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Extracting the dielectric function from
high-energy REELS measurements
Maarten Vosa* and Pedro L. Grandeb

A method is described for extracting the dielectric function directly from a reflection electron energy loss spectrum taken at rel-
atively high energies (2.5 to 40 keV). It makes simplifying assumptions on separation of surface and bulk losses. The approach
uses a description based on partial intensities and surface excitation parameters and fits directly the reflection electron energy
loss data. Several different model dielectric functions are implemented (extended Drude, Drude Lindhard, Mermin, and the
Levine–Louie dielectric functions with relaxation time), and their advantages and disadvantages are discussed. Justification of
this approach is in the end based on a comparison with the dielectric function as obtained by other means, which is generally
quite good, provided that the solution obtained is restrained by sum rules to the right refractive index and electron density.
The fitting program, to be used in conjunction with commercial plotting software, is provided. Copyright © 2017 John Wiley &
Sons, Ltd.

Additional supporting information may be found in the online version of the publisher’s web-site.
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Introduction

It has been known for a long time that electron energy loss
measurements contain information about the dielectric function
of a material.[1,2] In the case of (transmission) electron energy
loss spectroscopy ((T)EELS), the measurements resemble, for thin
enough samples, ImŒ �1

�.!,q/ � with � the dielectric function of
the material under investigation, q the transferred momentum
(selected by the detector angle), and ! the energy loss. ImŒ �1

�.!,0/ �

is often called the energy loss function (ELF).
For reflection electron energy loss spectroscopy (REELS), this

relation is not so simple, as surface excitations, multiple bulk exci-
tations, and elastic deflections from nuclei are all an integral part
of the measurement. Nevertheless, there is a rich literature on
this topic (see, e.g. References[3–8]) and it is clear that the main
features of the dielectric function can be derived from REELS
measurements.

For the analysis of the REELS spectra, which are a consequence
of multiple interactions of the projectile with the target, one
has to make simplifying assumptions. One such simplification is
assuming a simple functional form for the dielectric function. For
example, for free-electron materials like aluminum, the dielec-
tric function can be parameterized as a Drude or Mermin loss
function. Extracting the dielectric function simplifies then in the
determination of the parameters of the model loss function. For
more complicated materials (e.g. transition and noble metals),
there is a richer structure of the loss spectrum, and a good descrip-
tion can only be obtained if a more complicated model (e.g. the
sum of several simple loss functions) is used.

These model functions differ often dramatically in how they
deal with dispersion, i.e. the dependence of the dielectric func-
tion on q. REELS, by its nature, samples ImŒ �1

�.!,q/ � over a range of q
values, but with increasing incoming energy E0, the measurement
gets skewed more and more towards small q values.

Dielectric functions are constrained by sum rules
(Kramers–Kronig, F sum, Bethe sum, etc.).[9] If the dielectric func-
tion obtained by the fitting process does not obey these sum
rules, then they are of very limited value.

Most approaches for extracting the dielectric function from
a measurement rely on a two-step process. First, one or more
single-scattering loss function(s) (either one mixed surface-bulk
loss function[3,4] or a surface and a bulk loss function[6,7]) is
extracted from the measurement. Then these derived distribu-
tion(s) is/are fitted with a dielectric function. Here, we will follow a
different approach and fit the experimental spectrum directly.

In the process, some simplifying assumptions are made. Gener-
ally, these assumptions are less justified for lower incoming ener-
gies and/or more surface-sensitive geometries. The approach is
thus most suitable for conditions where the surface loss excitation
probability is relatively small.

At very high incoming energies, especially for light elements,
there are complications due to recoil processes.[10] This sets a limit
to the effective energy resolution one can obtain at very high
incoming energies.
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Model dielectric functions

Away from a surface, the probability that an energetic electron
loses a certain amount of energy, accompanied by a momentum
transfer q, is proportional to the loss function:

Im

�
�1

�.!, q/

�
D

�2.!, q/

�1.!, q/2 C �2.!, q/2
(1)

with �.!, q/ D �1.!, q/ C i�2.!, q/ and �1, �2 real. Here, we give
a brief overview of different model dielectric functions that can
be used to model (R)EELS data. Other descriptions are given in,
e.g. the books of Egerton[9] or Raether[11] or a recent review by
Nikjoo et al.[12]

We describe first models of the dielectric function based on
a semi-classical picture. In one such approach, the electrons
are divided into free valence electrons and bound electrons.
The dielectric function in this extended Drude model (Drude
free-electron model extended with bound electrons) �.!, q/ is
then given by

�1.!, q/ D �b �
X

i

Ai.!
2 � !i.q/2/

.!2 � !i.q/2/2 C �2
i !

2
(2)

�2.!, q/ D
X

i

Ai�i!

.!2 � !i.q/2/2 C �2
i !

2
(3)

where Ai (in units of (energy)2) relates to the density of electrons
with binding energy !i . !i may depend on q. �i determines the
width of the excitation. �b is the background dielectric constant
due to the polarizability of the core electrons.

Assuming all electrons are free (!i D 0, �b D 1), one obtains the
Drude model. At q D 0, the corresponding dielectric function can
be written as follows:

�.!, 0/ D �1 C i�2 D 1 �
!2

p

!2 C �2
C

i�!2
p

!.!2 C �2/
(4)

with !p the plasmon energy !p D
p

Ai D
q

Ne2

�0m with N the

density of the electrons and m the electron mass. We will mainly
use atomic units, then the relation between !p and N is simply
!2

p D 4�N. In this case, the loss function can simply be expressed
as follows:

Im

�
�1

�.!, q/

�
D C

!�!p.0/2

.!2 � !p.q/2/2 C !2�2
(5)

and for the real part:

Re

�
1

�.!, q/

�
D 1C C

.!2 � !p.q/2/!p.0/2

.!2 � !p.q/2/2 C !2�2
(6)

with C D 1. Again, we allow for dispersion, i.e. the plasmon energy
!p.q/ can vary with q as will be discussed later. Using C D 1, we

find Re
h

1
�.0,0/

i
D 0, consistent with �1.0, 0/ D 1 as is the case

for a metal. If we take 0 < C < 1, then 0 < Re
h

1
�.0,0/

i
< 1 that

corresponds to an insulator with refractive index n determined by
n2 D �1.0, 0/. In this way, the model can be used to describe an
insulator.

