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Abstract

The influence of multiple elastic scattering on the shape of the energy distribution of elastically scattered electrons
is investigated. The energy of the maximum intensity of the detected electrons differs from the probe electron beam
energy due to the elastic energy loss. The experimentally observed spectrum is adequately described by a Gaussian
distribution with a maximum at the elastic energy loss value. In this paper the peak-broadening mechanisms due
to energy analyzer spread function, probe beam energy distribution and atomic vibration-induced broadening are
considered to be independent and of random nature. Analysis of multiple elastic scattering shows some mechanisms
leading to the broadening and a shift of the elastic scattering electron energy spectrum from the value defined by
single elastic scattering at the certain angle. It is revealed that the magnitude of this shift and the width of energy
distrubution is determined by ratio (lin/ltr), where lin is inelastic mean free pass, ltr is the transport length.

Monte Carlo computation results for elastic energy losses of electrons moving in a solid with stationary atoms are
presented as well. The possibility of observing experimentally the elastic peak broadening and shift due to multiple
elastic scattering is discussed.

Key words: multiple scattering, electron spectroscopy, elastically reflected electron peak
PACS: 34.80.Bm, 82.80.Yc

1. Introduction

The problem of multiple elastic scattering and its in-
fluence on the energy distribution of an elastically scat-
tered electron has been discussed since the end of the
80-ties of the last century [1, 2]. It is closely related to
the solution of the classic problem of elastic collisions
of an electron (mass — m and energy — E0 ) with a mo-
tionless nucleus (it’s mass is M) on the basis of energy
and momentum conservation laws.

There is renewed interest in this problem as experi-
mentally it is now possible to determine the mass of the
scattering atom using the recoil effect. In ref.[3] the en-
ergy difference of electrons backscattered from Au and
C was resolved, making a new method of surface com-
position analysis feasible. Interpretation in ref.[3] was
based on a single scattering model. In this paper we
want to investigate if this model is justified.

Email addresses: AfanasyevVIP@gmail.com (V.P.Afanas’ev),
Maarten.Vos@anu.edu.au (M.Vos)

For single electron scattering over an angle θ0 (after
which the electron moves into an energy analyzer) the
energy loss is defined by the kinematic factor ξ (θ0)[4]:

∆E = E0 (2m/M) (1 − cos θ0) = E0 (1 − ξ (θ0)) (1)

Alternatively, if deflection over θ0 is due to n identi-
cal scattering events then the energy loss value is given
by ∆En = E0n (2m/M) (1 − cos (θ0/n)). For the case of
small angle scattering (θ0/n→ 0), one can make a se-
ries expansion for “cos” and retain the first summand:

∆En = E0 (m/M)
(
θ2

0/n
)
< ∆E (2)

Thus if the total deflection θ0 (energy analyzer is sit-
uated at this angle) is caused by n-times scattering at
small angles θ0/n (we consider here, for simplicity, the
case of all scattering events in the same plane), then the
energy loss becomes less when the number of scattering
events increases. On the other hand if scattering occurs
over a larger angle θ0 + ∆θ at first, and after that over an

Preprint submitted to Journal of Electron Spectroscopy and Related Phenomina November 29, 2009

*Manuscript

http://ees.elsevier.com/elspec/viewRCResults.aspx?pdf=1&docID=799&rev=1&fileID=20782&msid={89F5873D-8E99-4C32-8348-B3A217689337}


Page 2 of 8

Acc
ep

te
d 

M
an

us
cr

ip
t

angle −∆θ (again assuming all scattering events in the
same plane) then the electron detected at θ0 will have a
larger energy loss than in the single scattering case:

∆E′ = E0 (2m/M) (1 − cos (θ0 + ∆θ)) +

+ E0 (2m/M) (1 − cos ∆θ) >
> E0 (2m/M) (1 − cos θ0) = ∆E

(3)

It should be noted that the elastic scattering cross-
section is strongly forward peaked or, in other words,
the probability of small-angle scattering is much larger
than the probability of large-angle scattering. Conse-
quently the trajectories leading to smaller energy losses
(as in Eq. (2)) are much more probable than the trajec-
tories leading to larger energy losses (see Eq. (3)).

