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Abstract

Electron momentum spectroscopy is used to determine the spectral function of silicon single crystals. In these experiments

50 keV electrons impinge on a self-supporting thin silicon film and scattered and ejected electrons emerging from this sample

with energies near 25 keV are detected in coincidence. Diffraction effects are present that give rise to additional structures in the

measured spectral momentum densities. Spectra for a specific momentum value can be obtained at different orientations of the

crystal relative to the analysers. By comparing these spectra for which the measured momentum density is the same, but the

diffraction conditions of the incoming and outgoing electron trajectories differ, one can distinguish between features due to

diffraction of the incoming and/or outgoing electrons, and those due to the electronic structure of the target itself.
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1. Introduction

For crystalline solids the electronic structure is usually

described by Bloch functions c1;qðrÞ ¼
P

G cG eiðGþqÞ·r;

where q is the crystal momentum, chosen in the first Brillouin

zone, and the sum extends over all reciprocal lattice vectors

G. A lot of experimental work (e.g. angle-resolved photo-

emission [1]) is available dealing with the dispersion, i.e. the

change in energy 1 as a function of q. Very little experimental

work deals with the magnitude of the contributions of

different plane waves to the Bloch function.

Electron momentum spectroscopy (EMS) can in principle

measure the energy-resolved momentum densities [2] and

hence determine the contribution lcGl
2

of the different plane

waves components to the Bloch function. In these kinema-

tically complete scattering experiments an incoming electron

beam with a precisely known energy ðE0Þ and momentum

ðk0Þ impinges on a target. Some of the incoming particles are

scattered in a binary electron–electron collision and a target

electron is ejected. By measuring the energies ðE1;E2Þ and

momenta ðk1; k2Þ of the scattered and ejected electron in

coincidence one can, using elementary conservation laws,

determine the energy and momentum transferred to the

target. The energy–momentum distribution obtained in this

way is proportional to the spectral function of the target.

This technique applies both to (gas-phase) atomic and

molecular targets as well as to solids [3]. For gas-phase

targets (where molecules are present in all possible

orientations) or polycrystalline thin film targets one obtains

a spherically averaged spectral function, while for single-

crystalline targets the directional anisotropy of the elec-

tronic structure can be investigated. Single crystal EMS data

are scarce. They are confined to graphite [4,5] and silicon [6,

7]. The published silicon data, obtained with the Flinders

University EMS spectrometer, are difficult to interpret due

to high levels of multiple scattering. For the present

measurements, using the high-energy bulk-sensitive EMS

spectrometer of the Australian National University [8],

multiple scattering is much reduced and these data reveal a

plethora of details obscured in the previous measurement.
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Unfortunately for EMS measurements on films of finite

thickness, elastic multiple scattering effects contaminate the

data. For crystalline materials the contribution of elastic

scattering from different atoms add up coherently (electron

diffraction) and this causes additional structures [9,10]. The

change of the incoming or outgoing electron momenta by

diffraction changes the outcome of the measurement by a

reciprocal lattice vector. Thus the diffracted intensity could

be attributed to an incorrect plane wave and diffraction

appears to prevent us from reaching our goal: the determi-

nation of the amplitude of different plane waves to the Bloch

function. In this paper we demonstrate that different

measurements can be used to disentangle the diffracted

contribution and the primary (non-diffracted) contribution. In

this way we can establish experimentally, at least in principle,

the electronic structure in the extended zone scheme, free

from coherent elastic multiple scattering effects.

2. Experimental procedure

2.1. Sample preparation

EMS experiments require extremely thin free-standing

films. The initial part of the sample preparation followed the

procedure described by Utteridge et al. [11]. Briefly, a

buried silicon oxide layer was formed by ion implantation in

a crystal with k1; 0; 0l surface normal. Using wet chemical

etching techniques a crater was etched in the back side of the

Silicon crystal. The etching rate drops to zero when the

oxide layer is reached. The silicon oxide layer is then

removed by an HF dip, and the sample (thickness of the thin

part . 200 nm) is transferred to the vacuum. Here we use

low energy (600 eV) argon sputtering to further thin the

sample. An incandescent light is positioned behind the

sample. The thin part is completely transparent. However.

the colour of the transmitted light changes with thickness

due to interference of directly transmitted light and that

reflected from the front and back silicon–vacuum interface.

