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A B S T R A C T

Many aspects of the interaction of charged particles with matter can be expressed in terms of the dielectric
function q( , ). The dielectric function is relatively well known in the optical limit (q 0= ) but, for example,
stopping power calculations require the knowledge of the dielectric function for q 0. Several approaches have
been used to extend the dielectric function to q 0 for both the valence electrons, using variations of the
Lindhard dielectric function and the core levels where an atomic description can be used. The intermediate case
of shallow core levels is somewhat problematic. Here collective effects modify the atomic picture, and the
hydrogenic approximation of the wave function is less accurate. In this paper we describe a new extension
scheme of the contribution to the energy loss function of shallow core levels to q 0 and show that tor Al and Si
it describes the experimental stopping data somewhat better than previous approaches. It also describes rea-
sonably well the proton and electron induced ionization cross section of these shallow core levels. Lastly we
investigate the dielectric function in the limit of high momentum, where it can be interpreted as a Compton
profile. An approximation scheme in terms of Mermin dielectric function with an amplitude that depends on q
works in all cases quite well.

1. Introduction

Describing the interaction of charged particles with matter is of
great importance for a variety of fields ranging from materials science
[1] to medical physics [2]. This interaction can be conveniently de-
scribed in terms of the energy (ω) and momentum (q)-dependent di-
electric function: q( , ) [3,4]. In order to calculate physical ob-
servables it is then required that the dielectric function is known over a
large range of q and ω values. For many materials Im q[ 1/ ( , )] has
been determined in the optical limit (at q 0= ) [5], and this quantity is
called energy loss function or ELF. Extension of the ELF in the otical
limit over all q values is thus required for the calculation of quantities
such as proton stopping, electron inelastic mean free path, and
Compton profiles. (Sometimes, e.g. in the case of stopping in the high
energy (‘Bethe’) limit contributions near q 0= dominate and ob-
servables can be calculated from the knowledge of Im q[ 1/ ( , )] at
q 0= , and some basic assumption on the dispersion e.g. Ref. [6].) If one
can identify a certain part of the dielectric function with an electron
shell, then it is also possible to calculate ionization probabilities for this
shell if q( , ) is known over a range of ω and q values.

The choice of possible dielectric functions is severely restricted by
sum rules that should apply [7]. In particular the Bethe (or Thomas-

Reiche-Kuhn) sum rule:

1
2

Im[ 1/ (q, )]d N,2 0
= (1)

and the f sum rule:

1
2

Im[ (q, )]d N,2 0
= (2)

should apply for any q value, with N the number of electrons per unit
volume. (We are using atomic units throughout.) Another important
restriction is that the imaginary and real part of q( , ) are Kramers-
Kronig pairs:

Re 1
(q, )

1 1 d 1 Im 1
(q, )

,= P
(3)

where P indicates the Cauchy principal value. For q, 0= the left
hand side of eq. (3) is equal to n1/ 12 with n the static refractive index
and then this equation is known for metals (where n1/ 0= ) as the
perfect screening sum rule.

Extension to values q 0 are, for the valence band, often based on
the Drude-Lindhard [8–10], Lindhard [11] or the Mermin dielectric
function [12]. The advantages and disadvantages of the various
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approaches have been summarized recently in a review by Nikjoo et al.
[13]. Here we will explore the possibilities to use the Mermin dielectric
function to model the ELF and in particular focus on a way to get a good
description for the semi-core levels that contribute to the ELF for energy
losses exceeding their binding energy, often with a well-defined, sharp
onset. The sharp onset suggests that one has to truncate the Memin loss
function at this energy, as was first done by Abril et al. [12]. Such a
truncation, although convenient for fitting the ELF, causes a de-
pendency on q of the electron density as obtained from the Bethe sum
rule. Abril et al. suggested to solve this problem by making the trun-
cation energy dependent on q. Here we will suggest an alternative way
of dealing with this problem, and show that the alternative way leads to
a better description of a number of observables.

