 +
( − ( ) ) (0)

( − ( ) ) + Γ( )
.i i

iD

2 2 2

2 2 2 2 2 (2)

Here the plasma frequency ωi is determined by the electron density N
(ω πN= 4i , we use atomic units throughout, unless otherwise stated)
and Γ is a damping constant. Both ωi and Γ can depend on q, but for
the Drude model we assume in the following that Γ does not depend on
q.

For cases where the electron density is in-homogeneous one may
consider the target as a sum of volumes with different electron
densities. A volume fraction Ci has an electron density such that the
plasmon energy is ωi. The sum of all volume fraction should obviously
add up to one: C∑ = 1i i . The dielectric function is then given by a
weighted sum of their Drude functions. This approach has been quite
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useful for the determination of the ion stopping [3]. as well as the
electron mean free path [4,5]. The corresponding ELF is then:
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and for the real part:
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Note that Eqs. (3) and (4) only satisfy the Kramers-Kronig relations
when C∑ = 1i .

Lindhard developed a quantum formulation of the dielectric func-
tion ( qωϵ ( , )L ) for a free-electron material and vanishing relaxation
time [6]. Mermin added later the effect of a finite relaxation time (i.e.
damping) [7]:

q
q
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and both Lindhard and Mermin dielectric functions are widely used.
For q=0 the Mermin dielectric function (ϵM) and the semi-classical
Drude one coincide.

Levine and Louie derived a dielectric function for insulators (ϵLL) by
transforming the energy scale of the imaginary part of the Lindhard
dielectric function according to ω ω U′ = +2 2 2 (with U a parameter that
relates to, but is not equal to the band gap), and calculating the real
part using Kramers-Kronig relations [8]. Here we first extend the
Levine-Louie approach by adding a relaxation time in the same way as
Mermin did to the Lindhard dielectric function by replacing ϵL in Eq.
(5) by ϵLL and refer to this as the ϵMLL (Mermin-Levine-Louie)
dielectric function. Examples for ϵMLL for a single component with
ω = 10 eV1

M , Γ = 2 eV1 and U values as indicated are given in Fig. 1.
With increasing U values the position of maximum intensity of the
ELF, moves to larger ω values, its area decreases in such a way that the
value of the Bethe sum rule:
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remains the same. Here N is the target electron density which, for
ω = 10 eV1 , corresponds to 0.01075 electrons/(a.u)3.

In order to consider the shape of such a single component MLL ELF
more carefully, we take the case of U=16 eV of Fig. 1 as an example. Its
shape is still in good approximation a Lorentzian with the same width
as the loss function for U=0 (upper panel Fig. 2). Here we compare it

with the result for Eq. (1) using ω ω U= +D dens 2 and Γ = 21 . (In the
following we use ωD, ωM and ωMLL for the ω parameter in the Drude,
Mermin and MLL model. ωdens is the plasma frequency that corre-
sponds to the electron density of the target (ω πN= 4dens ). Note that
ω ω=MLL dens by definition. The position and width of the Drude and
MLL ELFs are then the same, but the area of the Drude one is much
larger. As a consequence its Bethe sum is much larger i.e. it
corresponds to a target with a much larger electron density.

One can rescale the Drude ELF by using Eq. (3) with
C ω ω= ( / ) = 0.278D

1
dens

1
D 2 and then at q=0 both ELFs coincide. The

question is then what happens with fraction of the volume
C1 − = 0.722. It turns out that one obtains internally consistent results

if it is treated as ‘empty’ or ‘vacuum’ i.e. this fraction contributes to the
dielectric function with ϵ = 11 and ϵ = 02 (or equivalently Re

ω q[1/ϵ( , )] = 1 and Im ω q[−1/ϵ( , )] = 0) and here we refer to this
approach as ‘Drude+vacuum’. The real part of Eq. (3) reads:
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while the imaginary part remains unchanged. Note that Eqs. (3) and
(7) satisfy Kramers-Kronig relations, even if C∑ < 1i

D . Using this
interpretation with volume C1 − ∑i i

D treated as vacuum

Fig. 1. The top panel shows (thick lines) the ELF for a single oscillator with ω = 10 eV
and Γ = 2 eV for the ‘Mermin-Levine-Louie’ model for U values (in eV) as indicated. The
central panels show the real and imaginary part of the corresponding dielectric function.
The thin lines in these plots are the same quantities using a very simple Drude+vacuum
model as explained in the text. The bottom panel shows the development of the Bethe
sum integral (Eq. (6)) as a function of upper limit of the integration.
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C1/ϵ → 1 − ∑i i1
D when ω → 0. There is thus a simple relation between

the ‘empty fraction’ and the static refractive index n of a material:
n C= ϵ (0, 0) = 1/(1 − ∑ )i

2
1

D , as will be discussed in more detail in
Section 3.