In this way we monitor the thinning process. It is stopped

when a thickness of 20 nm is reached (corresponding to a

greenish colour). This sample is measured without any

further treatment. A thin amorphous layer of Si could be

present at the backside (sputtering side) whereas the front

side (facing the analysers) is probably hydrogen terminated

as a consequence of the HF dip.

2.2. Spectrometer description

The measurements were done using the 50 keV sym-

metric electron momentum spectrometer at the Australian

National University. It is described extensively elsewhere [8,

12]. The spectrometer uses two-dimensional (energy and

angle resolving) electrostatic energy analysers to measure

efficiently the energy-resolved momentum densities.

The spectrometer is sketched in Fig. 1. The z-axis is taken

along the incoming electron beam direction. Electrons

emerging at polar angles Qs near 458 and with azimuthal

angles f1;2 within ^58 with respect to the x–z plane are

detected by the analysers. Using this geometry, the recoil

momentum of the target is zero if all three electrons (the

incoming and both outgoing (scattered and ejected) elec-

trons) are in one plane (i.e. in a single-particle picture one

scattered from a stationary electron). If the momentum of the

ejected electron is not in the plane defined by the trajectories

of the incoming and scattered electron then the recoil

momentum of the target is non-zero and is directed

approximately along the y-axis (i.e. in a single electron

picture one scattered from an electron with momentum

ðpx . 0; py – 0; pz . 0Þ). By aligning a specific direction of

Fig. 1. In (a) we show a schematic representation of the

measurement. Incoming electrons (momentum k0) impinge on a

thin film and two analysers, measuring simultaneously a series of

azimuthal angles f1;2 and energies E1;2; select coincident pairs of

emerging electrons with momentum k1; k2: The sample is indicated

as a block with the edges parallel to the [0,1,0] and [0,0,1], crystal

directions. The scattering geometry is chosen in such a way that

recoil momentum of detected coincidence events k0 –k1 –k2 is

directed along the y-direction and its magnitude is proportional to

f1 –f2: Thus in (b) we measure the spectral momentum density

along the [0,1,0] direction and the incoming beam is directed along

[0,0,1]. The outgoing electrons are moving close to ½^1; 0; 1�

directions. In (c) we measure the spectral momentum density along

the same direction, but the crystal has been rotated along the y-axis

by 108 moving the incoming and outgoing electrons away from

high-symmetry directions. In (d) the crystal was rotated along the

[0,0,1] axis by 458 and the spectral momentum density along a

k1; 1; 0l direction is measured.
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a thin crystal with the spectrometer y-direction we can

measure the energy-resolved momentum density along that

crystal direction. In practice, the actual orientation of the

target can be determined by observing the diffraction pattern

of the transmitted electron beam on a phosphorus screen. The

sample orientation can be changed without removing the

sample from the vacuum chamber (operating pressure

2–3 £ 10210 torr).

At the high energies used in this spectrometer small

deviations of Qs cause significant shifts of the line parallel to

the py direction, in momentum space, along which one

measures the momentum (further referred to as ‘measure-

ment line’). For example a deviation of 0.18 in the alignment

of the collimator of the incoming beam causes the

measurement line to shift by 0.1 a.u. away from ðpx ¼ 0; pz ¼

0Þ: (1 a.u. of momentum corresponds to 1.89 Å21.) Small

magnetic fields present near the sample (in spite of the m-

metal screen surrounding the spectrometer) have similar

effects as small mechanical misalignments. It is therefore

essential to check and, if required, correct the alignment. In

practice this is done by two sets of deflector plates. Applying

voltages to a set has the same effect as changing the scattering

angle Qs of one of the analysers, as explained in Ref. [8]. By

applying voltages corresponding to a momentum shift of .
0:4 a:u: to a deflector, and repeating this experiment with the

opposite polarity we can measure the momentum densities

shifted away from ðpx ¼ 0; pz ¼ 0Þ in a symmetric fashion.