In practice, the measured energy distribution of elas-
tically reflected electrons [5, 6, 7, 8] is a symmetric
Gaussian-shaped distribution

GΣ (x, x̄) =
1

√
2πσΣ

exp
− (x − x̄)2

2σ2
Σ


with maximum at an energy very close to E0 − E0ξ (θ0).
The width of this Gaussian (σΣ) is due to the sum of

different contributions: σΣ =

√
σ2

D + σ2
A + σ2

B, where
σD is broadening due to thermal velocity distribution
of the scattering atom (Doppler broadening), σA is the
energy-analyzer resolution and σB is the energy spread
in the electron beam. Here we want to investigate if this
interpretation is correct, or that the effect of the multiple
elastic collisions on the energy distribution should be
considered as well in the interpretation of σΣ.

In this paper we consider that the atoms in a solid are
motionless — i.e. we neglect the Doppler broadening
(σD = 0). In our model the broadening due to the elec-
tron gun energy spread and the finite energy-analyzer
resolution are also not taken into account (σB = 0),
(σA = 0). The purpose of this model is to determine the
influence of multiple elastic collisions on the elastically-
scattered electron energy distribution. Two analytical
models for multiple elastic scattering that describe the
energy shift and broadening of the elastic peak will be
considered.

The first model corresponds to the situation where an
electron, after strong scattering over the angle θ0, un-
dergoes multiple small-angle scatterings, but the aver-
age directional change due to these small-angle scatter-
ing events averages out to 0. Along its trajectory elas-
tic energy losses occur that are proportional to the path
length. The second model corresponds to the case where
strong scattering occurs over an angle θ0 ± θ, but af-
ter that, and before coming into the energy analyzer,

the electron scatters again and the propagation direc-
tion changes by ∓θ. Both cases are discussed for the
homogeneous medium without boundaries (Goudsmit-
Saunderson approximation [9]).

The boundary problem will be solved using Monte-
Carlo simulations describing multiple binary electron
collisions in a medium of randomly-located motionless
atoms.

2. Multiple elastic energy losses

Let’s consider an electron flux propagating in a solid
over a distance dx. As a consequence of momentum
and energy conservation the energy loss for scattering
over θ is defined by Eq. (1). The probability of scatter-
ing over an angle θ is defined by the differential elastic
scattering cross-section ωe (θ). The probability of elas-
tic scattering with a sample atom over the interval dx
is proportional to ndx, where n is the concentration of
scatterers (atoms). Integrating Eq. (1) over θ we get the
following:

dEel = ndxE0

π∫
0

2m
M

(1 − cos ∆θ)ωe (∆θ) d∆θ =

= ndxE0 (2m/M)σtr

(4)

Here σtr is transport cross-section. From Eq. (4) the
mean energy loss per unit length (i.e. “elastic stopping
power”) can be determined:

dEel/dx = nE0 (2m/M)σtr = (2m/M) (E0/ltr) (5)

The energy of an electron slowing down can only de-
crease. This leads to an asymmetry in the energy distri-
bution of the elastically-reflected electrons.

The elastic transmission function T GS
e (x,∆θ) is of

great importance. It defines the probability that an elec-
tron, passing a length x, changes its direction of move-
ment by ∆θ. An equivalent problem was solved by
Goudsmit and Saunderson [9] before. However a some-
what different solution that allows us to picture more
clearly the mechanism of energy losses due to multiple
elastic scattering will be given. Note that the expression

exp (−σenx)
(σenx) j

j!
(6)

is a Poisson distribution defining the probability of j in-
dependent events ( j scatterings in our case) on the inter-
val x.
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Let’s write T GS
e (x,∆θ) as the sum of particles that

have scattered 0,1,2. . . times

T GS
e (x,∆θ) = exp (−σenx)

[
δ (∆θ) +

nx
1!
ωe (∆θ) +

+
∑

j=2,3...