Now let us compare the shape of the real and imaginary part of
ω qϵ( , ) for both the Drude, and MLL model. At q=0 ϵ1 and ϵ2, as

calculated by both models, are identical (central and lower panel of
Fig. 2). Here we claim that this approach of a Drude oscillator+vacuum
is the semi-classical equivalent to the MLL ELF, in the same way as the
Drude ELF is the semi-classical equivalent to the Mermin ELF. In the
limit of q=0 they are indistinguishable, but will differ for q ≠ 0.

Instead of the Drude ELF one can also consider the Mermin ELF with

the same parameters (ω ω U= +M dens
1 1

2 2 , andC ω ω= ( / )1
M

1
dens

1
M 2 ) and if

one treat again C1 − 1
M as vacuum one obtains at q=0 again the same

description for ϵ1, ϵ2 and thus Im [−1/ϵ].
The behavior away from q=0 is demonstrated in Fig. 3, assuming

for the Drude case a free-electron type dispersion: ω q ω q( ) = (0) + /21
D

1
D 2

(in the other cases dispersion is ‘build in’). Now all 3 dielectric
functions start to differ, especially for q > 0.5 a.u. The Drude ELF
remains sharply peaked whereas the Mermin ELF becomes very broad.
For the MLL ELF the broadening is less severe, in particular the MLL
ELF has a strongly reduced intensity (but is not strictly zero) for losses
considerable less than U.

At even larger q values one reaches the ‘Bethe ridge’ where the
interaction between probe and target electrons can be described as binary
collisions [9]. In this Compton regime there is a simple relation between the
momentum of the scattering electron p and the energy loss ω:

q pω q
m m

=
2

+ ·2

(8)

withm the electron mass (equal to 1 in atomic units). The various dielectric
functions at high momentum transfer are displayed in Fig. 4 for q=20 a.u.
in terms of both the energy loss and the component of p along q. The
Drude ELF remains very narrow, in contrast to Compton peaks observed in
experiments. The MLL ELF has a width that corresponds to the Fermi
sphere of a free-electron gas with a plasmon energy of ω = 10 eVMLL . The
Mermin-derived Compton profile has a width corresponding to a free-
electron gas with a plasmon energy of ωM (14.14 eV). For wide-gap
insulators it should thus be possible to distinguish experimentally which

Fig. 2. The ELF, ϵ1 and ϵ2 for a Mermin-Levine-Louie oscillator with ω = 101 , Γ = 2i and

U=16, an Drude oscillator with ω = 18.86 and Γ = 2 (dotted line) and the same oscillator
multiplied by 0.278 plus a vacuum with volume fraction (1-0.278)(long dash).

Fig. 3. The development of the ELF as a function of momentum transfer for the Drude
loss function (ω = 14.14 eV, C=0.5, Γ = 2 eV and α = 1), Mermin dielectric function
(ω = 14.14 eV, C=0.5, Γ = 2) and Mermin-Levine-Louie loss function (ω = 10 eV,
U=10 eV, C=1, Γ = 2 eV).

M. Vos, P.L. Grande Journal of Physics and Chemistry of Solids 104 (2017) 192–197

194



of these two approaches describe the data best.

3. Examples: diamond and water

Let us first consider the case of diamond as an example. The book of
Raether gives a table comparing observed plasmon energies with the
calculated value for a range of materials [10]. Diamond stands out
somewhat as its observed plasmon energy (34 eV) is significant larger
than the calculated plasmon energy (ω = 31 eVdens ). The latter value is
ωMLL, the observed peak position would correspond to ωD. Within the
MLL model the peak position would be explained if

U ω ω= − ≈ 14 eVD2 dens2
, a value considerable larger than the band

gap of diamond. Alternatively one can describe it with a Drude model
model plus empty fraction. Now we get for the coefficient
C ω ω= ( / ) = 0.83D dens D 2 , which corresponds to an empty fraction of
0.17. The static refractive index can then be calculated using
n C= 1/(1 − ∑ )i

2 which gives an n value of 2.4, in surprisingly good
agreement of the established value of 2.4. (We use the experimentally
obtained refractive index at ω = 1 eV for the ‘static refractive index’ to
avoid the phonon contribution throughout this paper). These numbers
are reproduced in Table 1.