This is all done under computer control, changing every

minute the deflector potential and collecting four different

sets of spectra under otherwise identical conditions. If the

alignment was perfect then all four spectra measured with the

deflector voltages applied would be identical. In practise they

were found to be noticeably different. The initial deviation of

the measurement line from the origin was 0.2 a.u. Guided by

the difference in binding energies of the quasi-particle peaks,

as measured with deflector voltages applied, we estimate

which deflector voltages would correspond to perfect

alignment. After a few iterations of the above procedure we

reached the perfect alignment within 0.03 a.u.

This alignment procedure turned out to be essential for

obtaining meaningful comparison with theory. The

measurements took more than three weeks. The alignment

procedure was repeated at the end of the series of

measurements and no significant change was found. No

change in the sample quality could be inferred from the

EMS data, showing that the surface condition was stable and

radiation damage insignificant.

3. The electronic structure of silicon

3.1. EMS without diffraction

We briefly review the electronic structure of silicon here,

emphasising the facts that are required to understand the

measurements. The main aim is to avoid any confusion

about what EMS measures and how it relates to the band

structure as presented in the reduced zone scheme. The band

structure and momentum densities as calculated by Kheifets

et al. [13] are presented in Fig. 2. The band structure

calculation (a full-potential linear-muffin-tin orbital calcu-

lation, based on the local density approximation to the

density functional theory) provides us with a wave function

in coordinate space (in the form of Bloch function c1;q

ðrÞ ¼
P

G cG eiðGþqÞ·r; that can be characterised by a reduced

momentum q which belongs to the first Brillouin zone), i.e.

a sum of plane waves. Fourier transform of this function

gives us the wave function in momentum space. Thus for

each eigenvalue in energy 1 and reduced momentum q the

momentum space representation is a set of delta functions.

f1;qðpÞ ¼
X

G

cGdðp 2 q 2 GÞ; ð1Þ

where the sum is over all reciprocal lattice vectors.

The band with largest binding energy is marked 1 in Fig.

2 (top panel). The band is periodic in k-space having a

maximum in binding energies at the G points. However, the

only G point with significant momentum density in band 1 is

the one corresponding to zero momentum. (see Fig. 2, lower

panel). Thus the wave function with the lowest energy 1 is

a Bloch function with q ¼ 0; lcð0;0;0Þl . 1; and the other

cG . 0:

By inspecting the Brillouin zone of a silicon lattice (see

Fig. 3) we see that the next G point (next closest to the

origin) is at k1; 1; 1l (1.06 a.u away from origin) (and eight

symmetrically equivalent points in other quadrants) fol-

lowed by k2; 0; 0l (1.22 a.u. away from origin). Plane waves

with these wave vectors have comparable kinetic energy and

hence the lattice potential causes considerable mixing of

these states. For silicon the lowest state that can be formed

by a linear combination of these two types of vectors

coincides with the highest occupied state (top of the valence

band). Thus here we have for the top of the valence band

q ¼ 0; ck1;1;1l – 0; ck2;0;0l – 0 and all other ckx;y;zl . 0:

In the experiment we measure real momentum. Thus at

the bottom of the valence band we measure intensity at

p ¼ 0 and the intensity will be proportional to lck0;0;0ll
2 . 1:

Now if we orient the crystal in such a way that a k2; 0; 0l
direction coincides with the spectrometer y-axis, then we

measure at lpyl ¼ 1:22 a:u: an intensity that is proportional

to lck2;0;0ll
2
: If we would orient a k1; 1; 1l crystal direction

with the spectrometer y-axis (currently not possible due to a

lack of tilt motion in the manipulator) we would measure at

the same binding energy, corresponding to the top of the

band the intensity of lck1;1;1ll
2

near py ¼ 1:06 a:u:

