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A B S T R A C T

It is well established that the shape of spectra acquired using reflection electron energy loss spectroscopy
(REELS) is determined by the dielectric function. Extracting the dielectric function from REELS spectra is a real
challenge as it is governed by strong multiple scattering. It is generally assumed that the contribution of shallow
core levels (with binding energies over 100 eV) to the REELS data can be neglected when one interprets valence
band REELS data that usually extends to, at most, 100 eV energy loss. Here we show that, especially when
incoming energies over 1 keV are used, this is not the case and that the intensity of the REELS spectrum can only
be calculated correctly if the shallow core levels are taken into account. The implications for this for the ex-
traction of the dielectric function from REELS data is discussed.

1. Introduction

It has been obvious for a long time that the shape of REELS spectra is
determined by the dielectric function [1–3]. However extracting the
dielectric function from a REELS spectrum is difficult, due to strong
multiple scattering contributions, and the presence of surface and bulk
losses. At higher energies the problem simplifies somewhat as the
contribution of surface losses becomes small. There have been several
attempts made to retrieve the dielectric function, in particular the En-
ergy Loss Function in the optical limit (ELF), from REELS spectra, but
the level of consistency obtained by different approaches is still some-
what disappointing and is thus difficult to assess the accuracy of the
obtained results [4]. Most approaches aim to extract an ELF from one or
more REELS spectra. Here we use the case of Si to calculate the REELS
spectra based on previous estimates of the ELF in the optical limit.

In this paper we will show that it is not possible to obtain an ac-
curate description of the first 100 eV of the REELS spectrum by con-
sidering only the first 100 eV of the ELF. It is demonstrated that,
somewhat surprisingly, the ELF at larger energy losses has a significant
impact on the intensity of the REELS spectrum in the low-loss region.
This has significant implications for approaches that aim to derive the
valence-band ELF from the low-loss REELS spectrum only [5–7] where
one obtains an estimate of the loss function (either an effective loss
function describing both surface and bulk excitations [7] or separately a
bulk and surface loss function [5]) without considering the influence of
semi-core electrons. It turns out that the presence of semi-core electrons

affects the shape of the valence REELS spectrum significantly and hence
their influence on the extracted loss function has to be investigated.

2. Experimental details

A silicon crystal was sputter-cleaned using 2 keV Ar+ ions. No at-
tempt was made to remove the lattice damage due to sputtering, and
thus an amorphous layer will be present near the surface. Electrons
with an incoming energy (E0) of 40 keV were used. The incoming beam
was directed along the surface normal and the analyser was at a
backwards angle (scattering angle 135° with respect to the incoming
beam). A concentration of Ar of several % can be present in the outer
50Å layer [8] after sputter cleaning, but the depth probed by 40 keV is
significant larger (200Å for the elastic peak) ensuring that the effect of
the Ar impurities is small. No asymmetry of the elastic peak due to Ar
contribution (which mean recoil loss differs by 0.8eV from that of Si
under these conditions) could be detected. The energy loss was de-
termined over a relatively wide region (300 eV), by scanning the ana-
lyser energy. Multiple scans (≈20) were added. The incoming beam
(≈10 nA) was measured by a current integrator producing a logical
pulse for every pico-Coulomb of charge collected. The scan progresses
to the next voltage after a pre-set number of pulses has been counted,
ensuring equal exposure at all energy losses. The analyser was equipped
with a two-dimensional detector, resolving the energy within an energy
window and the direction of propagation of the outgoing electron [9]. It
was checked that dead time effects were negligibly small. In spite of the
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sputter-induced lattice damage there were still some effects of the lat-
tice on the angular distribution of the outgoing electrons visible (‘Ki-
kuchi patterns’) but by comparing the results of the detector for dif-
ferent angular ranges it was concluded that these did not affect the
shape of the spectra in a major way.

3. Description of a REELS spectrum

For completeness we sketch here an outline of the framework that
describes the trajectory of an energetic electron in matter. For more
complete descriptions see e.g. [12–14].

Fast electrons impinging on matter interact both with the nuclei and
target electrons. Due to the large difference in mass interaction with
nuclei mainly deflects the electrons, but only a very small amount (up
to a few eV for rare large-angle scattering events from light atoms) of
energy is transferred (recoil effect). In electronic excitations (‘inelastic
scattering’) the projectile energy is reduced, but for keV electrons the
direction of propagation changes only by a small amount, as the mo-
mentum of electronic excitations, q, is generally much less than that of
the projectile. Thus, the trajectory of electrons inside matter is con-
structed by considering successive elastic and inelastic scatterings
events, with some of the projectile's energy transferred at each inter-
action and its direction changed after an elastic collision.