2. Description of the ELF

The Lindhard (Mermin) loss function describes a free electron gas,
and has one (two) parameter(s), the plasmon energy i defined by the
electron density N of the free electron gas: N4i

2 = (and the relaxa-
tion broadening ( i)). However, real solids are more complex and con-
sists of areas of varying electron density. To overcome this problem
Ritchie and Howie introduced the electron gas statistical model [14]
(see also [11,15], where the solid is described as a sum of different
volumes with their corresponding electron densities and the ELF is then
approximated as a sum of ELF's of Mermin dielectric functions (or
Drude-Lindhard dielectric functions, which coincide with Mermin di-
electric function with the same parameters at q 0= ) each with their
own energy i and width i and weight Ai. Here Ai is the fraction of the
unit cell with electron density corresponding to i.

The contribution of inner shell electrons, who retain largely their
atomic character, is conveniently calculated using the Generalized
Oscillator Strength (GOS) df d q/ ( , ) based on hydrogen-like wave
function in combination with the concept of effective charge as in-
troduced by Slater [16]. The relation of the GOS to the dielectric
function is given by [17]:

df
d

q
E q

( , ) 2 Im 1
( , )

,
a
2=

(4)

with E n4a a
2 = (na the atomic density) i.e. the plasmon energy corre-

sponding to one electron per atom. In Fig. 1 we show the calculated
minimum excitation energy of this model and the actually observed
core level energies.

For binding energies above 1000 eV the agreement is generally
quite good, but for lower energies there are substantial differences.
Here the hydrogenic approximation becomes poor and collective effects

may have significant influences. Modelling the observed dielectric
function with the GOS of hydrogenic wave function does not reproduce
the position of the sharp onset for these levels at (0, ), or, if the
formula is adjusted so the right onset position is obtained, result in a the
wrong number of electrons in the shell. In addition, the GOS values for
small q values and energy transfers between the actual edge and the
minimum energy transfer in a hydrogen-like atom can be downright
wrong (see e.g. the middle panel of Fig. 2 and Fig. 3).

Abril et al. found that it was possible to get a good description of the
shape of the ELF of semi-core electrons using truncated Mermin func-
tions, i.e. the Mermin loss function, above a certain energy loss, but put
to zero at smaller losses [12]. Simply truncating the Mermin loss
function at the same energy for all q values would cause different
outcomes of the sum rule at different q values. Hence they made the
truncation energy edge a function of q, in such a way that the sum rule
(eq. (1)) resulted in the same N values for all q. We will refer to this
method as the q( )edge method. Here we want to explore as an alter-
native making Ai a function of q and refer to this way as the A q( )
method. A q( )i would then be determined so that at each q the sum rule
(eq. (1)) corresponds to the same N value. In that case the contribution
A q( )i has to be defined as:

Im 1
(q, )

A (q)Im 1
(q, , , )

( E )
i

i
M i i

edge,i=
(5)

with

A q A
d

( ) (0)
Im ( )

d Im ( )
i i

0
1

(0, , , ) edge,i

0
1

(q, , , ) edge,i

M i i

M i i

=
(6)

with x( ) the step function. In practice we determined A q( )i for q va-
lues at 0.1 a.u. interval and interpolated linearly to obtain A q( )i at any
q value.

We compare both results with the loss function derived from the
GOS adjusted so the edge is at the experimentally observed edge posi-
tion, but scaled so the right number of electrons is obtained (the re-
normalized GOS method). For this purpose we study the cases of Al and
Si and calculate various observables (proton stopping, electron inelastic
mean free path, electron and proton induced L shell ionization, as well
as the Compton profiles) for different ways of extending (0, ) to q
values 0.

The method of Da et al. is an alternative way of fitting the sharp
onsets of the semi-core ELF contribution as a sum of Mermin functions
with both negative and positive Ai values [19,20]. Dielectric functions
derived in this way automatically adhere to the sum rules at all q values
and appear to describe the electron inelastic mean free path quite well.
It would be of interest to study if a fit of the ELF with the method of Da
et al. and the ones described here produce different values for
Im q[ 1/ ( , )] away from q 0= , but this is beyond the topic of this
paper.

For the calculation of all the observables described next only the
knowledge of Im q

1
( , ) is required. As Im q[1/ ( , )] and Re

q[1/ ( , )] are Kramers-Kronig pairs truncation of one or more Mermin
oscillators, that together form Im q[1/ ( , )], will affect Re q[1/ ( , )],
and hence Re q[ ( , )] and Im q[ ( , )] at all ω. After truncation or
addition of a GOS to the dielectric function Re q[ ( , )] and Im q[ ( , )]
cannot be derived any more directly from the Mermin dielectric func-
tion, but have to be retrieved by calculating Re q[1/ ( , )], via a
Kramer-Kronig transform.

