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A B S T R A C T

The dielectric function is often known in the optical limit (zero momentum) but knowledge away from zero
momentum is required for the calculation of many physical properties, such as ion stopping and inelastic mean
free path. We review the several extension schemes and compare the results with the available literature and
investigate in particular the effect of the extension scheme on the calculated proton stopping for the case of Li.

1. Introduction

The interaction of fast, charged particles with matter has been a
central topic of research for a long time. Bohr used it to test his
emerging understanding of the quantum nature of matter [1], Bethe
derived a first description, fully consistent with modern quantum
physics [2], and further refinements were due to Lindhard [3], to name
only the major players. Besides its fundamental interest the topic is
studied for its importance in technological fields like ion beam analysis
and ion beam modification of materials. More recently, it has attracted
attention within the context of ion-beam based cancer therapy. The
field has been thoroughly reviewed by Sigmund [4] and is described in
the context of materials science by Nastasi et al. [5], and in the context
of medical physics by Nikjoo et al. [6].

In the first Born approximation (FBA) the interaction between
projectile and target is considered weak. This is the case when the
charge of the projectile is small and its velocity is large. Then one is in
the linear regime and first order perturbation theory should suffice. The
projectile can then be described as a plane wave and cross sections are
proportional to the square of its charge. Under these conditions ion
stopping can then be described in terms of the momentum (q) and
energy (ω)-dependent dielectric function q( , ) [4,7]. The passing of
the ion causes an electric field in the target that changes rapidly with
position and time. This changing field can be decomposed into Fourier
components, with a time and space dependence depending on ω and q.
From q( , ) the polarization of the target, as a response to this electric
field, is calculated and the induced field at the position of the projectile
leads to a slowing down of the projectile. Within this framework ob-
taining the right stopping values requires knowledge of q( , ) (or

equivalently knowledge of qIm [ 1/ ( , )]), but generally, there are no
experimental data or ab-initio calculations of this quantity, especially
away from =q 0. Therefore, model dielectric functions are often em-
ployed.

An overview of a variety of model dielectric functions used in the
literature was given by Nikjoo et al. [7] and within the contest of proton
stopping in water by Emfietzoglou et al. [8]. The effect of calculating
the dielectric function beyond the random phase approximation is
discussed in Ref. [9]. Novel approaches of including the q-dependence
to the dielectric function were discussed by Chantler and Bourke
[10,11] will not be considered here. The dielectric function is used in
track simulation of protons and electrons for charged particle dosimetry
e.g. Refs. [12,13].

We want to study how ion stopping depends on the extension
scheme used for the dielectric function away from q=0 and address
several important questions:

- What are the consequences of adopting various models for the ex-
tension of q( , ) for q 0, for the calculation of ion stopping?
-Can we explore spectroscopic techniques to test the validity of
various extension schemes?
-Can we estimate how the stopping changes if we use calculations
that go beyond the linear regime ? These corrections should become
important at lower projectile velocities v where the projectile pre-
sents a large perturbation of the target system.

We aim to keep the discussion as simple as possible and will only
consider proton stopping, to avoid largely the problems due to different
charge states, and assume that the projectile velocity is low enough for
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relativistic effects to be neglected. Unless otherwise stated we use
atomic units.

2. Dielectric formalism

The dielectric theory is a well-established way of describing the
interaction of charged particles with matter [3,14]. It is a first Born
theory i.e. it assumes weak interaction of the projectile with the target.
Central to describing the interaction of the projectile with the target is
the imaginary part of the inverse dielectric function. The probability
that the projectile creates an excitation with momentum q and energy ω
per unit path length travelled is proportional to the energy loss function
(ELF): qIm [ 1/ ( , )] The kinetic energy and momentum of the pro-
jectile will change accordingly. The stopping force on a proton with
energy E0 and mass M can be expressed in terms of the ELF:
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with =v E M2 /0 the ion speed and Z the charge of the projectile. We
usually consider =Z 1 (ionized protons).

qIm [ 1/ ( , )] is a property of the target and has often been de-
termined experimentally in the optical limit ( =q 0). Calculation of ion
stopping requires integration over a large part of q( , ) space and does
thus depend on the assumptions on how the dielectric function can be
extended for q 0.