(nx) j

j!
ωe (∆θ)

j
 , (7)

with

ωe (∆θ)
j
=

∫
4π
ωe (∆θ − ∆θ′)

j−1
ωe

(
∆θ′

)
dϕ′d cos ∆θ′,

δ is the Dirac delta function, ωe (∆θ′) is the differ-
ential cross-section of electron elastic scattering by
atom [4], σe is the total elastic scattering cross-section,∫

4π dϕ′d cos ∆θ′ =
2π∫
0

dϕ′
1∫
−1

d cos ∆θ′. Now make a Leg-

endre series expansion of the differential elastic cross-
section:

ωe (∆θ) =

∞∑
l=0

2l + 1
4π

ωlPl (cos ∆θ) (8)

The expansion coefficients, as it follows from Eq. (8),
are defined by:

ωl =

∫
4π
ωe (∆θ) Pl (cos ∆θ) d cos ∆θdϕ (9)

The property of completeness of the Legendre Polyno-
mials allows us to write:

δ (∆θ) =

∞∑
l=0

2l + 1
4π

Pl (cos ∆θ) (10)

Substituting Eqs. (8) –(10) into Eq. (7) and calculating
the integral (using the orthogonality of Legendre poly-
momials) we obtain:

TGS
e (x,∆θ) = exp (−σenx)×

×

∞∑
l=0

2l + 1
4π

Pl (cos ∆θ)

1 +
∑

j=1,2,...

(nx) j

j!
ω

j
l

 (11)

From Eq. (11) one can derive the Goudsmit and Saun-
derson solution in its classical form:

T GS
e (x,∆θ) =

= exp (−σenx)
∞∑

l=0

2l + 1
4π

Pl (cos ∆θ) exp (ωlnx)
(12)

It is obvious that σe = ω0. Thus Eq. (12) has another
form:

T GS
e (x,∆θ) =

=

∞∑
l=0

2l + 1
4π

Pl (cos ∆θ) exp [− (ω0 − ωl) nx]
(13)

Now consider the coefficients in the exponent of
Eq. (13). Using Eq. (9) we get:

ω0−ωl =

∫
4π

d cos ∆θdϕωe (∆θ) (1 − Pl (cos ∆θ)) (14)

From Eq. (14) we can write:

ω0 − ω1 =

∫
4π

d cos ∆θdϕωe (∆θ) (1 − cos ∆θ) = σtr

(15)

3. The influence of elastically scattered electrons en-
tering the analyzer after multiple scatterings on
the energy spectrum form

Let us again consider an infinite medium. The z-axis
is chosen in the direction of the energy analyzer. The
mono-energetic unidirectional electron beam makes an
angle θ with the z-axis. The following classes of trajec-
tories contribute to the spectra:

A) trajectories that were strongly scattered over an
angle θ and then coming into the entrance slit without
further collisions;

B) trajectories that have scattered over an angle θ+∆θ
(θ + ∆θ is an angle to axis z, but azimuth angle can be
unspecified), but are subsequently scattered in such a
way that they travel along the z-axis.

We are interested in two questions:
1. What is the value and sign (“plus” or “minus”) of

the energy shift in case B compared to case A?
2. What is the contribution of these processes to the

energy distribution of elastically scattered electrons?
These questions arise because the trajectories men-

tioned under B reach the energy analyzer after elasti-
cally scattering two, three or more times. The energy
loss associated with the scattering at the angle θ + ∆θ is
described by the following expression:

∆E′ = E0 (2m/M) (1 − cos (θ + ∆θ)) =

= E0 (2m/M) (1 − cos θ + cos θ − cos (θ + ∆θ)) =

= ∆E + E0 (2m/M) (cos θ − cos (θ + ∆θ)) =

= ∆E + ∆E1

(16)

with

cos (θ + ∆θ) = cos θ cos ∆θ − sin θ sin ∆θ cosϕ (17)

Now let us find the corresponding energy shift:

∆E1 =

∫
4π

d cos ∆θdϕT GS
e (x,∆θ) ∆E1 (18)

3



Page 4 of 8

Acc
ep

te
d 

M
an

us
cr

ip
t

Eq. (18) can be evaluated either using Eq. (6) or
Eq. (13). Usage of Eq. (6) makes Eq. (16) clearly evi-
dent:

∆E1 =

∫
4π

d cos ∆θdϕ exp (−σenx)×

×

δ (∆θ) +
nx
1!
ωe (∆θ) +

∑
j=2,3...