3. Model dielectric function

3.1. Aluminum

For aluminum we used the ELF calculated from the dielectric
Fig. 1. The calculated minimum excitation energies for hydrogenic wave
function (solid lines) versus the actually observed ones (symbols) [18].
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constant as derived by Rakić [21] from different optical measurements
covering together the complete range of energies of interest. It was
derived in such a way that (among others) the Bethe sum rule, f sum
rule and Kramers-Kronig relations were adhered to. Very similar results
would be obtained using the data from the Palik handbook [5]. We
compare it in Fig. 2 with the ELF corresponding to the dielectric
function used by Abril et al. [12]. The latter has different shortcomings.
The main plasmon component near 15 eV energy loss is too wide. Also
the amplitude Ai of the valence band component is larger than 1 which
is not in the spirit of the statistical approximation. In fact, this causes
problems with the f-sum rule if q( , ) is calculated via eq. (3). This
problem has its roots in the fact that the calculated plasmon energy
based on 3 electrons per atom (15.7 eV) is larger that the peak position

of the measured energy loss distribution ( 15 eV). Their L-loss feature
starting near 100 eV is reasonably well in agreement with the ELF or
Rakić. For the K electrons we use throughout the GOS in combination
with the experimental 1s binding energy. Note that the vertical scale
between the left and right plot differs by a factor 105. For the L shell we
also calculated the GOS with the 2s and 2p contributions, again starting
at the experimental 2s and 2p binding energies. The GOS was nor-
malized such that the Bethe sum gave 2 and 6 electrons per atom for the
2s and 2p shell. The loss function obtained in this way, when compared
to the Rakić ELF, is too high near the edge, and too low at larger energy
losses.

To address some of these issues we did an empirical fit of the Rakić

Fig. 2. The fit of the ELF of Al, based the optical data of Rakić [21] compared to several model dielectric function as explained in the main text.

Fig. 3. The fit of the ELF of Si, based for low losses at the REELS work of Jin [22], and at large losses the tabulations of Henke [23].

Table 1
The parameters of the Al model dielectric function used here, and those used by
Abril et all [12].

i Ai 1 i edge

1 0.904 14.95 0.46 –
2 0.022 19 6 –
3 0.011 54 80 –
4 0.007 31 15 –
5 0.007 22 5 –
6 0.002 17 1.5 –
7 0.044 106 82 72.5
8 0.005 200 140 72.5
ref. [12]
1 1.1178 15 0.95 –
2 0.0666 106 82 72.5

Table 2
The parameters of the Si model dielectric function used here, and those used by
Abril et all [12].

i Ai i i edge

1 0.015 5.5 2 –
2 0.1 13.5 2.5 –
3 0.29 15.7 2.2 –
4 0.39 17.2 2.3 –
5 0.068 20 4 –
6 0.035 25 6 –
7 0.004 65 40 –
8 0.024 100 140 99.8
9 0.0019 160 270 99.8
ref. [12]
1 0.9922 16.8 4.24 –
2 0.05378 114 133 99.8
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ELF using several Mermin components for the valence band and 2
truncated Mermin function for the L region, and again the GOS for the
1s level. By describing the main peak of the ELF, which is asymmetric,
carefully with several components we can get for the valence band a
good agreement with A 0.953 1i i1

6 = <= , consistent with the statistical
approximation. This value is less than 1 as a small fraction of space is
occupied by the K and L electrons, the latter are presented by oscillators
7 and 8. As the data of Rakić are in agreement with the Bethe sum rule,
the multi-component fit is in good agreement as well. The results are
summarized in Table 1. The addition of more components improves, of
course, the fit of the ELF considerably, but we want to investigate to
what extent a more accurate description of the ELF results in a better
description of observables such as ion stopping and ionization prob-
abilities.