For water one can also try to make such a comparison but the ELF
is rather asymmetric. One can either equate the experimentally
observed plasmon energy with the position of the maximum of the
ELF, or with its mean value. These choices result in rather different U
values and hence calculated refractive indexes. The derived values from
both choices of observed plasmon energy are given in Table 1 as well.
The experimental value of the refractive index is in between the values
derived for both choices of plasmon energies.

For the case of water there exist inelastic X-Ray Scattering
Spectroscopy (IXSS) measurements of the dielectric function near the
optical limit [11,12] and away from q=0 [13], as well as Compton
measurements at very large q values, see e.g. ref. [14]. Due to the
relevance of the dielectric function of water in medical physics detailed
somewhat semi-empirical parametrisations of this quantity exist [15–
17]. Here we want to review how well in particular the MLL model

Fig. 4. The ELF at q=20 a.u. for the same dielectric functions plotted in Fig. 3, Now the
result can be interpreted as a Compton profile, i.e. intensity is proportional to the density
of target electrons with a certain momentum p along the momentum transfer direction.
In the Drude case the width is still 2 eV, In the Mermin case the width corresponds to
that of a free-electron gas with plasmon energy 14.14 eV and hence kf=0.86 a.u., in the
Mermin-Levine-Louie case the width corresponds to a free electron gas with plasmon
energy 10 eV (kf=0.68 a.u.).

Table 1

Various quantities for diamond and water, as discussed in the main text. ωdens is the

calculated plasmon energy based on the (average) valence electron density, ωobs. is the
position of the maximum of the ELF. For water we give in brackets the plasmon energy as
inferred from the average energy loss of the ELF. Within the MLL model U inf. is the

estimate of this parameter based on U ω ω= −obs2 dens2
. Within the Drude or Mermin

model the inferred ‘empty fraction’ (E. F.) is given by ω ω1 − ( / )dens obs 2 and the refractive

index n is then obtained from n = 1/(E. F. )2 . The last column is the measured refractive
index.

Material ωdens ωobs U inf. empty frac. n inf. n obs.

Diamond 31.1 34 13.7 0.16 2.5 2.4
water 19.2 23.5 (30.4) 13.6 (23.5) 0.33 (0.6) 1.74 (1.29) 1.32

Fig. 5. A comparison of the measured values of Im ω q[ − 1/ϵ( , )] (dots) at the q values as

indicated with the corresponding curves for the Mermin, Mermin-Levine-Louie as well as
the Drude model ELF.
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dielectric functions using a set of oscillators describe these data.
The comparison with IXSS measurements are shown in Fig. 5. We

used a fit of only 5 components, as this suffices to reproduce the main
features. The parameters used are reproduced in Table 2. The fit was
done first for a sum of Drude oscillators. The sum of the obtained
coefficients Ci is only 0.41 which ensures that the right refractive index
is obtained (n=1.3). The same ELF is obtained if we calculate the
Mermin ELF with these parameters. As the experiment was put on an
absolute scale using a sum rule, a good fit of the experiment implies the
correct Bethe sum value.

The MLL calculation is much more time consuming. It is thus most
convenient to use the results of the fitting parameters from the Drude
fit. The energy ωi

dens is then retrieved by:

ω ω U= − .i i
dens D2 2

(9)

The coefficients Ci
MLL are obtained from Ci

D via

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟C

ω
ω

C=i
i

i
i

MLL
D

dens

2
D

(10)

Now the shape of the optical ELF will not change. Note that only for U
value used of 16.4 eV the data can be fitted with C∑ = 1i i

MLL This U
value is about twice as big as the value usually quoted for the band gap
of water (7–8 eV), stressing the fact that the U parameter can not be
directly compared to the band gap.

Away from q=0 the results for the 3 approaches differ significantly
as is illustrated in Fig. 5. For the Drude model the shape of the peak
does not change, but it moves gradually to larger energy losses. The
Mermin model displays the largest broadening, the broadening for the
MLL model is somewhat less. The MLL model seems to agree best with
the experiment.