(nx) j

j!
ωe (∆θ)

j
×

× E0 (2m/M) (cos θ − cos θ cos ∆θ + sin θ sin ∆θ cosϕ)
(19)

But numeric calculations (this will be obvious later)
can be done more easily using Eq. (13). After integra-
tion of Eq. (19) over ϕ and taking into account

2π∫
0

dϕ cosϕ = 0 (20)

we get:

∆E1 = 2π

+1∫
−1

d cos ∆θ · exp (−σenx)×

×

δ (∆θ) +
nx
1!
ωe (∆θ) +

∑
j=2,3...

(nx) j

j!
ωe (∆θ)

j
×

× E0 (2m/M) (cos θ − cos θ cos ∆θ)

(21)

Let us now consider Eq. (21) in more detail. The
first term in the square brackets integrates out to 0 as:∫ +1
−1 d cos ∆θ (cos θ − cos θ cos ∆θ) δ (∆θ) = 0. This term

describes the fact that the particles after a strong scat-
tering at the angle θ±∆θ can come into energy analyzer
only because of additional elastic scatterings. The sec-
ond term in the square brackets of Eq. (21) describes
the particles, that having been scattered over an angle
θ ± ∆θ and enter the energy analyzer after additional
single elastic scattering over an angle ∓∆θ.

The integration over the azimuth angle in Eq. (19)
leads to smoothing of positive (see Eq. (2)) or negative
(see Eq. (1)) additives to the energy ∆E. The smooth-
ing is the consequence of our consideration of scattering
process in an infinite medium. Boundary conditions in-
fluence the integration limits over the azimuth angle in
Eq. (19) and can lead to the domination of processes
resulting in a reduction of the energy losses ∆E (see
Eq. (1)) (this will be shown further using Monte-Carlo
simulation). Boundary conditions have also a strong in-
fluence of the processes that lead to an increase of the
energy loss ∆E (see Eq. (2)).

The third term in square brackets of Eq. (21) de-
scribes the particles that having been scattered at the
angle θ ± ∆θ and enter the energy analyzer after scat-
tering j = 2, 3 . . . times resulting in a total directional
change of ∓∆θ etc.

Let us execute the certain calculations replacing the
expression in the square brackets of Eq. (21) on the
Eq. (13) in Legendre series form:

∆E1 = 2π

+1∫
−1

d cos ∆θ×

×

 ∞∑
l=0

2l + 1
4π

Pl (cos ∆θ) exp [− (ω0 − ωl) nx]

×
× E0 (2m/M) (cos θ − cos θ · P1 (cos ∆θ))

(22)

In the last line of Eq. (22) we used: P1 (cos ∆θ) ≡
cos ∆θ. Integrating in Eq. (22) is easily done. Using
the orthogonality property of Legendre polynomials we
obtain for the shift in the peak position:

∆E1 = E0 (2m/M) cos θ
(
1 − exp [− (ω0 − ω1) nx]

)
(23)

Or by taking into account Eq. (15) and that transport
length ltr = 1/ (σtrn) we get:

∆E1 = E0 (2m/M) cos θ
(
1 − exp (−x/ltr)

)
(24)

If x � ltr then, by using only the first two terms of the
series expansion of the exponent in Eq. (24), we can
approximate this result by:

∆E1 = E0 (2m/M) · cos θ ·
x
ltr

= dEel/dx · cos θ · x (25)

Now we continue with the estimation of the root-
mean-square deviation (i.e. the broadening of the peak):√

∆E2
1 =

√∫
4π

d cos ∆θdϕT GS
e (x,∆θ) ∆E2

1 (26)

Squaring (cos θ − cos θ cos ∆θ + sin θ sin ∆θ cosϕ) and
integrating over dϕ, we obtain:

2π∫
0

dϕ(cos θ − cos θ cos ∆θ + sin θ sin ∆θ cosϕ)2 =

=

(
cos2θ +

1
2

sin2θ

)
−

− 2cos2θ cos ∆θ +

(
cos2θ −

1
2

sin2θ

)
cos2∆θ

4
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Here we have used the equalities:
∫ 2π

0 dϕ cosϕ =

0,
∫ 2π

0 dϕcos2ϕ = 1/2. Since cos ∆θ = P1 (cos ∆θ),
cos2∆θ = (2P2 (cos ∆θ) + 1) /3, the root-mean-square

deviation
√

∆E2
1 can be written in the following form:

√
∆E2

1 = E0 (2m/M)×

×


1∫
−1

d cos ∆θ · T GS
e (x,∆θ)×

×

[
1
3

(
1 + 3cos2θ

)
− 2

(
cos2θ

)
P1 (∆θ)−

−
1
3

(
1 − 3cos2θ

)
P2 (∆θ)

]}1/2

(27)

After integrating of Eq. (27) we get:√
∆E2

1 = E0 (2m/M)×

×

{
1
3

(
1 + 3cos2θ

)
− 2

(
cos2θ

)
exp

(
−

x
ltr

)
−

−
1
3

(
1 − 3cos2θ

)
exp

(
−

3x
ltr

)}1/2

(28)

If x � ltr then we can make a series expansion of the
exponent in Eq. (28) and by retaining the first two terms
we get: √

∆E2
1 = E0 (2m/M) |sin θ|

√
x
ltr

(29)

The value of x for the considered problem is of the order
of the inelastic mean free path: x ' lin. As for x � lin
the probability that such a trajectory contributes to the
elastic peak in very small. The most important result of
the current paragraph is the fact that a factor

εSHIFT = lin · dEel/dx = E0 (2m/M)
lin
ltr

(30)

describes the elastic peak energy shift due to the pro-
cesses of continuous elastic energy losses (see Eq. (5))
as well as the processes of multiple elastic scattering.
The factor

εWIDTH =

√
ε2

ellin = E0 (2m/M)

√
lin
ltr

(31)

describes the broadening of the elastic peak energy dis-
tribution.

The effect of multiple scattering depends thus on the
values of lin and ltr . These quantities are plotted in fig.
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Fig. 1: The transport mean free path ltr (log vertical scale) and the
inelastic mean free path lin (linear vertical scale) for C and Au for the
energies of interest.
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Fig. 2: The dependence of peak position shift (see Eq. (30)) due
to multiple scattering and the dependence of the peak width (see
Eq. (31)) due to multiple scattering on the incoming energy.

1 for C and Au. The quantities εSHIFT and εWIDTH are
plotted on Fig. 2 as a function of energy. lin was cal-
culated by TPP-2M formula [12]. Values of ltr were
taken from [13]. The weak dependence of the param-
eter (30) and (31) on energy and their small influences
on the energy distribution are evident. This parameter
describes the distribution of multiple elastic scattering
energy losses. It is important to note that the energy
broadening is larger than the shift by an order of magni-
tude. Note that the curves of εSHIFT of C and Au crosses.
This is a consequence of the fact that ltr increases faster
with energy for C than for Au.

4. Monte-Carlo (MC) simulation of multiple elastic
scattering in a medium with stationary atoms

Monte-Carlo simulations of multiple elastic scatter-
ings are carried out on the basis of the binary collision

5
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approximation [10, 11]. The cross-sections of inelas-
tic and elastic scattering are chosen in accordance with
Ref. [12, 13]. After an electron has scattered inelasti-
cally, we are not interested in it any more (the electron
is then considered “dead”, as it can not contribute any-
more to the elastic peak), and hence the simulation of
such a trajectory is aborted. The probability of an elec-
tron “surviving” each scattering event is defined by the
albedo for single scattering λ = σel/ (σel + σin).

About N = 3 × 109 trajectories for each case are
simulated. The particle’s trajectory is simulated by
a straight-forward Monte-Carlo method based on the
mean free path (the mean distance between two junc-
tion points) and the randomly distribution of the scat-
tering events (elastic or inelastic) in the certain point.
After the scattering event the particle propagates along
a new direction and with a reduced energy until the next
collision occurs.