3.2. Silicon

For Silicon we obtained an estimate of the ELF by combining the
ELF at q 0= from Jin et al. [22] for low energy losses (up to 50 eV),
obtained using reflection electron energy loss spectroscopy, with the
one calculated from the optical data of Henke [23], see Fig. 3. Both data
sets connect smoothly. The same fitting approaches are used as for Al
(Table 2). For the multi-component fit it was checked that the refractive
index for Si near 0= corresponds to the literature value of 11.6
(which requires that A 1i i < for the Ai modelling the valence band
[24]).

4. Electron inelastic mean free path

For completeness we start by comparing the inelastic mean free path
(IMFP or λ) for electrons with energy E0 with those obtained from the
full-Penn algorithm, generally considered the best estimate available of
this quantity [25,26]. The IMFP is calculated using:

d
E

dq
q q

1/ Im 1
( , )

E E

q

q

0 0

f0= +

d
v

dq
q q

2 Im 1
( , )

E E

q

q

0 2
f0= +

(7)

with v the projectile velocity, Ef the Fermi energy and

q ME M E2 2 ( ) .0 0= ±± (8)

Fig. 4. The calculated electron inelastic mean free path for Al and Si based on
the multi-component fit of the ELF, with (solid line) and without (dashed line)
the contribution of the L shell. For comparison the values calculated by Tanuma
et al. [25] using the full Penn model are shown as dots.

Fig. 5. The calculated stopping, for the various models as discussed in the main text for Al and Si. The experimental points are from post-1990 experiments, taken
from https://www-nds.iaea.org/stopping/.
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with M the projectile (electron) mass.
The comparison is shown in Fig. 4. For Al we find very good

agreement but for Si the IMFP obtained here is about 6% smaller than
that obtained by the full Penn Algorithm [25]. De la Cruz and Yubero
analyzed the IMFP of Si in a similar way and also obtained an IMFP for
Si that was slightly too small [27].

The contribution of the L shell to the IMFP is small, but significant.
It is larger for Al, as the L binding energies are for Al less than for Si.
However, differences of the mentioned extension models for the L level
causes variations of the IMFP only on a 1% level, too small to reach any
conclusion, when comparing with experiments.

5. Stopping

Another quantity often derived from the dielectric function is the
ion stopping power. The simplest case for protons will be considered
here and for energies larger than 100 keV it is a very good approx-
imation to consider the protons fully ionized. The ion stopping power is
determined from the induced retarding force at the ion position and
therefore from the dielectric function according to

dE
dx v

dq
q

d
q

2 Im 1
( , )

.
qv

2 0 0
=

(9)

In addition by changing the order of integration we can change this
equation to

dE
dx

d
v

dq
q q

2 Im 1
( , )

,
E

q

q

0 2
0= +

(10)

which is more similar to Eq. (7). Here v is now the proton velocity and
the q± limits are again calculated using eq. (8), but now of course using
the proton mass. eq. (10) highlights the similarity with the IMFP cal-
culation, but now the contribution of each inelastic event is weighted
by the corresponding energy loss ω. Hence the contribution of the L
levels is more pronounced for proton stopping than for the electron
IMFP.

As is clear in Fig. 5 (left panel) the calculation of ref. [12], labelled
‘Abril edge’ using their parameters and a truncation energy that changes
with q, reproduced the general shape of the Al stopping curve quite
well, but the calculated stopping value were slightly too low, especially
for E 100> keV. The agreement improves if we use the same model
parameters, with a single truncation energy but with A q( ) varied in
such a way that the sum rule is fulfilled (curve labelled ‘Abril A q( )’).
The calculation of the stopping using the GOS approach for the L shell,
normalized to the nominal number of electrons in the shell is very close
to the A q( ) values. If we use the multi-component fit of Table 1 in
conjunction with the A q( ) method than the stopping reduces some-
what, but remains above that calculated in Ref. [12]. Using the multi-
component fit in conjunction with the q( )edge method provides even
smaller stopping powers than those calculated by Abril et al. [12]. For
energies below 100 keV the experimental stopping is lower than all
calculated values, due to non-linear effects for the Al valence band
electrons that come into play at lower projectile energies [28,29].

The Si results shown in Fig. 5 (right panel) are very similar, except
that the influence of the L shell is slightly less, as its binding energy
increases with Z.