Except for free-electron materials, such a dielectric function is
a very poor approximation. One way forward is the electron gas
statistical model as described, e.g. by Ritchie and Howie[13] and
used by, e.g. Tung et al.[14] and Tougaard and Kraaer.[15] It is usu-
ally referred to as Drude–Lindhard model, as Lindhard added the

q-dependence to the Drude model. It recognizes that the electron
density N.r/ (and hence,!p) is not constant in a solid, but assumes
that the response of the solid is equal to weighted sum of different
solids with constant electron density. The weighting coefficient is
proportional to the fraction of the solid with the corresponding
density.

In a fitting procedure, one would approximate the continu-
ously varying density N.r/ by a number of discrete densities Ni

and corresponding plasmon frequency !i.q/ that is often taken
to depend on q as well. The corresponding loss function becomes
then

Im

�
�1

�.!, q/

�
D
X

i

Ci
!�i!i.0/2

.!2 � !i.q/2/2 C !2�2
i

(7)

and for the real part:

Re

�
1

�.!, q/

�
D 1C

X
i

Ci
.!2 � !i.q/2/!i.0/2

.!2 � !i.q/2/2 C !2�2
(8)

with Ci the fraction of the volume for which the density is approxi-
mated such that the plasmon frequency is !i . Now, when

P
i Ci D

1, the system is a metallic, and if
P

i Ci < 1, the system is an insula-
tor with the static refractive index n given by 1=n2 D 1=�.0, 0/ D
1 �

P
i Ci . The fact that for insulators,

P
i Ci < 1 means that,

when interpreting the dielectric function along the lines of Ritchie
and Howie,[13] one has to assume that part of the crystal has
zero density of electrons, see Reference[16] for a more extensive
discussion.

Alternatively, one can use Eqns (2) and (3) directly and try
to describe the REELS measurements in that way. This method
was used by, e.g. Werner et al. for metals[17] and Kwei et al. for
insulators.[18] Now, it is not possible anymore to write the loss
function in the relatively simple form of Eqn (5). Instead, we have
to evaluate �1 from Eqn (2) and �2 from Eqn (3) and subsequently
obtain the loss function using Eqn (1). Predicting where the peaks
in the loss function will appear is now less straightforward, as the
different levels interact. For a metal, a fraction of the electrons
should have!i D 0, whereas for insulators, these electrons should
be absent.

Dielectric functions are subject to sum rules. One of them is the
Kramers–Kronig sum rule:

1 � Re

�
1

�.!, q/

�
D

2

�
P

Z 1
0

Im

�
�1

�.!0, q/

�
!0d!0

!02 � !2
(9)

When evaluated for a metal at ! D 0, q D 0 the right-hand side

evaluates to 1, as then Re
h

1
�.0,0/

i
D 0 (Eqn (6)). For insulators,

�2.0, 0/ � 0 and then Re
h

1
�.0,0/

i
D �1=.�

2
1 C �

2
2/ � 1=�1 D 1=n2.

This sum rule, when evaluated at ! D 0, is very sensitive to the
behavior of �.!, q/ for small values of !. If we use either expres-
sions Eqns (2) and (3) or Eqns (7) and (8), then the Kramers–Kronig
relation is always adhered to.

Other important sum rules are the F-sum rule:

1

2�2

Z !

0
!0�2.!

0, q/d!0 D N (10)

with N the number of electrons per unit volume with binding
energy well less than !, and the Bethe sum rule:

1

2�2

Z !

0
!0Im

�
�1

�.!0, q/

�
d!0 D N (11)8
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Extracting the dielectric function from REELS measurements

Both are usually evaluated at q D 0. By multiplying N with the unit
cell volume, we obtain the number of electrons per unit cell that
contribute to the REELS spectrum.

When using any of these model dielectric functions, the ELF
is never strictly zero. Thus, modeling an insulator always fails to
some extent in the band gap region. The intensity in the gap can
be reduced by increasing the number of oscillators (and decreas-
ing their width), but this approach is not very practical. Another
way to model an insulator is by multiplying the right-hand side of
the model loss function (e.g. Eqn (7)) by a step function‚.!�Egap/

and hence zeroing Im Œ�1=�.!, q/� in the band gap. This approach
is followed in the QUASES package.[4,19] However, this severs the
link between �1 and �2 and, e.g. for the Drude model, Eqn (4) does
then not apply anymore. Instead, ReŒ1=�� has then to be recovered
from ImŒ1=�� via a Kramers–Kronig relation similar to Eqn (9), from
which �1 and �2 can then be calculated subsequently.

In the previous, we did not specify the q dependence of �.!, q/.
In these semi-classical models, the effect of dispersion is usually
taken into account by assuming that !i depends on q, e.g. by
assuming simple quadratic dispersion:

!i.q/ D !i.q D 0/C ˛q2=2m (12)

where ˛ is a constant between 1 ( for free electrons in met-
als) and 0 (for deeper levels and insulators). A slightly bet-
ter approach, consistent with plasmon dispersion at low q and
free-electron-type dispersion at large q values, is the ‘full disper-

sion equation’:

!i.q/ D

r
!i.0/2 C

2

3
Ef q2 C

q4

4
(13)

Here, Ef is the Fermi energy. In principle �i can also depend on q
(see, e.g. Emfietzoglou et al.[20]) but this is not implemented for
these semi-classical models.