5. Results and discussion

In the simulations the incoming beam direction, sur-
face normal and outgoing electrons (that are detected by
the analyzer) are chosen in a single plane. The angle of
incidence equals 67.5◦. In the first case the scattering
angle is 45◦ and in the second case it is 180◦.

R (Ω0,Ω,∆) denotes spectrum of elastically scattered
particles (Ω0 and Ω are incident and outgoing solid an-
gles respectively).

The area under elastic peak can be estimated as
r (Ω0,Ω) =

∫ E0

0 R (Ω0,Ω,∆) d∆.
A spectrum obtained by the Monte Carlo simulation

is shown in Fig. 3 and consists of a superposition of a
sharp peak (due to electrons scattered in a single colli-
sion over an angle θ0) and a broad “dome” (due to elec-
trons coming into the analyzer after multiple elastically
scattering events). The normalization of the spectra is
implemented in accordance with the exact solution of
the angular distribution problem for particles reflected
by multilayer slabs with defined elastic cross-section
and albedo for each slab [14].

The results of the exact calculation of the reflection
function for the spatial angle of 10−5 sr for Au and C
samples for two different scattering geometries are plot-
ted on the Fig. 4.

The contribution of single scattered particles to the
total signal is an order of magnitude smaller than that of
multiple scattered ones.

The energy spectrum shown in Fig. 3 illustrates the
dominating influence of multiple elastic scattering. But
here the Doppler broadening due to the thermal motion,
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Fig. 3: The form of energy spectrum of elastically reflected elec-
trons obtained by Monte-Carlo calculation for incident angle 67.5◦,
the scattering angles are 45◦ and 180◦
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Fig. 4: Exact solution for reflection electron beam intensity in the
cases of two geometries for C and Au samples. r (Ω0,Ω) corresponds
to the fraction of the incoming beam that is reflected without inelastic
energy loss, into the analyzer with Ω0,Ω — incident and outgoing
angles respectively and without azimuth rotation (∆ϕ = 0).

the finite energy resolution of the analyzer and the en-
ergy distribution of the probe beam are not taken into
account.

In the Fig. 5 we investigate if the influence of mul-
tiple scattering can be seen, when energy broadening
is taken into accout. The following curves are shown:
solid and non-monotonic curve is Monte-Carlo simula-
tion result RMC (Ω,Ω0, ε); solid and monotonic curves
are the convolutions of previous curve with Gaussian
function (subscript“br” means broadened):

Rbr (Ω,Ω0,∆) =

E0∫
0

RMC (Ω,Ω0, ε) GΣ (x, ε) dε; (32)
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Fig. 5: Spectrum of electrons elastically reflected from Au, E0=40
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angle — θ =45◦. Rbr (Ω,Ω0,∆) — solid smooth line; R (Ω,Ω0,∆) —
dotted smooth line; RMC (Ω,Ω0,∆) — histogram; the vertical dotted
smooth line describes the function δ

[
∆ − (1 − ξ(θ)) E0

]
corresponding

to the simple electron scattering at the angle θ from motionless atom
of a sample, ξ (θ) — the kinematic factor (see Eq. (1)).

dotted line is a such function:

R (Ω,Ω0,∆) =

=

E0∫
0

δ (ε − (1 − ξ(θ)) E0) GΣ (x, ε) dε =

=
1

√
2πσΣ

exp
− (∆ − (1 − ξ(θ)) E0)2

2σ2
Σ


(33)

calculated without taking into account energy losses for
multiple elastic scattering in the simple scattering ap-
proximation (ε is a variable of integration). The Gaus-
sian function with σΣ in Eqs. (32, 33) describes the to-
tal broadening of signal due to Doppler effect, finite en-
ergy resolution of the analyzer, and energy spread of the
probe beam.