A very simple description of a solid (Drude model) considers elec-
trons as classical particles and assumes the nuclei can be described by a
uniform positively charged background. In such a target the electrons
(with density n) would have collective excitation modes (‘plasmons’)
and the dielectric function (at =q 0) can be described as [15]:
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with = n4p the plasmon frequency and Γ the damping constant.
Experimentally it is known that the plasmon energy depends on q, e.g.
from electron energy loss measurements [15]. Hence we have to add a q
dependence. The argument usually made is that at large q the projectile
interacts with a single electron at a time and the energy of the final state
(and thus the energy loss) should approach the free particle value: q /22 .
Thus often the ‘simple quadratic dispersion’ is introduced:

= +q q( ) (0) /2p p
2 . Then the stopping values for protons can be

calculated be integrating eq. (1). For an oscillator with =(0) 15p eV a
maximum in the stopping power is found near =E 200 keV as shown in
Fig. 1. Note also that the stopping is very small if the dispersion curve
is, for all q values, at energies larger than qv as the integration over
energy in eq. (1) is only up to qv. Indeed under these conditions the
stopping vanishes completely if Γ is taken to be zero.

Changing the dispersion will thus change the calculated stopping
value. Another frequently used choice is ‘full dispersion’:

= + +q q E q( ) (0) /4p p F
2 2 2

3
2 4 with EF the Fermi energy. In that case

the dielectric function is the plasmon-pole approximation [16] to the
Lindhard dielectric function [3]. As can be seen in Fig. 1 such dispersion
relation means the plasmon energy changes slightly slower with q and,
as a consequence, the onset of the stopping starts at smaller E0 values
and the stopping near the maximum is slightly larger.

One of the earliest estimates of the ion stopping was by Bethe [2].
He obtained the stopping by considering soft (small q) and hard (large
q) collisions. For an electron gas system Lindhard [3] obtained the
Bethe-like stopping formula for protons:
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This is plotted in Fig. 1 as well. Clearly the onset in Bethe's formula
is at even lower energies than obtained for simple quadratic and full
dispersion, and the maximum stopping value is larger. As shown in the
appendix, if we change the dispersion used in the simple Drude model,
described above to:

=q q( ) max ,
2

,p p
2

(5)

then, in the limit of small damping (Γ→0) one recovers stopping values
of eq. (4).

Lindhard derived q( , , )L p , a dielectric function for free-electron
gas, based on quantum physics by considering all possible excitations
from electrons within the Fermi sphere. He found contributions to the
ELF due to plasmon excitations, concentrated along a line in q( , )
space, and due to electron-hole pair excitations covering an area of
q( , ) space that can be derived from simple energy and momentum
conservation arguments. Mermin added a relaxation time to the ex-
citations giving a finite width to the plasmon branch [17]. Such a

Fig. 1. The stopping curve for a solid with a plasmon at 15 eV for the models as
indicated (top), as well as the dispersion used in these models (bottom). There is
only contribution to the stopping when the qv line (shown for E0 =10, 20 and
30 keV) is above the dispersion curve for some q.
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Mermin loss function is shown in Fig. 2 for the electron density of Li
metal. For small q values the dielectric function is very similar to the
Drude dielectric function, but at larger q values the contribution of
electron-hole pairs can be seen clearly. A significant consequence of this
is that for any projectile velocity v there is always some intensity of the
ELF below the qv line and the stopping is thus never zero. Note that in
the Mermin model the dispersion is built-in and at any q the ω value
with maximum intensity follows the ‘full dispersion’ closely. The Drude
dielectric function predicts a threshold projectile energy, below which
there is virtually no stopping. This is not observed experimentally.
Within the Mermin approach there is no such threshold. Therefore, we
will mainly consider the Mermin dielectric function in the following.