The shape of the trajectory is due to the interaction of the projectile
with (screened) nuclei. As significant deflections occur very close to the
nuclei, the interactions of the electron with the nucleus can be taken to
be the same for an atom in a solid and a free atom. The latter can be
described well using partial wave analysis and this theory was used to
calculate the differential elastic scattering cross section σel(θ) as im-
plemented in the ELSEPA program [15].

After each integration step of the trajectory simulation, we also
determine the probability that a certain number (N) of electronic ex-
citations occurred. This is related to the inelastic mean free path (IMFP)
λ. As the measured electrons have an energy that does not differ greatly
from E0 the same λ can be used for the whole trajectory. Then the
probability of N inelastic events occurring along the step with length l is
given by a Poisson distribution:
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The amount of energy loss in an inelastic event will differ from event to
event and the probability distribution of a certain energy loss ω can be
calculated from the dielectric function ϵ(q, ω). It is proportional to the
DIIMFP (differential inverse electron mean free path) Wb(ω):
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with = ± −±q E E ω2 2( )0 0 the range of possible momenta of the
inelastic excitation.(Here we use atomic units. For relativistic correc-
tions at high energies see Ref. [16].) The 1/q term in the integral as-
sures that small momentum transfers dominate the inelastic scattering,
i.e. the assumption that inelastic scattering does not affect the direction
of propagation of the projectile significantly is justifiable. If this dis-
tribution is normalised to unit area (the normalised differential inverse
electron mean free path, NDIIMFP) then it gives the probability density
that an energy ω is lost in an inelastic event. The required normalisation
constant
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corresponds to the inverse of the inelastic mean free path: C=1/λ.
For increase computational efficiency the procedure sketched above

is implemented somewhat differently in PowerMeis [17,18] the Monte
Carlo program which uses a variation of the connected trajectory
formalism as described by Werner [19]. Two sets of trajectories are
simulated: electrons starting from outside the sample propagating along
the beam (incoming) and electrons moving from the detector towards
the sample (outgoing). Time-reversal symmetry makes it possible to
simulate the outgoing electrons in this way. Each trajectory is divided
in many small segments Δl (with Δl much smaller than the elastic mean
free path) and standard Monte Carlo procedures are used to simulate
the deflections and energy loss (both due to recoil and inelastic ex-
citations) along that segment. As a function of depth Z the energy loss
and direction of propagation after each segment are tabulated. Finally,
the two set of trajectories are combined at each depth z (weighted by
σel(θ) with the angle θ determined by the difference in propagation
direction of the incoming and outgoing electron) to form complete
scattering events. This trajectory contributes to the REELS spectrum at
the sum of the incoming and outgoing energy losses plus the recoil loss
corresponding to a deflection over θ from the scattering nucleus.

In order to calculate the REELS spectrum we need thus an estimate
of the dielectric function. For the case of silicon Jin et al derived an
estimate of the energy loss function (ELF) Im[−1/ϵ(0, ω)] of Si from an
extensive REELS study [10] and its main feature is a slightly asym-
metric plasmon peak at ω=17 eV (Fig. 1, left panel). For ω values over
≈ 60 eV it is generally expected that the interaction of the target
electrons with the projectile is not severely affected by solid state ef-
fects and one can use the atomic properties to calculate their con-
tribution to ϵ(q, ω) based on tabulations of Henke [11] (Fig. 1, right
panel).

Fig. 1. The model energy loss function in the optical limit of Si used in this work. The valence band part was obtained by fitting the ELF published by Jin [10]. The
deeper levels were introduced to get an approximate description of the loss function based on the atomic properties, as taken from Henke [11].
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To get a description everywhere in (q, ω) space one often fits the
ELF (q=0) with a set of Drude-Lindhard oscillators with energy ωi

amplitude Ai and width Γi.
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Here we used Mermin oscillators, which coincide with the Drude-
Lindhard oscillators at q=0 but have dispersion ‘built-in’, but this does
not affect the argument we want to make here. The fit is shown in Fig. 1
as well and actual parameters used are reproduced in Table 1. We can
either fit only the valence loss function, or extend the fit to also model
the semi-core related loss feature around ω=120 eV. In that case three
more oscillators are used. Note that ∑iAi=0.944 (0.925 without core
level contributions) slightly less than 1, as this sum is related to the
static refractive index n: ∑iAi=1− (1/n)2 [20]. The corresponding
DIIMFP is reproduced in Fig. 2 for three different energies E0, covering
the range of energies that are often used in REELS experiments.