A quantum approach to calculating the dielectric function was
introduced for a free-electron gas by Lindhard.[21] The result
�L.!, q/ consisted in a delta function (pole) (describing plasmon
excitations) and a continuous part (describing electron-hole exci-
tations). Mermin modified Lindhard’s description, adding relax-
ation of the plasmon and giving it in this way a finite width in
energy (�):[22]

�M.!, q/ D 1C
.1C i�=!/.�L.! C i� , q/ � 1/

1C i�=! Œ�l.! C i� , q/ � 1� = Œ�L.0, q/ � 1�
(14)

This also makes it more amenable for comparison with exper-
iment. It turns out that at q D 0, the Mermin loss function
coincides with Eqn (5) but it becomes much broader for larger q
values. The Mermin loss function will give at any q the same value
for the Bethe and F-sum rule.

Except for free-electron metals, a single Mermin loss function is
not a good description of a REELS spectrum. For other materials,
a sum of Mermin loss functions can be used, analog to Eqn (7). It
turns out that this approach improves the description of stopping
of ions in metals based on the dielectric function.[23] The dielec-

Figure 1. Examples of ImŒ�1=�.!, q/� for the different models at the q values as indicated. Parameters used: extended Drude (A D 225 eV2,! D 0 eV,

� D 1 eV, and˛ D 1), Drude–Lindhard (A D 1,! D 15 eV,� D 1 eV, and˛ D 1), Mermin ( A D 1,! D 15 eV, and� D 1 eV), and Mermin–Levine–Louie

(A D 1,! D 15 eV,� D 1 eV, and U taken to be 15 eV). Note that for q D 0, the extended Drude, Drude–Lindhard, and Mermin models coincide. [Colour

figure can be viewed at wileyonlinelibrary.com]
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tric function based on a sum of Mermin oscillators can describe
quite well both the optical limit and the high-momentum transfer
(Compton) limit of the dielectric function.[24]

Levine and Louie (LL) proposed a variation on the Lindhard
dielectric function suitable for insulators. In simple terms, they
modified the imaginary part of �L.!, q/ by transforming the
energy axis according to !02 D !2 C U2 with U a quantity
related to the band gap and calculated the corresponding real
part via a Kramers–Kronig transformation.[25] The dielectric func-
tion obtained in this way �LL.!, q/ is useful to describe insulators
as it will result in finite static refractive index. Just as the Lind-
hard function the Levine–Louie loss function consist of a pole and
a continuous part. Here, we propose that one can add relaxation
(i.e. finite width to the pole) in the same way to the Levine–Louie
function, as Mermin did to the Lindhard function, i.e. by replacing

�L in Eqn (14) by �LL. It has the potential for describing the REELS
spectrum of insulators, but, to our knowledge, its applicability has
not been explored in the context of REELS. A disadvantage of the
procedure sketched here is that after applying Eqn (14), the inten-
sity of the loss function inside the band gap, although reduced, is
not strictly 0.

The Levine–Louie and Mermin loss functions are mathemat-
ically more involved, and we refer for the explicit expression
to the corresponding papers.[22,25] In our fitting program,
we implemented extended Drude model (Eqns (2) and
(3)), the Drude–Lindhard model (Eqns (7) and (8)), and the
‘Mermin–Lindhard’ (or just ‘Mermin’) loss function (Lindhard plus
relaxation time) and the ‘Mermin–Levine–Louie’ (Levine–Louie
plus relaxation time) models. Examples of the loss functions
of these models at several q values are given in Fig. 1. As the

Figure 2. The top panels show the energy loss function for a single oscillator with! D 10 eV and � D 2 eV for the ‘Mermin–Levine–Louie’ model for U

values as indicated (thick lines) (left) and with U D 8 eV and � D 2 eV for ! values as indicated (right). The central panels show the real and imaginary

part of the corresponding dielectric function. The bottom panels show the development of the F-sum integral (Eqn (10)). [Colour figure can be viewed

at wileyonlinelibrary.com]
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Extracting the dielectric function from REELS measurements

Mermin–Levine–Louie model is not widely used, we show in Fig. 2
how the ELF, �1, �2, and the F-sum integral (Eqn (10)) develop as a
function of U for a single oscillator with ! D 10 eV and � D 2 eV
and for U D 10 eV, � D 2 eV the dependence on !.

Description of spectrum

In the approach used here, the loss spectrum is assumed to be due
to bulk and surface excitations. The probability for bulk excitations
is independent of the distance to the surface (i.e. ‘begrenzung
effects’ are neglected) and is given by the differential inverse
electron mean free path (DIIMFP) Wb.!):

Wb.!, E0/ D
1

�E0

Z qC

q�

dq

q
Im

�
�1

�.!, q/

�
(15)

with q˙ D
p

2E0˙
p

2.E0 � !/ and E0 the incoming energy. Wb is
the probability of energy loss ! per unit path length. This DIIMFP
normalized to unit area (the NDIIMFP) is indicated by wb.