Thus at G the occupied part of the electronic structure of

silicon is extremely simple. The bottom of the band has

intensity only at p ¼ 0: The top of the valence band has

contributions only at the reciprocal lattice vectors of type

k1; 1; 1l and k2; 0; 0l: At all other reciprocal lattice points the

momentum density is, for all practical purposes, zero.
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3.2. EMS with diffraction

Here we want to discuss qualitatively how EMS is

influenced by diffraction. We assume that the effect of

diffraction is just that the momentum of the incoming and/or

outgoing electrons changes by a reciprocal lattice vector. As

discussed in Section 5 this is an oversimplification, as the

initial and diffracted beams have a well-defined phase

relation. However, we have not yet seen any experimental

data that cannot be described by this simplified model. For a

complete quantitative, theoretical analysis see earlier

published work [9,6,10]. To keep the language simple

we assume that the target electrons are independent

particles each with a well defined momentum pe:

Generalisation to an interacting electron gas is straightfor-

ward. Without diffraction the momentum of the ejected

electron before the collision pe is equal to the observed

momentum pobs and is given by momentum conservation:

pobs ¼ pe ¼ k1 þ k2 2 k0: ð2Þ

In principle diffraction can affect both the incoming and

outgoing electrons. In that case we have a change of

momentum of either the incoming or outgoing electrons.

The observer, however, has no way of knowing that

diffraction occurred. Hence the observed momentum pobs

does not correspond to the actual electron momentum pe

anymore, and

pe ¼ ðk1 þ G1Þ þ ðk2 þ G2Þ2 ðk0 þ G0Þ; ð3Þ

pobs ¼ k1 þ k2 2 k0: ð4Þ

Here G0 is a reciprocal lattice vector corresponding to the

change in momentum of the incoming electron due to

diffraction, with similar meanings for G1 and G2: As our

sample is thin (20 nm) compared to the extinction length,

G0, G1 and G2 will correspond to (0,0,0) for most

coincidences. In this paper pobs is always directed along

the y-axis and hence we use notations like pobs ¼ y as a

shorthand for pobs ¼ ð0; y; 0Þ:

For simplicity, we consider first the case for the crystal

oriented such that the [1,0,0], [0,1,0] and [0,0,1] crystal-

lographic directions coincide, respectively, with the x, y and

z axes of the spectrometer (see Fig. 1(b)). As diffraction is an

elastic effect, it cannot change the magnitude of k0 (or k1 or

k2). Electron momenta are very large in the present

experiment: k0 ¼ 62:1 a:u: for E0 ¼ 50 keV and k1;2 ¼

43:4 a:u: for E1;2 ¼ 25 keV: This means that for the most

Fig. 2. Theoretical estimate of the dispersion (top panel) and momentum density (bottom panel) of Si for different crystallographic directions.

Fig. 3. The reciprocal lattice of silicon, is a body-centered cube with

side 4p=a: The reciprocal lattice vectors are defined as multiples of

2p=a: Small spheres do not contribute to diffraction.
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intense diffraction the vectors Gi are much smaller than

ki ði ¼ 0; 1; 2Þ and therefore Gi has to be close to

perpendicular to ki to fulfill the diffraction condition 2ki·

Gi þ G2
i ¼ 0: (As the sample is not expected to be perfectly

flat over the area of the electron beam (0.1 mm diameter) the

Bragg condition will be fulfilled for part of the crystal if

2ki·Gi þ G2
i . 0)

Let us first focus on diffraction of the incoming beam. Its

momentum k0 is aligned with the surface normal of the

crystal (the [0,0,1] direction) and thus G0 is restricted to

½i; j; 0� type reciprocal lattice vector. The reciprocal lattice

vector with smallest magnitude is ½^2; 0; 0� (or ½0;^2; 0�).