As a cross check we can calculate the IMFP λ for our loss function
and compare it with the estimate of the widely-used TPP-2M model
[21]. This is done in Table 2. Especially for the dielectric function in-
cluding the semi-core level the agreement with the TPP-2M model is
very good, and without the semi-core level contribution the IMFP is
slightly too large, indicating that the contribution of the semi-core le-
vels to the IMFP is not negligible. At 300 eV the semi-core levels hardly
affect the IMFP, at 4 keV it changes the IMFP at a 10% level, and at
40 keV its effect is about 15%.

To illustrate the influence of high energy losses on the REELS
spectrum we now calculate the N−fold convolutions of the NDIIMFP,

on which the REELS spectrum is based, with and without semi-core
levels. By definition the NDIIMFP is normalised to 1. The area of the
valence feature (maximum at ω=17 eV) of the NDIIMFP is 1 if the
semi-core contributions are not included but varies from =A 0.97v (at
0.3 keV) to =A 0.87v (at 40 keV) if they are included. The energy dis-
tribution after N inelastic scattering events is given by the N−fold
convolution of the NDIIMFP. After N−fold convolution the maximum is
near N×17 eV and the area of the feature at this energy is Av

N (with
semi-core level included) or 1 (without semi-core level included). As is
illustrated in Fig. 3 the effect of including the semi-core level changes
the probability distribution greatly for large N values. This is under-
standable, as, for example for N=9 the likelihood that any of the 9
excitations involves a semi-core electrons is considerable.

Generating a REELS spectrum using the Monte-Carlo method from
the two dielectric functions produces strongly different outcomes, as
shown in Fig. 4. The contribution of surface plasmons was neglected in
this work, they affect the spectrum in a minor way for energy losses
around 10 eV. Without the core level inclusion the generated intensity
near 100 eV is much larger, and fails to mimic the experimentally ob-
tained shape. With the core level included the agreement is much
better. Then both experiment and simulation slowly decrease in in-
tensity over the first 100 eV and levels out at larger energy losses, as for
those energies trajectories with semi-core excitations contribute again.

Table 1
The parameters to model the dielectric function of Si, as defined by Eq. (4).
Oscillators in brackets correspond to the semi-core contributions.

i Ai Γi (eV) ωi (eV)

1 0.015 2 5.5
2 0.1 2.5 13.5
3 0.29 2.2 15.7
4 0.39 2.3 17.2
5 0.068 4 20
6 0.035 6 25
(7) (0.011) (40) (130)
(8) (0.006) (80) (180)
(9) (0.002) (150) (280)

Fig. 2. The DIIMFP as calculated based on the model loss function (with core
losses thick line, and without the core losses (thin lines)) for incoming electron
energies of 0.3 keV, 4 keV and 40 keV. With increasing incoming energy the
influence of the core losses on the DIIMFP become more pronounced.

Table 2
The inelastic mean free path based on the model ELF of Fig. 1 with, and
without, the components related to the semi core levels as well as the values
based on the (relativistic) TPP-2M approach. With increasing E0 values the
effect of the core levels increases, but it remains quite small (≈13%). Re-
lativistic corrections were applied, as described in Ref. [16].

Energy λ, no core λ, incl core λ TPP-2M
keV (Å) (Å) (Å)

0.3 9.6 9.3 9.86
4 79.0 70.8 72.8
40 546 479 485

Fig. 3. The probability distribution of a specific energy loss after 1, 3, 5 and 9
energy loss events for the case of E0= 40 keV. (A vertical offset was applied for
clarity). For 1 energy loss event this corresponds to the normalised DIIMFP. For
N energy loss events the distribution is obtained by N− 1 times convoluting the
normalised DIIMFP with itself. Distributions are given with (solid line) and
without (dashed line) the core losses included. The influence of the core losses
increases as N increases.
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4. Discussion and conclusion

We demonstrated that the semi-core levels of Si have a significant
influence of the intensity of a REELS spectrum at energy losses lower
than the semi-core binding energies. It is not possible to simulate the
first 100 eV of the spectra well by considering valence ELF only. This
implies that a determination of the valence-ELF based on the first
100 eV of the loss spectrum, without considering the semi-core levels,
may introduce significant errors, especially for the ELF at larger energy
losses. Similar results were obtained for the case of aluminum and
should apply to a large number of elements that have shallow core le-
vels. These effects are particularly pronounced at larger incoming en-
ergies used here (40 keV) but should also be significant in REELS ex-
periments using energies of several keV or more.

If one uses an iterative scheme (assume a dielectric function, cal-
culate a REELS spectrum, compare the outcome with experiment and
adjust the dielectric function to improve agreement with experiment,
see e.g. [22]) then the effects described here can be straightforwardly
incorporated by calculating the DIIMFP over a larger energy loss range
than the measured REELS spectrum. On the other hand, if one uses a
deconvolution approach to derive either the NDIIMFP [19,23] or a
weighted mixed surface-bulk effective cross section [6] directly from
the experiment then the effect of the semi-core levels is harder to trace.
Werner's approach [23] solves the multiple scattering problem in
Fourier space, where convolutions simplify to multiplications. How-
ever, for the Fourier transform knowledge of the spectrum for all energy
losses is required, hence this method does not necessarily circumvent
the problem described here.