Abril et al. [18] compared these measurement with a dielectric
function based on the Mermin dielectric function as well. Their results
are consistent with ours. They multiplied the Mermin loss function
with a step function, zeroing the intensity in the band gap region (0–
7 eV energy loss). This improves of course the agreement between
experiment and calculation, as far as the loss function is concerned.
This zeroing will affect, of course, also the real part of ϵ as they are
linked by Kramers-Kronig and the consequences for the expected
dispersion is not easily judged, as after zeroing the ELF in the gap
the corresponding dielectric function is not quite a Mermin dielectric
function. The intensity of the MLL ELF in the band gap region is less
than that of the ‘pure’ Mermin loss function.

Finally we compare the result of the ELF of water in the Compton
limit. In the experimental Compton profile of water there are also
contributions of the O 1s electrons, which are not considered in the
dielectric function. For the O 1s contribution we used the calculated
Compton profile from Biggs et al. [19], and the ratio of the area of the O
1s to valence band contribution was set to 1:4, as there are 2 O 1s
electrons and 8 valence electrons for each water molecule. The

resulting profile is compared with the experimental result of
Manninen et al. [14] in Fig. 6. Surprisingly the Mermin Compton
profile agrees better with the experiment than the MLL profile and the
MLL profile is somewhat too narrow.

A possible cause for the small MLL Compton width could be due to
dependence of the intensity of the oscillators on ω. At large ω the ELF
decreases as ω−3 whereas theory predicts ω−4.5 [2]. Within the Drude
model this problem can be diminished by replacing Drude-type
oscillators with derivative Drude oscillators, which decrease as ω−5.
Fitting the optical ELF with derivative Drude functions would require
more oscillators at large energy losses (as the intensity of their tail is
less), which would correspond to larger electron densities, and thus
cause an increase in the Compton profile width. Incorporating such
changes in the Mermin and MLL ELFs is not trivial and was not
attempted.

4. Summary and discussion

There are three ways for describing the loss function of an insulator
in the optical limit. One can use the (the sum of one or more) MLL loss
functions and then one has to choose the coefficients Ci such that they
sum up to unity. The gap-like parameter U can be tuned so the correct
Bethe sum value and the right static refractive index is obtained.
Alternatively one can use the Drude or Mermin loss function and
choose the Ci component in such a way that it is less than 1. The
missing volume is then treated as having the dielectric function of
vacuum. Scaling the Ci coefficient such that the missing fraction
changes will again affect both the Bethe sum rule and the static
refractive index. Away from q=0 all models give different results. For
the case of water the MLL dielectric function seems to reproduce the
dispersion at small momentum best. Neither the Mermin or the MLL
approach describe the Compton profile perfectly, whereas the Drude
approach fails completely.

The origin of the ‘empty space’ in the crystal is due to areas with
electron densities so low that the associated plasmon frequency is less
than the band gap. This low-density part contribute to the loss
spectrum far away from the plasma frequency corresponding to its
density. Hence the area of its loss feature is much reduced, else Bethe
sum rule would not be met. These calculations seem to indicate that the
net effect is that the material can be modeled as part of its volume is
void of electrons. In a way an insulator is not only a material that is
void of electrons in a certain energy range (the gap) but for the purpose
described here, it may also be seen void of electrons in a certain
fraction of its unit cell.

Table 2
The parameters of the fit of the ELF in the optical limit as measured by Hayashi et al. [11]
using the Mermin or Drude model (left half) or the MLL model (right half). The
parameters in the right and left half of the table are linked via Eqs. (9) and (10).

Drude, Mermin MLL

Ci ωi
D,M Γi Ci

MLL ωi
MLL Γi Ui

(eV) (eV) (eV) (eV) (eV)

0.060 17.7 5.9 0.44 6.57 5.9 16.4
0.090 22.4 6.3 0.19 15.2 6.3 16.4
0.096 26.4 8.5 0.16 20.6 8.5 16.4
0.10 35.2 17.5 0.13 31.1 17.5 16.4
0.064 52.5 38.2 0.074 49.6 38.2 16.4

C∑ = 0.41i C∑ = 1i

Fig. 6. A comparison of the Compton profile of water, as measured by Manninen et al.
[14] with calculated ones. The O 1s contribution (dotted line taken from calculations) is
summed with the valence band contribution as modeled by the Mermin and MLL
dielectric functions.
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While model dielectric functions are necessarily an oversimplifica-
tion of the real one, and never will describe the actual one 100%
accurately, incorporating as much physics in a model dielectric
function should ensure that this function approaches the real one as
much as possible and can be used to enhance our understanding of
many phenomena. A complete description of the dielectric function can
probably only be obtained by large-scale ab-initio calculations based on
many-body theory, as has become within reach in recent years [20].
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