However, due to the arrangement of the two silicon atoms in

the primitive unit cell the diffraction intensity of these

reciprocal lattice vectors (and all other vectors indicated by

small spheres in Fig. 3) is 0 (see e.g. [14]). Hence, the

smallest lattice vectors contributing to diffraction are of type

½^2;^2; 0�: Without diffraction we measure the momentum

density along the py-axis, more specifically the measure-

ment line extends from pobs ¼ pe ¼ ð0;25; 0Þ a:u: to

(0,5,0) a.u. (which momentum is observed depends on the

azimuthal angles f1;2 of the detected electrons). As is clear

from the bottom panels of Fig. 2 the main electron density is

restricted to momentum values smaller than 1.25 a.u. Thus,

without diffraction, intensity will be only observed for l
pobsl # 1:25 a:u: If, for example, a [2,2,0] diffraction event

has occurred the measurement line changes to the line from

pe ¼ ð21:22; ð25 2 1:22Þ; 0Þ a:u: to pe ¼ ð21:22; ð5 2

1:22Þ; 0Þ a:u:: The smallest vector pe that we can access is

now pe ¼ ð21:22; 0; 0Þ a:u: (i.e. pe ¼ G�200) and its contri-

bution is at pobs ¼ 21:22 a:u: This is near the edge of the

spectral function where the momentum density drops to

zero. Thus due to the diffraction by a [2,2,0] reciprocal

lattice vector we can expect to observe some extra intensity

at pobs ¼ 21:22 a:u: At pe ¼ ð21:22; 0; 0Þ and pe ¼

ð0;21:22; 0Þ the binding energies are identical and hence

the diffracted contribution coincides in energy with the

direct (without diffraction) contribution. Away from pobs ¼

21:22 a:u: the [2,2,0] diffracted intensity hardly contributes,

as there the corresponding pe vectors are in a region with

very low momentum densities.

The next reciprocal lattice vector by which the incoming

beam can diffract is of the form ½^4; 0; 0� and ½0;^4; 0�:

The first one shifts the measurement line from pe ¼

ð72:44;25; 0Þ a:u: to the line pe ¼ ð72:44; 5; 0Þ a:u: The

minimum distance of the shifted measurement line to

the origin is 2.44 a.u. and thus the momentum density along

this line is negligible. Hence, none of the observed

coincidence events are associated with diffraction events

of type ½^4; 0; 0�: This is not true for [0,4,0] type diffraction

events. Now the measurement line extends from pe ¼

ð0; ð25 2 2:44Þ; 0Þ to pe ¼ ð0; ð5 2 2:44Þ; 0Þ a.u. This line

passes through the origin and thus we can measure even

electrons with pe ¼ 0. However, the pe ¼ 0 related intensity

appears not at pobs ¼ 0 a:u: but at pobs ¼ 22:44 a:u: Thus

this diffracted beam causes a (weak) replication of the main

spectrum, shifted by 2.44 a.u. The primary (non-diffracted)

and [0,4,0] diffracted contributions are well separated

everywhere, except near pobs ¼ 21:22 a.u. Similar argu-

ments apply for the ½0;24; 0� vector.

Now consider the diffraction of the outgoing electrons.

For the measurement with the [0,1,0] crystal direction

aligned with the spectrometer y-axis the outgoing electrons

have trajectories along ½1; 0; 1� and ½21; 0; 1� direction. The

shortest reciprocal lattice vector perpendicular to ½1; 0; 1� is

of the type ½1; 1;21� (see Fig. 3). Its magnitude (1.06 a.u.) is

smaller than any of the reciprocal vectors that affect the

incoming beam. Hence, it is more difficult to separate the

contribution of this diffraction vector from the clean events.

After this type of diffraction, the line along which pe is

measured extends from ð0:61; ð25 þ 0:61Þ;20:61Þ a:u: to

pe ¼ ð0:61; ð5 þ 0:61Þ;20:61Þ a:u: The shortest distance of

this line to the origin is at pobs ¼ 0:86 a:u: and near this point

we expect the maximum binding energy of its contribution.

At pobs ¼ 0 and pobs ¼ 21:22 a:u: the observed intensity

corresponds to that of a G point (½1; 1;21� and ½1;21;21�;

respectively) and the observed diffracted intensity will be

proportional to lcð1;1;1Þl
2

times the diffracted beam intensity.