To investigate the influence of the semi-core electrons on the de-
convolution method we used the simulated data obtained by the MC
procedure, with and without core levels as if they are experimental
data, and try to extract the single-loss distribution using the Tougaard-
Chorkendorff procedure [6]. Briefly, if one normalises the spectrum
such that the elastic peak has unit area, then one considers the intensity
I1 the first channel beyond the elastic peak due a single energy loss
event of magnitude E1, i.e. for this normalisation the probability for an
energy loss event with magnitude E1 is I1. Let an be the number of

detected electrons that have experienced n inelastic events (the ‘partial
intensities’). For our elastic peak normalisation a0= 1. For this de-
convolution procedure to be valid it is required that =a an

n
1 [24,25]. I1

is a1 times the NDIIMFP at E1. Part of the intensity in the next channel I2
is due to a single energy loss event with magnitude 2E1 but part of its
intensity is due to trajectories with 2 inelastic events of magnitude E1.
The probability of this is I1

2. Subtracting this amount from I2 we obtain
the probability for energy loss with magnitude E2. In this way one can
retrieve the a1 times the NDIMFP up to energy Ex without knowledge of
the spectrum for E > Ex.

The Monte Carlo procedure does not consider surface excitations, so
in this case (in contrast to actual REELS data) the result of the decon-
volution procedure should correspond simply to the NDIIMFP. In Fig. 5
we show the result of the deconvolution procedure for the MC data.
Somewhat surprisingly, the height of the plasmon is almost the same in
both deconvoluted spectra. Thus the considerable difference in shape of
the 2 Monte Carlo generated spectra is corrected for by inferring in the
deconvolution procedure a NDIIMFP with slightly different height of

Fig. 4. Measured and simulated REELS spectrum for 40keV electrons impinging
on Si. The simulations were done with (blue line) and without (black line) in-
clusion of the semi-core losses. Simulations and experiment are normalised to
equal area of the elastic peak. For low losses the average intensity of the
spectrum decreases with energy loss, but for losses larger than the semi-core
levels the intensity is fairly constant, as indicated by the orange lines. (For
interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)

Fig. 5. The NDIIMFP as obtained from the results of the Monte Carlo simula-
tions, without (top) and with (bottom) the semi-core contribution to the loss
function, using the Tougaard-Chorkendorff deconvolution procedure (dots).
The full line is the normalised NDIIMFP as calculated from the model dielectric
function using Eq. (2) without (top) and with (bottom) the semicore electrons
included. The insert shows the partial intensities as obtained from a separate
Monte Carlo simulation (dots) and these partial intensities can be quite well
fitted in the form of an= cn (line).
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the main loss feature. The deconvoluted results indeed follow closely
the NDIIMFP as calculated via Eq. (2) with and without inclusion of the
semi-core electrons. At larger losses the core level contribution, not
obvious in the raw Monte Carlo result, can be distinguished but is
heavily affected by noise.

A dielectric function was used based on Mermin oscillators which
strictly applies to free-electron materials only. This approach has dis-
persion ‘build-in’ without adjustable parameters. It turns out (see Fig. 4)
that this approach somewhat underestimates the height of the first two
plasmons. Yubero et al. [26] used a Drude-Lindhard approach and
adjusted the α parameter, describing the dispersion to 0.5 (smaller than
the free-electron value) resulting in a better description of the spectra.
The same dielectric function as in Ref. [26] was used by Pauly and
Tougaard [27] without inclusion of the semi-core levels. They per-
formed Monte Carlo simulations of REELS spectra describing the sur-
face layer (thickness Xs) by an effective loss function and using for
larger depth the bulk loss function. Surprisingly they found that the
intensity of the REELS spectrum at larger energy losses (≈100 eV,
corresponding to depth much larger than Xs) depends strongly on the
choice of Xs. Here we show that the intensity at larger losses (especially
for larger incoming energies) is also strongly influenced by the semi-
core levels and would influence the value of Xs for which the best
agreement between experiment and simulation is obtained.

In conclusion a small contribution of the semi-core levels to the loss
function can have a significant impact on the shape of a REELS spec-
trum and, when simulating a spectrum, has to be incorporated for a
complete understanding of the experiment. Analysis based on the
Tougaard-Chorkendorff deconvolution procedure avoids largely the
complications due to the presence of the semi-core levels.
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