There are sum rules that should apply to any dielectric function. For
example, there is the f-sum rule:

=q d n1
2

Im[ ( , )] ,2 0 (6)

which should be fulfilled at any q. Similarly the Bethe sum rule:

=
q
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2
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Causality implies that the real and imaginary part of k( , ) are
linked via Kramers-Kronig relations:

=q q d( , ) 1 2 ( , )
( )1 0

2
2 2P

(8)

withP the Cauchy principal value. Re q[1/ ( , )] and Im q[1/ ( , )] are
Kramers-Kronig pairs as well. The Mermin dielectric function fulfills all
these sum rules. Some different approaches to the calculation of the
stopping from the dielectric function were discussed by Pathak and
Yussouff [18] and Kaneko [19].

3. Real solids

3.1. Describing long tails

For real solids the ELF in the optical limit has more structure than
just a single plasmon peak. Even for free electron metals there are core-
level related features in the ELF at ω values close to their binding en-
ergies. In many cases these core electrons contribute significantly to ion

stopping. Therefore Abril et al. [20] suggested to describe the ELF in the
optical limit as a sum of Mermin dielectric functions each with weight
Ai, energy i and width i. By choosing the energy width and weight of
each component appropriately one can approach the measured ELF at

=q 0 and check, using the Bethe sum rule that the total electron density
is correct. The use of Mermin function implies that, if the sum rule is
fulfilled at =q 0, it is adhered to at all q values. Moreover, as long as

=A 1i i the real and imaginary part of the sum of Mermin functions
are indeed Kramers-Kronig pairs.

The question now arises if this decomposition is unique, at least in
the sense that for two good-quality fits of the ELF at =q 0 the extracted
observables (e.g. ion stopping) are very similar. Let us consider the case
of Cu. Here Abril et al. [20] obtained a good fit of the ELF at =q 0 using
5 components. One of the components with = 79i eV, describes the
strong tail of the Cu ELF at high ω values and is very wide ( = 152i eV).
This component is quite strong, it contributes to the Bethe sum more
than half of the total. It is, of course, possible to obtain a good fit using
more components, each with a smaller width but with a range of i
values. Would such a fit lead to the same proton stopping?

To investigate this, we took only this Mermin component and fitted
it with a number of Mermin functions, for =q 0 each with different i
and i value. As can be seen in Fig. 3 a very similar shape is obtained
with a larger number of components. Interestingly, the calculated
stopping values differ significantly for smaller proton energies. It

Fig. 2. Im q[ 1/ ( , )] of the Mermin dielectric function (Lindhard dielectric
function + relaxation time) plotted for an electron gas with the same density as
Al ( = 15p eV). Besides the plasmon branch, similar to what is seen in the
Drude dielectric function, there is also intensity due to electron-hole excitation
(in between the white dash-dotted lines). The qv lines are shown for =E 5,100
and 20 keV.

Fig. 3. A single Mermin ( = 791 eV) with a very large width ( = 1521 eV) at
q=0 fitted as the sum of 10 and 15 more narrow Mermin loss functions (top)
and the derived stopping values for protons (bottom). Although the description
in the optical limit is very similar, the calculated stopping differs significantly
for smaller projectile energies.(The exact parameters used in the calculation are
given in the supplementary materials.)
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decreases by more than a factor of 1.5 if 15 components are used
compared to a single one.

One could fit the loss function with even more components, with
even smaller width. In the limit that 0 the procedure approaches the
one used by Tung et al. [21] and Penn [22] based on the Lindhard
dielectric function:

=
q

d g
q

Im 1
( , )

( )Im 1
( , , )p

p0 p
L (9)

with

=g ( ) 2 Im 1
(0, )

.
(10)

The factor 2/( ) reflects the fact that the ELF from the Lindhard
dielectric function (see eq. (9)) has, at =q 0, the shape of a delta
function but with area /2. The obtained stopping values of this ‘Penn’
procedure are shown in Fig. 3 as well. The obtained Penn stopping
values are even slightly less than the fit with 15 Mermin components.

The main differences in the stopping caused by the tail component is
for <E 10 MeV. For the case of copper the main contribution to the
stopping below =E 10 MeV is from the outer valence electrons mod-
elled by Abril et al. [20] with oscillators with < 50i eV. A fit of the tail
of the Cu ELF with narrower components would reduce the overall
stopping of protons in Cu below 0.3MeV by 10–15%.