The fitting procedure was written with relatively large kinetic
energies in mind where the contribution of surface excitations is
small and a fairly basic description of this quantity is probably
good enough. The probability of surface excitations with energy
loss! is calculated for an electron impinging perpendicular to the
surface as follows:[5]

Ps.!, E0/ D
1

�E0

Z qC

q�

Im

�
.�.!, q/ � 1/2

�.!, q/.�.!, q/C 1

�
jqsj

q3
dq (16)

with qs the momentum component of along the surface. The
use of Eqn (16) assumes that the electron was backscattered at
a greater depth, than where the surface excitations occur. Then
the simplifying assumption is made that for non-perpendicular
trajectories, the surface excitation probability scales as 1= cos �
as suggested by Chen[26] and that the probability is the same for
incoming and outgoing trajectories:

Ws.!, E0/ D Ps.!, E0/.1= cos �1 C 1= cos �2/ (17)

with �1 and �2 the angle of the incoming and outgoing trajectory
with respect to the surface normal. Again, ws is the distribution Ws

normalized to unit area. This is a very basic approach and could
certainly be refined, see, e.g. the discussions in References.[27,28]

Without surface excitations, the REELS spectrum would be
described as follows:

Ibulk D c.I0.!/CB1I0˝wb.!/CB2I0˝wb.!/˝wb.!/C: : : : : :/ (18)

with c an overall scaling factor. For I0.!/, we take the Gaussian
that describes the elastic peak best. In is obtained by convoluting
(˝) this Gaussian n�times with wb. Bn is the contribution (partial
intensity) of trajectories with n loss events relative to the elas-
tic contribution. Bn is determined by the path length distribution,
which depends on the angular dependence of the elastic scatter-
ing cross section, and can be retrieved in principle from Monte
Carlo simulations. Note that by following this procedure, the res-
olution (both the resolution of the experiment and (especially at
high energies) the Doppler broadening intrinsic to the sample) is
included in I0, and the bulk loss function wb, for which the best
fit with the experimental data is obtained, is not affected by the
energy resolution.

In our approach, surface excitations are simply caused by an
additional process. The average number of surface excitations is
given by

hnsurfi D

Z 1
0

Ws.!, E0/d! (19)

We assume surface excitations follow a Poisson distribution, with
p0, p1, and p2 the probability of 0, 1, or 2 surface plasmons being
created, then the actual observed spectrum can be calculated as
follows:

Iobserved D p0Ibulk C p1Ibulk ˝ ws C p2Ibulk ˝ ws ˝ ws (20)

The probability that more than two plasmons are created is
assumed here to be negligible small.

Fitting procedure

In order to fit a spectrum, one assumes a dielectric function and a
partial intensity distribution and calculated the REELS spectrum.
Then, by comparison with the experiment, one adjusts either of
these quantities, here performed in an automated way using a
nonlinear fitting approach. However, there are some pitfalls that
have to be avoided in order to obtain meaningful results.

In the fitting procedure, one wants to restrain the choice of
dielectric function to those that are compatible with the static
refractive index n and the electron density N (via the F or Bethe
sum rule) of the material under investigation. When using the
extended Drude model, one assumes a set of Ai values and checks
if the F-sum rule is fulfilled:[18]

X
i

Ai
‹
D 4�N (21)

Generally, the F sum will not be adhered to. However, we can mul-
tiply all Ai values by a constant such that there is agreement with
this sum rule. Note that, in the extended Drude model, the F sum
does not depend on !i . As a consequence, if the F sum is fulfilled
at q D 0, it will also be fulfilled at q ¤ 0 even if ! depends on q.

Using the scaled Ai values, we now consider if �1 of Eqn (2) at
! D 0, q D 0 corresponds to the right static refractive index:

X
i

Ai

.!i.0/2/

‹
D n2 � �b D �1.0, 0/ � �b (22)

Again, this generally will not be the case. We can, however, now
multiply all oscillator energies !i by a constant such that the cor-
rect n2 � �b value is obtained. For example, if the obtained value
for n2 � �b is twice too large, we multiple all !i values by

p
2. Note

that this does not affect the F sum. Note also that this procedure
only works if all !i , i.e. the material is not a metal.

In the fitting procedure, we start with an arbitrary set of oscil-
lators. We rescale them first according to the earlier described
procedure so that both the right refractive index and F-sum rule
value are obtained and use this rescaled dielectric function to cal-
culate the REELS spectrum, as described before (Eqn (20)). The
fitting procedure determines then which dielectric function, that
adheres to both sum rules, describe the spectrum best.

If this procedure is followed, not all Ai or !i are independent.
This means that not all can be left as free parameters, at least
one energy !i and one amplitude Ai has to be kept fixed. During
the automated fitting procedure, the rescaling factors will vary,
and hence, the !i and Ai parameters that are kept fixed will, after
rescaling, vary as well.

For dielectric functions expressed in the Drude–Lindhard form,
we have to modify the earlier procedure slightly. Now, we start by

Surf. Interface Anal. 2017, 49, 809–821 Copyright © 2017 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/sia

8
1

3



M. Vos and P. L. Grande

rescaling the Ci values such that

1

n2
� 1

‹
D
X

i

Ci
.!2 � !i.q/2/!i.0/2

.!2 � !i.q/2/2 C !2�2
i

D �
X

i

Ci (23)

at ! D 0 and q D 0. Note that this does not depend on !i .
For a metal (n D 1), this scaling assures that

P
i Ci D 1. Using

the rescaled Ci values, one could subsequently consider the F
sum and try to rescale the !i values such that the right F-sum
value is obtained. As the Drude–Lindhard dielectric function is
expressed in terms of ImŒ�1=�.!, q/�, it is more convenient to do
this via the Bethe sum rule (Eqn (11)) that can be evaluated usingR1

0 ax2=
�
.x2 � b2/2 C .ax/2

�
dx D �=2 . The Bethe and F-sum

rule are fulfilled if X
i

Ci!i.0/
2 ‹
D 4�N (24)

Again, for an arbitrary set of!i values, this will generally not be the
case, but we can multiply all energies !i by a constant such that
the Bethe sum rule is adhered to. This rescaling will not affect the
static refractive index. The Bethe sum rule depends on !.0/ not
!.q/; thus, if the Bethe sum rule is adhered to at q D 0, it will be
adhered to at all q values.