This is the only diffraction event that can cause intensity at

pobs ¼ 0: The intensity at pobs ¼ 21:22 is now due to two

contributions: one of the non-diffracted beam is proportional

to its intensity times lcð0;2;0Þl
2

and the one of the diffracted

beam is proportional to the diffracted intensity times

lcð1;1;1Þl
2
: Both contributions appear at the same binding

energy as they are part of the same solution of the

Hamiltonian.

In the experiment, it is possible to rotate the sample

along the y-axis (see Fig. 1(c)). This will not affect the

direction along which we measure the energy-resolved

momentum densities. However, it will affect the direction of

the incoming and outgoing electrons in the coordinate

system defined by the crystal lattice and hence their

diffraction. The lowering of the symmetry caused by such

a rotation will generally mean that fewer ‘short’ reciprocal

lattice vectors are almost perpendicular to the incoming and/

or outgoing electron trajectories. Hence a decrease in the

importance of diffraction effects is expected. However, this

rotation will not affect the reciprocal lattice vector of the

form ½0; 2i; 0�: These reciprocal lattice vectors will always

be perpendicular to the incoming and outgoing beams and

its diffraction cannot be avoided. In the current set-up (and

possibly in any conceivable EMS setup) it is not possible to

measure the momentum densities along a high-symmetry

direction and completely avoid diffraction conditions.

A similar analysis can be done for measurements with

the y-axis of the spectrometer aligned with a k1; 1; 0l
direction of the crystal (see Fig. 1(d)). For the incoming

beam aligned with the surface normal, the outgoing

electrons propagate now along the k1=2
ffiffi
2

p
;21=2

ffiffi
2

p
; 1l and

k2 1=2
ffiffi
2

p
; 1=2

ffiffi
2

p
; 1l crystallographic directions and the

shortest possible diffraction vector is now ^ , 2; 2; 0 .

for both the incoming and outgoing electrons. In this
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orientation it is not possible to have intensity due to

diffracted beams at pobs ¼ 0: Diffraction due to Gð2;2;0Þ

reciprocal lattice vector cannot be minimised by rotating

along the y-axis as this vector is parallel to this axis. Thus

again diffraction effects due to reciprocal lattice vector

pointing along the measurement direction cannot be

avoided.

4. Experimental results

Experimental momentum densities for two major

symmetry directions are presented in Fig. 4. The same

normalisation factor is used within each panel, but

intensities in the left and right panel cannot be compared

directly. The data shown are the raw data and are not

corrected for inelastic multiple scattering contributions. In

the case of the k1; 0; 0l axis aligned with the spectrometer’s

y-axis (right panel) we see a peak of relatively constant

intensity that disperses upwards by . 12 eV and near 1 a.u.

reaches the top of the valence band. In contrast, if one aligns

the k1; 1; 0l direction with the spectrometer’s y-axis there is

a profound minimum in intensity at 6 eV below the top of

the band and the main intensity increases with increasing

momentum (decreasing binding energy) but dropping off in

intensity before it reaches 1 a:u:: The minimum binding

energy, which is approximately 2 eV larger than the

minimum binding energy in the k1; 0; 0l alignment, is

reached at the X point. All these observations are in

agreement with the band structure calculations (see Fig. 2).

In Fig. 5 we show the measured energy-resolved

momentum densities as a grey-scale plot, with super-

imposed on it the band structure presented in the repeated

zone scheme. Many branches of the calculation, but not all,

are reflected in the measurement. For example, as expected,

the main structure shifted by the ½0; 2; 0� reciprocal lattice

vector, is missing. Along the k1; 1; 0l direction, the highest

intensity is near the point X. This is not expected from the

band structure calculation. The diffraction related intensity

that extends from X to the second G point may also

contribute to this maximum.