6. Proton and electron-induced excitation

The sharp onsets in the ELF near 72.5 eV (Al) and 100 eV (Si) are
related to excitation of the L shell electrons. Hence by integrating eq.
(7) but considering only the truncated Mermin part of the ELF (or GOS
part), one should get an estimate of the L shell ionization probability
per unit length travelled. Identifying the contribution from inner-shell
ionization is also important for micro- and nano-dosimetry in medical
physics [30]. These calculations were done for the Al case for both

electrons and protons. The results are displayed in Fig. 6. Clearly the
ionization probability depends strongly on the way the dielectric
function is extended to finite q values. The q( )edge method requires a
larger projectile energy for the ionization to happen and results in
smaller cross sections. For electrons we can compare our cross section
with those calculated using the (atomic) distorted wave calculation from
LLovet et al. [31,32]. These calculations do not predict a delayed onset
of the ionization, but a shape of the ionization probability rather similar
to the A q( ) method or when using a GOS to describe these levels. The
GOS (in particular if one does not re-normalize the GOS in such a way
that it gives the right Bethe sum) cross sections are considerable larger
than those obtained by the A q( ) method. If one replaces the single
truncated Mermin, from Ref. [12] with 2 truncated Mermins, as in the
multicomponent fit, then one obtains a surprisingly good agreement
with the calculation of LLovet et al.

For proton ionization the increased threshold of the ionization
process for the q( )edge method is even more obvious. Here we have
experimental evidence from the LVV Auger yield measurement of Lee
and Pfandzelter [33], as the L Auger yield should mirror the ionization
probability. The Auger yield increases strongly for proton energies
above 10 keV, much earlier than the threshold predicted by the q( )edge
method. Again the GOS theory without renormalization gives the lar-
gest cross section which is very similar to the one calculated by the
ECPSSR program [34] used for PIXE measurements, suggesting that the
ECPSSR program does not use the Bethe sum rule to renormalize their
GOS. These L levels are however, at too low an energy to be of use in
PIXE experiments, and in the PIXE energy range a GOS-based descrip-
tion, without additional normalization should be sufficiently accurate.

Fig. 6. The L shell ionization for Al induced by electrons (top) and protons
(bottom) for the various models compared to Distorted-wave Born approx-
imation (DWBA) (top) and compared to ECPSSR calulations and measured
Auger yields (bottom).
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7. Compton profile

Now we will investigate if any of the extension methods described
here give a good description in the high-q limit. At high q the projectile
interacts with a single target electron only. The energy transfer is in that
case large, much larger than the binding energy of the electron and the
collision can be described in terms of a collision of the projectile with a
free electron. If this electron has momentum p before the collision then
the energy-transfer to the electron Erecoil (and hence the energy loss ω of
the projectile) is equal to [35].

E q p q
2recoil

2
= + (11)

The energy loss distribution can then be plotted as a Compton
profile (i.e. the number of electrons with a certain amount of mo-
mentum along q: (pq)) by changing the energy loss scale into a mo-
mentum scale according to [35]:

p q
q

( /2)
q

2
=

(12)

The dielectric function was calculated for q 30= a.u. and is shown
in Fig. 7 both as a function of ω and pq as calculated via eq. (12). It is
compared with an experimental Compton profile obtained using X-ray
scattering. The valence electrons contribute roughly between −1 and 1
a.u. The L-shell electrons contribute over a larger range for momenta,
between −4 and 4 a.u. The K shell contribution extends to even larger
momenta. The area corresponding to the valence, L and K shell is
proportional to the number of electrons occupying it i.e. for Si 4:8:2.

The q( )edge method (not developed for these conditions) causes a
large asymmetry in the Compton profile, as it is truncated at the low-
energy loss side in order to correspond to the same number of electrons
as at q 0= . The A q( ) method approaches the Compton profile some-
what better, in particular if the multicomponent fit of the ELF is used.
Finally, the multi-component fit of the valence band in combination
with the use of a (normalized) GOS description of the L level describes
the experimental Compton profile surprisingly well.

8. Discussion

Finally we want to explain why the q( )edge method results in an
underestimation of the stopping power and ionization cross section, as
well as the increased projectile energy threshold for ionization that is
predicted by this approach.