Similar to the Drude–Lindhard case (as at q D 0, the Mermin
and Drude–Lindhard dielectric function coincide) for the Mermin
loss function we can obtain a dielectric function that agrees with
the Bethe sum rule if we rescale !i such that 4�N D

P
i Ci!i.0/2.

As the Mermin loss function is intended to describe free-electron
materials,

P
i Ci should be 1. See Reference[16] for the description

of insulators using the Mermin loss function.
For the Mermin–Levine–Louie, we also always have

P
Ci D 1.

We know that the F and Bethe sum is not affected by the U value,
and for U D 0, the Mermin–Levine–Louie and Mermin loss func-
tion coincides. Hence, we start by scaling !i values such that the
Bethe sum rule is adhered to, i.e.

P
i Ci!i D 4�N. Subsequently,

U has to be manually adjusted until the right refractive index is
obtained. An increase in U will lead to a decrease in n.

In practice, the dielectric function is only determined over a
finite energy range. The density of electrons N obtained by the
sum rules (Eqns (10) and (11)) is then approximately equal to
the number of electrons with binding energy well less than the
upper limit for which �.!, q//was determined. For example, in the
case of graphite or diamond, when the REELS data extending to
100-eV energy loss, the electron density is that of the valence elec-
trons and the sum rule should approach four electrons per atom.
For many other cases (e.g. transition metals) with shallow core

Figure 3. Fits of Al spectra taken at 40 and 5 keV for the different geometries shown. The dashed line is a fit based on the Mermin model. The fits

based on the Drude–Lindhard model with ˛ D 1 are almost indistinguishable from the Mermin fits and are not shown. A better fit can be obtained

using the Drude–Lindhard model with ˛ D 2.3 (solid line), but there is no obvious justification for such an ˛ value. [Colour figure can be viewed at

wileyonlinelibrary.com]
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levels, it is often not straightforward to justify the expected value
of the F and Bethe sum rule when the measurement only consid-
ers a finite energy loss range. This problem can be circumvented
by assuming that for energies exceeding the measured range, the
dielectric function is not affected by solid-state effects and can
be described using their calculated atomic optical properties (e.g.
using the tabulation from Reference[29]) beyond the range of the
REELS measurement.[23]

Table 1. The various fitting parameters used for the fits of the dia-
mond film spectra shown in Figs 4–6

Figure Ai/Ci �i (eV) !i (eV) Ui (eV)

4a 718, 58 11.9, 7.4 12.1, 29.4 —

4b 924, 43 12.5, 8.3 5.0, 29.7 —

4c 731, 56, 175 11.1, 6.4, 55 12.2, 28.9, 60 —

5, — 0.57, 0.38,0.045 11.5,8.5,82 25.2, 33.5,61 —

5, - - - 0.46, 0.28,0.09 12.0, 7.4,86 26.0, 33.7,61.5 —

6a 0.61, 0.39 11.9, 7.5 25.7, 33.2 5.4

6b 0.66, 0.34 13.2, 7.2 24.1, 31.6 12

6c 0.56, 0.35, 0.09 12, 7, 55 23.8, 31.5, 65 12

The parameter Ai has dimension eV2 in the extended Drude model,
and Ci in the other cases is dimensionless.
‘—’ represents thin solid line, and ‘- - -’ represents thick dashed line.

A second group of input parameter is the partial intensities. If
the energy loss region considered is 100 eV, then it will usually be
enough to consider only the first 15 partial intensities. However,
introducing 15 free parameters would never result in stable fitting
outcomes. Instead, we use the fact that the partial intensities Bn

are a smooth function of n. Because B0 D 1, the following power
series was used:

Bn D 1C
imaxX
iD1

cin
i (25)

In practice, a good fit of any partial intensity distribution obtained
by Monte Carlo simulations can be obtained using terms up to
imax D 3. Thus, the partial intensity distribution can be modeled
with three fitting parameters (c1, c2, and c3).

There are some additional pitfalls to be taken care of. For a mea-
surement performed only over a finite energy range, the DIIMFP
will not be strictly zero outside this range. If a fraction y of the area
extends beyond this range, then the NDIIMFP wb should be nor-
malized to 1 � y, rather than 1. Even if y is small (say 0.05), then
it still has a marked influence on the calculated spectrum, as the
difference in normalization affects the nth convolution by a factor
.1 � y/n.

Another issue is the surface excitation probability. It is known to
deviate from that calculated by Eqn (16), see, e.g. References.[30,31]

When this is the case, the difference is, in first approximation, uni-
form, i.e. it differs by the same factor at all E0 and �1,2 values. It

Figure 4. Examples of the analysis of the reflection electron energy loss spectroscopy data of a diamond film. The top panel shows the energy loss

function (ELF) (ImŒ�1=��) obtained by the fitting procedure. The panel below shows the corresponding �1 (solid line) �2 (short dash) as well as the

results for the F (dash dot) and Bethe (long dash) sum rules integrated from zero to energy loss. The bottom panels show the raw data (dots) taken

in a surface-sensitive (top, �0 D 35ı and �1 D 80ı) and bulk-sensitive (bottom, �0 D 0ı and �1 D 45ı) geometry and the fit itself. Both data sets

were simultaneously fitted against a single model dielectric function using the extended Drude approach. In the left panel, two oscilators were used

normalized such that the refractive index was reproduced. The center panel uses two oscillators and was normalized such that the F-sum rules was

adhered to. The right panel uses an additional oscillator such that reasonable values are obtained for both the refractive index and F-sum rule. [Colour

figure can be viewed at wileyonlinelibrary.com]
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is thus often necessary to scale the calculated surface excitation
parameter by a surface excitation adjustment factor. When more
than one measurement is available, the same surface excitation
adjustment factor is used for all of them.