In the k1; 1; 0l measurement there are weaker features,

shifted by a reciprocal lattice vector, that mirror the main

feature. These are due to diffraction vectors directed along

the spectrometer y-axis. In the k1; 0; 0l direction the main

‘extra’ feature disperses back to zero momentum at the top

of the valence band. As explained, these are caused by the

outgoing electrons diffracting by k1; 1; 1l type reciprocal

lattice vectors.

In these measurement some of the momenta we accessed

correspond to G points of the reciprocal lattice. All these

data are presented in Fig. 6. For the cases with the y-axis of

the spectrometer aligned with either the k1; 1; 0l or k1; 0; 0l
direction we show in Fig. 6 the spectra at pobs ¼ 0 (upper

panel). Without diffraction both spectra should be equal. At

first sight it is therefore somewhat surprising that the two

results are qualitatively different. For the k1; 0; 0l direction

we observe two peaks, one corresponding to the bottom of

the band, and one corresponding to the top of the band. For

the k1; 1; 0l direction there is only one peak, corresponding

to the bottom of the band. This is the peak we expect at zero

momentum. From our discussion of diffraction it is clear

that for k1; 0; 0l alignment we can have diffraction with the

shortest reciprocal lattice vector k1; 1; 1l: It is this, and only

this diffraction vector, that can cause diffracted intensity to

show up at pobs ¼ 0: The absence of the low binding energy

peak in the case of k1; 1; 0l orientation, unambiguously

shows that the upper peak in the k1; 0; 0l case is due to

diffraction and not to a significant contribution of cð0;0;0Þ to

the wave function at the top of the valence band.

For the k1; 0; 0l orientation, the next G point is reached at

pobs ¼ 1:22 a:u: Here we see only the low binding energy

feature. This feature is expected for two reasons: non-

diffractive ðe; 2eÞ events will give an intensity proportional

to lcð0;2;0Þl
2

which is – 0 for the top of the valence band. In

addition diffracted beams could produce intensity here

proportional to their strength and lcð2;2;0Þl
2
: One should thus

be cautious in the interpretation of the magnitude of

Fig. 4. Measured momentum densities along the k1; 0; 0l (left) and

k1; 1; 0l direction (right). Momentum densities corresponding to

different binding energies, as indicated, are plotted with a vertical

offset. The momenta corresponding to major symmetry points of the

Brillouin zone are indicated by dashed lines.
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the momentum density at this momentum value, since it

contains two contributions. The high binding energy feature

does not show up at pobs ¼ 1:22 a:u:; as the diffracted beam

with Gð0;2;0Þ has zero intensity for silicon. At the next G point

(at pobs ¼ 2:44 a:u:) the measured spectrum is to a good

approximation a (weaker) replication of the pobs ¼ 0

momentum spectrum.

In another measurement the crystal was rotated along the

surface normal in such a way that a k1; 1; 0l crystallographic

direction coincided with the spectrometer y-direction (left

hand panel of Fig. 6). The single diffraction feature here is

that associated with Gð2;2;0Þ: Only a single peak is seen at

pobs ¼ 0 corresponding to maximum binding energy. At the

next G point ðpobs . 1:7 a:u:Þ the spectrum is again a

replication of the spectrum at zero momentum. The absence

of the low binding energy peak at 1.7 a.u. shows that

lcð2;2;0Þl
2

is indeed small for the wave function at the top of

the valence band. Moreover, diffracted contributions of

Fig. 5. Measured momentum densities along the k110l (left) and k100l direction (right). Measurements are presented as a linear grey-scale

intensity plot with the band structure in the repeated zone scheme superimposed. The high momentum part of each plot is repeated at the top,

with an adjusted grey-scale that emphasises the structure present in the low intensity part of the distribution.

Fig. 6. Eight spectra summed over momentum bins of 0.2 a.u. taken under different conditions, all corresponding to G points. The y-axis of the

spectrometer is aligned with either the , 1; 1; 0 . direction (left panel), or the , 1; 0; 0 . direction (central and right panels). In the right panel

the sample was rotated 108 around the y-axis and the incoming and outgoing electron trajectories are not along major crystallographic directions.