Energy loss of the projectile means a reduction of its momentum,
and hence there is a momentum transfer q, even if the direction of
propagation does not change. This minimum momentum transfer is
given by q in eq. (8). For a certain ω value q decreases if the projectile
energy increases. In Fig. 8 we plot q for various proton energies as a
function of ω (a qualitatively similar picture would apply to electrons).
In this plot we also indicated the energy where the Mermin function is
truncated for Si: a vertical line for the A q( ) method and a curved line
for the edge method. Take, as an example, the 60 keV proton case. It
crosses the A q( ) truncation line for q 2.3 a.u. Thus the momentum
transfer for an L level excitation by a 60 keV proton is at least 2.3 a.u.
Note also that for 60 keV the q line never crosses the q( )edge trunca-
tion line. This means that, within that approach, a 60 keV proton cannot
excite an L shell electron, and hence these electrons will not contribute
to the proton stopping. For the proton to be able to excite an L-shell
electron in the q( )edge model it needs at least 140 keV energy. Even if
the threshold is reached its contribution to the stopping will remain
smaller as the accessible phase space is less and all the contributions to
the stopping (eq. (10)) correspond to larger q values (which is in the
denominator of eq. (10)).

A different way of getting insight in these matters is by plotting
Im q[ 1/ ( , )] but only for the part of the phase space that is acces-
sible. (note that to determine the contribution to e.g. the inelastic mean
free path (eq. (7)) or stopping (eq. (10)) one still has to divide
Im q[ 1/ ( , )] by q) For Al this is done in Fig. 9 for both protons and
electrons, at the energies as indicated. The intensity plotted is for the
A q( ) model but the dashed line shows the position of the edge in the

q( )edge approach. For electrons the accessible space extends to where
the energy loss is equal to the projectile energy. The boundary at the
left (smaller q values) of this point is due to q , the boundary at the right
due to q+ (see eq. (8)). For 20 eV electrons the plasmon does not con-
tribute, and all intensity is due to electron-hole pair excitation. At 80 eV
both the plasmon and the electron-hole brach of the excitation spec-
trum contributes, and even the L shell corresponds a little in the A q( )
model, but not in the q( )edge model (as the dashed line is not crossed.
At 200 eV the L level starts contributing as well in the q( )edge model.

For protons the situation is somewhat different. At 20 keV the
Fig. 7. The calculated Compton profile for the various models as indicated,
calculated for q 30= a.u. compared to the experimental data [36]. The calcu-
lated Compton profile are broadened by the experimental resolution (0.45 a.u.).

Fig. 8. The dependence of the qmin on ω and the position of the Si L edge in the
A q( ) (vertical line) and q( )edge model (parabola-like line).
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energy loss excitations are mainly in the electron-hole branch but it is
possible to excite an L electron at relatively large momentum ( 4 a.u.)
in the A q( ) model but not in the q( )edge approach. At 200 keV the
plasmon contribution dominates, and the L electrons just start con-
tributing in the q( )edge model and only for energy losses 300< eV
(where the dashed line crosses the qmin boundary for a second time). At
2MeV the excitation spectrum of the L electrons extend to much larger
energies.

Recently the use of the MLL (Mermin-Levine-Louie) dielectric
function was suggested [24] for the description of the dielectric func-
tion of insulators, i.e. the Levine-Louie dielectric function [37] modified
by a relaxation time [38]. Here a band gap (magnitude U) is in-
corporated in the model that shifts the intensity of the loss function to
larger values. For q 0= the ELF retains a Lorentzian shape but the peak
position shifts from i to U( )i

2 2+ . For q 0 the intensity for U<
is strongly reduced compared to the Mermin loss function peaking at
q 0= at the same ω value. One could be tempted to use a similar ap-
proach for the semicore levels, modelling the binding energy in some
way by the U parameter, but the fitting of the discontinuity of the ELF
at the edge would be as difficult with an MLL approach as with the
Mermin approach.

9. Conclusion

We calculated several observables related to the dielectric function
and compared the outcome with experimental results, where available.

In general the best results were obtained when using an accurate fit of
the ELF based on a sum of Mermin dielectric functions, with those re-
presenting outer core electrons truncated. Extension of the dielectric
function to all q values it then best done by taking the magnitude of the
truncated Mermin contribution to be a function of q in such a way that
the Bethe sum rule is fulfilled. In this way one can describe the ion
stopping, ionization probabilities and Compton profile reasonably well.
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