In order to obtain stable results, it is required to have spec-
tra available taken under different conditions extending up to at
least 100-eV energy loss. In the following, we give some examples
of the use of the program for some well-studied materials. The
description is necessarily rather brief and should be seen as a first
analysis of these cases, rather than their definitive treatment.

Results

Aluminum

The working of the procedure is best illustrated for the most
simple case, and this is probably aluminum. This is not to say
that the interpretation of the Al REELS spectrum in terms of its
dielectric function is 100% complete. Yubero and Tougaard used a
single Drude oscillator to describe their REELS measurements.[32]

Figure 5. The same diamond film reflection electron energy loss spec-

troscopy spectra as shown in Fig. 4 but now fitted with Drude–Lindhard

oscillators under the condition that
P

i Ci D 1 (thin solid line) and
P

i Ci D

1� 1=n2 (thick dashed line). The bottom panel shows the real and imagi-

nary part and the energy loss function (ELF) of the corresponding dielec-

tric functions. [Colour figure can be viewed at wileyonlinelibrary.com]

However, the width of this loss function did depend on the incom-
ing electron energy, whereas the dielectric function of a mate-
rial should describe REELS measurements taken at any energy.
Pauly suggested that this could be explained by assuming that
� depends on q, as the ranges of q values contributing to the
spectrum (see the integration limits in Eqn (15)) changes with
incoming electron energy.[33] Calliari et al. employed the Monte
Carlo technique to compare measured energy loss spectra with
theory.[34] They found less intensity for the first plasmon loss
(relative to the elastic peak) in the simulation than observed in
the experiment. Jiricek et al. noted that, in particular, higher-order
plasmon peaks were more pronounced for single crystals than for
polycrystalline samples.[35] This appears to indicate that the lat-
tice has an influence on the loss spectrum and it should thus not
be possible to describe it completely using a free-electron model.

Figure 6. Real (�1) and imaginary (�2) part of the dielectric function as

well as the energy loss function (ELF) and sum rule for the dielectric

functions as indicated. In all cases, a reasonable fit of the experimental

reflection electron energy loss spectroscopy data for the diamond film was

obtained. [Colour figure can be viewed at wileyonlinelibrary.com]
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We measured the aluminum plasmon peak at 5 and 40 keV in
two different geometries. The results were fitted simultaneously
with a single loss function (Drude–Lindhard oscillator) and a Mer-
min loss function, and the results are shown in Fig. 3. If one keeps
the ˛ parameter (Eqn (12)) of the Drude–Lindhard oscillator close
to 1, the resulting fit is very close to the Mermin fit. These fits are
not perfect as they have less intensity in between the plasmon
peaks than experimentally observed. Within the Drude–Lindhard
model, a better fit can be obtained by adjusting the ˛ value to 2.3.
However, there are no obvious justifications for such an ˛ value.
In transmission EELS work, the dispersion has been established
experimentally, and no large enhancement relative to the simple
picture described here was observed,[36,37] and the transmission
results are in agreement with more detailed calculations.[38] The
observed plasmon energy is quite close to the expected plasmon
energy for a material with a free-electron density of aluminum.
This means that the results are in agreement with the F and Bethe
sum rules, assuming three electrons per atom.

Even with the ˛ value adjusted in this way, the fit is not per-
fect. The observed surface plasmon is considerably wider in the
experiment than in the calculation, as was observed as well by
others.[32]

It should thus be emphasized that even for the most sim-
ple case of Al, the understanding of the REELS spectrum is far
from complete. It is thus probably not justified to expect per-
fect descriptions for more complicated materials. In these cases,
one employs usually more than one oscillator. By increasing the
number of fitting parameters, the fit will obviously improve. The
accuracy of the obtained dielectric function will most likely not
depend on the accuracy of the fit, but on how accurate the
model employed describes the underlying physics. Nevertheless,
we will try to obtain the best fit of the experiment in the following
and compare the obtained dielectric function with those derived
using different approaches. The use of sum rules is essential to
obtain meaningful dielectric functions, as will be illustrated next.

Diamond

The sample was a 2-�m thick diamond film grown on a Si wafer
obtained from MTI corporation. Examples of the loss spectrum
are shown in Fig. 4. We want to use this case to illustrate how
the choice of fitting model affects the derived dielectric function
and how sum rules can be used to obtain the best estimate of
the parameters involved. For simplicity, we assume here that the
refractive index and density of the diamond film is the same as
that of bulk diamond.

Diamond is an insulator with a loss function that is usually
described as consisting of a plasmon. In reality, the shape of the
loss structure is not completely symmetric. The shoulder at the
low-loss side only increases slightly if the sample is rotated to
a surface-sensitive geometry. From this, we conclude that the
shoulder is not exclusively due to surface plasmons. Waidmann
et al.,[39] using transmission EELS, attributed this shoulder to inter-
band transitions. For wideband insulators, Eqn (16) overestimates
the surface excitation probability;[30] hence, in the fits, the calcu-
lated surface plasmon intensity was reduced by a factor of 5. The
two diamond REELS spectra, taken with E0 D 5 keV in a bulk,
and surface-sensitive geometry were analyzed simultaneously.
The deduced parameters are reproduced in Table 1.

We start with discussing a fitting approach based on the
extended Drude model using two oscillators. First, the ampli-
tude of the oscillators were restricted, using Eqn (22), such that

the established refractive index was obtained. Good fits were
obtained (Fig. 4a). However, the Bethe and F-sum rules resulted
in only approximately three electrons per C atom, rather than the
expected 4. Next, the fit was performed using Eqn (21) as a con-
strained such that the Bethe and F sum reproduce the correct
electron density (Fig. 4b). This gave good fits as well. However,
now, the value �1 at ! D 0 was much too large (�1 � 38)
inconsistent with the static refractive index of diamond.