Fig. 5 shows that if σΣ ≥ 0.1 eV the curves described
by Rbr (Ω,Ω0,∆) and R (Ω,Ω0,∆) practically coincide.
The shift of energy distribution maximum ∆E ≈ 0.03
eV is clearly observed. This is in good agreement with
the value of the shift parameter (30) E0 (2m/M) · lin/ltr,
(0.019 eV — see Fig. 2) as it was obtained by the ana-
lytical theory.

The dominant part of the multiple scattered particle
energy spectrum are the electrons with energy losses
less than ∆E value as calculated from Eq. (1). This
means that the contribution in the spectrum of electrons
coming into the energy analyzer due to multiple small
angle scatterings (with energy losses defined by Eq. (2))
appreciably exceeds the contribution of electrons with
even one elastic scattering at the angle more than θ0
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Fig. 6: The normalized spectra (obtained by Monte Carlo simulations)
of electrons elastically reflected from a) — Au and b) — C; the energy
scale is in units of the single-scattering recoil energy (Eq. 1)

(with energy losses defined by Eq. (3)). This is a con-
sequence of the fact that the cross-section is peaked in
the forward direction — i.e. the probability of a small-
angle scattering event is much larger than the probabil-
ity of large-angle scattering event.

Fig. 6 illustrates the influence of energy and scatter-
ing geometry on the energy distribution of elastically
scattered electrons. These results can be compared with
the shift and width as defined values defined by eq. (30)
and eq.(31). When the energy increases and the geom-
etry is left unchanged then the root-mean-square devia-
tion increases as well (see Fig. 2).

Also an adequate agreement between the analytical
calculation (see Fig. 2) and the Monte Carlo simulation
(see Fig. 3) is observed. The calculated broadening of
spectra (see Eq. (29)) is in a good agreement with Monte
Carlo simulation.

We can see on Fig. 6 that all features of the scattering
on Au are the same ones for the scattering on C. The
larger broadening of C spectra (larger than the broaden-
ing of the Au spectra) is in accordance with analytical
theory. It is a consequence from Monte Carlo simulation
that for C the contribution of singly-scattered electrons
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Fig. 7: Peak shape of electrons elastically reflected from a) — B and
b) — Li samples for incoming energies as indicated. The solid line —
the spectrum of electrons elastically reflected from one isotope sam-
ple with average mass, the dotted line — the calculation considering
different masses and abundance on the Earth [15].

and multiple scattered electrons are of the same order of
magnitude. The case of 40 keV electron scattering from
carbon was not simulated as, due to the smallness of
the scattering cross sections at these energies, a Monte
Carlo simulation is not practical under these conditions.
Under these conditions the Doppler broadening of the
C peak is very significant making it again unlikely that
effects due to multiple scattering are resolved in the ex-
periment.

Finally we study one more possible cause of an asym-
metry of homogeneous reflected electron peak. It deals
with different concentration of isotopes [15] in mate-
rials. In Fig. 7 the elastically reflected electron peaks
calculated with provision for different isotope abun-
dance are shown. The calculations are done for B,
Li, Si and Mo. Unlike the effect of multiple scat-
tering which requires an energy resolution of σΣ =√
σD

2 + σA
2 + σB

2 ' 0.1 eV to observe it, the iso-
tope broadening effect for B and Li can be observed at
E0 = 20 − 40 keV with an experimental resolution of
0.4 eV.

6. Conclusion

These investigations have shown that under actual ex-
perimental conditions the interpretation of the elastic
peak spectra in terms of a single scattering model is jus-
tified. Although multiple scattering occurs frequently,
the effect of multiple scattering on the energy distribu-
tion and peak position is usually very small, consider-
ably less than the experimental resolution. Thus inter-
pretation of the elastic peak in terms of sample composi-
tion and a single scattering model is possible and makes
this method a promising candidate for the composition
studies of intermediate thicknesses.

We have investigated the influence of multiple elas-
tic scattering on the elastically scattered electron peak
at energy 5-40 keV. In papers [16, 17] the analysis is
implemented for energy 1–2 keV by Monte-Carlo sim-
ulation. Significant influence on elastic peak shape have
not been found. The similar conclusions about weak in-
fluence of multiple scattering on the shape of elastically
scattered electron peak for energy 500–3000 eV are in
paper [18].
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