The intensities of the lowest panels have been multiplied by a factor of 5.
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the upper valence band feature do not show up as no

reciprocal lattice vectors that connect Gð2;2;0Þ with Gð0;^2;0Þ

or Gð1;1;1Þ are perpendicular to either the incoming or

outgoing beams.

For the measurement of the k1; 0; 0l direction we also

rotated the sample 108 around the spectrometer y-axis, to

test the prediction that this lower symmetry configuration

would reduce the diffraction effects (see Fig. 6, right panel).

Indeed, the low binding energy structure for the spectrum at

pobs ¼ 0 a:u: has now essentially disappeared. Thus a 108

rotation is enough to suppress the diffraction by vectors of

type k1; 1; 1l by at least an order of magnitude. The shapes of

the second and third G spectra were not affected by the

rotation. The fact that the intensity of the third G spectrum

(at pobs ¼ 2:4 a:u:) has not changed greatly is expected, as

the direction of the k0; 4; 0l reciprocal lattice vector is not

affected by the rotation, and remains perpendicular to the

incoming beam.

Note that there is still significant intensity at the high

binding energy side of the quasi-particle peaks. This is in

part due to inelastic multiple scattering and in part due to

plasmaron-type intrinsic satellites. Disentanglement of these

contributions will be discussed in a separate paper [15].

5. Discussion and conclusion

In the preceding sections we gave a qualitative

description of the measured energy 2 momentum densities

in terms of diffraction. We treated the effect of diffraction as

merely changing the direction of propagation of either the

incoming or outgoing electrons. In reality we have to

consider the phase of the primary and diffracted beam. Their

well defined phase relation means that interference between

these two beams causes standing waves to appear in the

crystal. Schülke et al. [16] and Golovchenko et al. [17] have

shown that for the case of X-rays the spatial position of the

nodes can significantly change the probability that core

electrons contribute to Compton profiles. For the case of

electron Compton scattering this effect was confirmed by

Williams and Bourdillon [18]. In principle, the ðe; 2eÞ

measurements with better controlled diffraction conditions

could do the same for the valence band. The least bound

valence electrons are generally pictured as standing waves

with large amplitude at the nuclei (area of large potential

energy) whereas the lowest unoccupied state, with the same

wave number, has nodes at the nuclei. This simple text-book

picture could, at least in principle, be experimentally

verified by EMS. Changing diffraction conditions should

change the intensity of the peaks at the top of the valence

band. Monitoring simultaneously the intensity of the Si 2p

core level and that of the outer valence band would reveal if

the dependency of their intensities on the diffraction

condition is similar. This would be an experimental

verification of the aforementioned simple text-book picture.

All data shown here were symmetrised, i.e. we added the

measured intensity at ^pobs: In this way we improved

statistics. The binding energy positions of peaks at ^pobs

were always identical, but the intensities were not, most

notably for the diffracted peaks: these could be 2–3 times

stronger at positive momentum compared to negative

momentum or vice-versa. Experimentally there is no reason

for this deviation, and it is most likely caused by a slight tilt

around the x-axis of the sample. In order to compare these

spectra with full-fledged calculations based on the dynami-

cal theory of diffraction we are making alterations to control

this orientation. Further investigations would also require

that we establish the thickness of the sample more

quantitatively.

In summary, we have shown that diffracted EMS

intensity can often be distinguished from ‘direct’ intensity.

Changing the diffraction conditions for the incoming and/or

outgoing electrons will pinpoint which part of the intensities

is diffraction related. In practice diffraction is often

minimised by lowering the symmetry of the configuration.

This rule can be rephrased to state that for the (most

interesting) high-symmetry directions, diffraction cannot be

avoided completely. For materials such as silicon with only

a few valence electrons per unit cell, diffraction contri-

butions are usually well separated from the direct intensity,

and ambiguities are restricted to certain specific parts of the

valence band. Testing the theory by comparing measure-

ments and calculations along well defined low symmetry

directions could be a fruitful way of comparing theory and

experiment without ambiguities due to diffraction.
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