In order to obtain a good fit and agreement with both sum
rules, a third component is required. There is no direct exper-
imental justification in the measured REELS spectrum itself for
this. However, by adjusting the partial intensities slightly, one can
obtain an equally good fit assuming a broad third component at
somewhat higher-loss values. The fit was performed under the
constraint that both the right F-sum (and Bethe) rule and refrac-
tive index were obtained (Fig. 4c). As there are no clear features
in the REELS spectrum associated with this third component, one
can vary its parameters somewhat (position, width, and intensity)
and obtain fitting results of similar quality.

Now, consider a fit using Drude–Lindhard oscillators. It is possi-
ble to obtain a good fit with the sum of the coefficients

P
i Ci D

1 (Fig. 5). However, the obtained dielectric function reflects its
free-electron origin and fails to reproduce the right refractive
index as �1 assumes large negative values for ! ! 0. (Fig. 5
lower panel). The same applies when using the Mermin loss func-
tion (again with

P
i Ci D 1), which results in a virtually identical

fit and dielectric function at q D 0. This is understandable as
the dielectric function at higher q values, where the Mermin and
Drude–Lindhard approaches differ greatly (Fig. 1) contribute only
very little to the DIIMFP (Eqn (15), this is the case especially when
E0 is large). Thus, the Drude–Lindhard and Mermin approach with

Figure 7. A comparison of the energy loss function of Cu as obtained

from the dielectric function published by several authors. The energy loss

function from Hajati and Tougaard[19] and the one obtained by Werner

et al.[17] were obtained from reflection electron energy loss spectroscopy

measurement. Tung et al. fitted optical data.[5] The one marked Henke

is derived from atomic form factors.[29] [Colour figure can be viewed at
wileyonlinelibrary.com]
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P
i Ci D 1 do not fail in fitting the spectra, but fail to meet the

additional boundary conditions.
As is described elsewhere,[16] a good agreement with the static

refractive index n can be obtained, using the Drude–Lindhard
model, if we take

P
i Ci D 1 � 1=n2. The corresponding ELF is

slightly different but by adjusting the partial intensities slightly,
it is again possible to obtain good fits. Now, the obtained dielec-
tric function is not too different from the one obtained using
the extended Drude approach or those reported in the literature
for amorphous diamond films.[40] The dielectric function for crys-
talline diamond as derived from optical measurements has much
more structure for energies below 15 eV.[41] Here, the intensity
of the loss spectrum is very weak, and extracting these details

(including the onset of the loss function, i.e. the band gap) is
difficult experimentally.

As diamond is an insulator, it is attractive to try to describe
it with a dielectric function derived from quantum mechanics
that was intended for these materials. The Mermin–Levine–Louie
dielectric function is thus more appropriate. Here, one has an
additional parameter, U, that relates to the band gap. It was used
as an adjustable parameter, but kept the same for all components
of the fit. If we use a value of U that corresponds to the band gap
(5.4 eV), then the value of �1 at! D 0 is still�4 times too large for
the refractive index of diamond. The nominal refractive index was
obtained using U D 12 eV, stressing that this parameter cannot
be simply equated to the band gap. However, the F-sum value was

Figure 8. Fit of Cu reflection electron energy loss spectroscopy spectra (black dots) based on the dielectric function as published by Hajati and Tougaard

(red dashed line)[19] Werner et al. (yellow dots)[17] and Tung et al. (solid blue line).[5] Data were taken in a surface-sensitive geometry (left) and a

bulk-sensitive geometry (right) at energies as indicated. [Colour figure can be viewed at wileyonlinelibrary.com]
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only�3 electrons per atom. Just as in the extended Drude case, a
good fit with a better F-sum value can be obtained if a third, broad
component was added, but the precise parameters for this third
component are more difficult to obtain from this experiment. The
results for this approach are given in the bottom panel of Fig. 6.

Table 2. The values for the SEA parameter obtained when fit-
ted the present experimental data with the literature dielectric
function

Method SEA c1 c2

Hajati 0.32 0.17, 0.14,�0.06 �0.05,�0.04, 0.02

Tung 0.53 0.28, 0.36, 0.56 �0.09,�.011,�.09

Werner 0.85 �0.06, 0.10, 0.46 �0.01,�0.05,�0.08

This work 0.54 �0.02,0.03, 0.24 �0.01,�0.02,�0.02

Also, given are the obtained coefficients c1 and c2 (Eqn (25)) for
the glancing measurement at 2.5, 5, and 40 keV. c3 was fixed at
0.
SEA, surface excitation adjustment.

The values used in all these fits are reproduced in Table 1. The
partial intensities obtained from the fits were very close to 1, as
expected for a low-Z target where the transport mean free path is
very large.

When one compares all the dielectric functions obtained using
the different models (Figs 4–6), then one sees that for ! > 20,
there is good agreement for �1 and �2. For ! < 20, the differences
are huge. All obtained ELFs have the same shape but slightly dif-
ferent amplitudes, except that their ‘tails’ are increased somewhat
if a third component is added. Thus, one needs to have addi-
tional information about a sample (refractive index and density
of valence electrons) for the dielectric function to be determined
uniquely over the whole energy range.

Copper

Finally, we discuss the case of copper, as an example of a metal
with a more complicated REELS spectrum. For Cu model, dielectric
functions were published by Tung et al.[5] (based on optical mea-
surements), Werner et al.,[17] and Hajati and Tougaard,[19] the latter

Figure 9. A comparison of the �1 and �2 as obtained here for Cu with values derived from reflection electron energy loss spectroscopy by Werner

et al.,[17] Hajati et al.,[19] and by optical means by Johnson and Christy,[43] Brimhal et al.,[44] and Hagemann et al.[45] The insert shows the low-energy

region on an expanded scale. [Colour figure can be viewed at wileyonlinelibrary.com]
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two based on REELS measurements. The ELF of these dielectric
functions are show in Fig. 7. There is another somewhat differ-
ent set of parameters by Tahir and Tougaard,[42] but based on
the same analysis method as Reference.[19] Unfortunately, there is
considerable disagreement between the various ELFs. At larger !
values, it is expected that the dielectric function can be derived
from atomic structure factors. Hence, we also show for energies
above 30 eV the calculated loss function based on the Henke
atomic scattering factors.[29]

Our measurement were performed for incoming ener-
gies between 2.5 and 40 keV and were taken either in a
surface-sensitive glancing-in glancing-out geometry or a
bulk-sensitive geometry. We now try to fit these data with the
previously published model dielectric functions, using the partial
intensities and the surface excitation adjustment factor as fitting
parameters. The obtained values for the latter parameter varied
from 0.85 when using the model function from Werner, 0.53 for
the one of Tung et al., and 0.32 for the one of Hajati and Tougaard.
The resulting fits are shown in Fig. 8. (The measurement and their
fits extended up to 140-eV energy loss, but only the first 80 eV is
shown in this figure. At higher-energy losses, no distinct struc-
tures are observed. This part of the spectra is, however, important
in restraining the ci parameters used to calculate the partial inten-
sities used in the fits.) Clearly, one cannot obtain great fits for all
dielectric function by only changing the partial intensities and
the surface excitation adjustment factor. Examples of the values
obtained are given in Table 2. Especially for the high-energy data,
the dielectric function of Tung et al. describes our experimental
data best. At high-energy losses, this function matches also best
the loss function derived from Henke’s atomic scattering factors.

Somewhat, better description of the experimental data is
obtained if the dielectric function itself is fitted as well against the
experimental data. The obtained ELF is shown in Fig. 7 as well, and
the obtained real and imaginary part are compared in Fig. 9 with
those obtained from other experiments. Agreement of our data is
better with the dielectric function derived from optical data from
Tung et al. than with those derived from lower-energy REELS data.

Discussion and conclusion

This work intended to make the extraction of the loss func-
tion from REELS measurements more transparent for either
semi-classical or quantum-physics-based models of the loss func-
tion. Using quantum-physics-based dispersion models as present
in Mermin and Levine–Louie dielectric function would be less ad
hoc. However, at the energies employed here, dispersion affects
the loss spectrum only in a very minor way, and virtually, the
same results are obtained when using the Drude–Lindhard or
extended Drude approaches. At much lower energies, this may
not be the case, but then surface excitation and interference effect
of the incoming and outgoing trajectories could require a more
sophisticated modeling of these effects.[4,19,32]

For insulators, the use of model dielectric functions has the dis-
advantage that the intensity of the loss function is not truncated
rigorously to zero in the band gap region but low-intensity tails
exist. These tails affect, e.g. the Kramers–Kronig sum rule, as this
quantity is very sensitive to the intensity of the loss function near
zero loss. As a consequence, the value of �1 near ! D 0 will be
slightly too large.

The second motivation was to avoid the creation intermedi-
ate distribution (the effective loss function obtained with the

Tougaard–Chorkendorff procedure or the DIIMFP and the DSEP as
extracted from different spectra in the work of Werner et al.) and
work straight from the experimental data. At least for energies
above 2.5 keV, the direct approach has some clear advantages. For
example, the chi-square of the fit is well defined as the statistical
error bar is just the square root of the number of counts. The par-
tial intensities obtained from the fit can be compared in principle
to those obtained by Monte Carlo simulations, and discrepancies
can be used to improve either the dielectric function or the Monte
Carlo simulation procedure. This will be the focus of future work
but especially for low-Z targets such as C and Al, the deviations
from unity of the partial intensities are encouraging small.

Some papers (e.g. References[4,19,32]) deal with surface excita-
tion and interference effects in a much more sophisticated way
than is performed here. In these cases, the analysis is always per-
formed starting with a single-scattering loss distribution obtained
by the Tougaard–Chorkendorff procedure.[3] For the cases where
there is a single sharp plasmon feature in the loss spectrum, it pro-
duces negative intensities for a certain energy loss range and is
for those losses clearly not meaningful. The assumption that this
single-scattering loss function has a well-defined meaning when
it is always positive requires justification by comparing, e.g. the
obtained dielectric function with optical data. From the compar-
ison with the optical data for copper, it is not obvious that the
Tougaard–Chorkendorff-based analysis, with sophisticated treat-
ment of surface excitation and interference effects, results in
a better estimate of the dielectric function, than the method
described here.

The dielectric functions obtained are comparable with those
published in the literature. In some cases (noble metals, only Cu
was presented here), the agreement of the current dielectric func-
tion with those obtained by optical means is better than previous
REELS studies. This is probably more due to the better energy res-
olution of the current spectrometer rather than the data analysis
procedure followed.

In summary, we have demonstrated that the approach of
extracting dielectric properties from a material by directly fit-
ting the REELS data is at least competitive with more indirect
approaches when applied to REELS at relatively high energies. We
think that this method is a more transparent way of analysis and
aid the discussion where interpretations of REELS experiments in
terms of dielectric function differ.[46]

A basic manual of the fitting routine is provided as Supporting
information. The source code of the DLL, to be used in conjunc-
tion with the Origin plotting program, can be obtained from the
corresponding author.
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