The reason that the stopping values are different becomes obvious
when one plots the ELF's at different q−values. This is done in Fig. 4
where we compare the single-component ELF to the Penn ELF. At =q 0
both are the same (by construction) but at larger q values the single
broad Mermin is larger at smaller ω-values than the corresponding Penn
ELF (or the ELF from the 10 of 15 component fit). Hence there is more
intensity below the qv-line at smaller E0 values, leading to a larger
stopping. As both approaches have the same Bethe sum (eq. (7)) for all
q, both curves necessarily cross and the Penn approach has a tail with
larger intensity. This ensures that, in the high E0 limit both approaches
give the same stopping. Similar observations can be found in the recent
paper by Da et al. studying the dielectric function in the context of the
inelastic mean free path [23].

Which stopping result is the correct one? The relaxation time in the
Mermin model is related to the rate at which the excited state decays.
Assume, for simplicity, that the final state can be described as a nearly
free electron with an energy near 100 eV. For a 100 eV electron (velo-
city 2.7 a.u.) the inelastic mean-free-path is of the order of 10 a.u.,

corresponding to a lifetime of 10/2.7= 3.7 a.u. And hence a width () of
1/3 a.u., corresponding to 7eV. Clearly a Γ value of 152 eV is too large.
The large tail is better interpreted as a consequence of the presence of a
range of electron densities in Cu (and hence a range of plasmon energies
resulting together in a long tail) and hence the fit with narrower
components (or the Penn approach) seems more reasonable. We con-
clude that the use of very broad Mermin functions in the description of
the ELF will result in too large stopping values at low E0.

3.2. Describing edges

Another difficulty one encounters when one wants to describe the
optical ELF by a sum of Mermin ELFs is the presence of sharp edges at
energies where excitation of core levels becomes possible. Obtaining a
good fit of the sharp edge requires a very large number of Mermin
functions (making the method more computational expensive).
Therefore other solutions have been suggested in the literature.

Abril et al. fitted the ELF with Mermins, some of them were trun-
cated at the edge energy edge, obtaining the sharp edge in this way.
Good fits of the optical ELF are easily obtained in this way [20]. Simple
truncating the Mermin dielectric function at the same energy for all q-
values would result in a Bethe sum with n values that depends on q. To
retrieve the right n value for all q Abril et al. made the truncation en-
ergy q dependent: q( )edge and adjusted the edge energy so the Bethe
sum gives the same result at all q [20]. In practice this results in the
truncation energy increasing with q. For deeper edges, where solid-state
effects are small, Heredia-Avalos et al. suggested the use of generalised
optical oscillators (GOS) as can be calculated for isolated atoms, e. g
based on hydrogenic wave functions [24]. The GOS approach ensures
satisfying the Bethe sum at all q.

In a previous work we suggested as an alternative to keep the
truncation energy constant but vary the amplitude A with which the
oscillator contributes to the dielectric function with q in a way that the
Bethe sum is fulfilled at all q. We compared the q( )edge and this A q( )
method extensively before [25]. Here we restrict ourselves to the A q( )
method.

Da et al. used a third approach. They fitted the dielectric function
with Mermin functions only, but allowed for oscillators with both po-
sitive and negative intensity [26,27]. This makes it possible to create
sharp edges with a manageable number of Mermin functions. Using this
method the Bethe sum is fulfilled automatically at all q. We will refer to
this approach as the ‘negative A’ method.

Finally one can use the Penn method to obtain the dielectric func-
tion for all q( , ) values from the ELF. This is computationally ex-
pensive but avoids any curve fitting and its ambiguities.

To highlight the differences between all approaches we calculated
the GOS at =q 0 for a Li 1s level with an onset near 55 eV and analysed
this with the various approaches (see Fig. 5). The GOS was calculated
following the procedure described in Ref. [24] and had a sharp onset
near 55eV. We fitted GOS at =q 0 with the A q( ) method and the ne-
gative A method and obtained a reasonable fit. The Penn method gives
a perfect description at =q 0 by construction. Then we calculated the
contribution to the energy loss function at several other q values. The
results vary greatly. Both the Penn method and the negative A method
have the edge dispersing to larger ω values for small q and the edge
disappears at larger q, being replaced by a gradual increasing intensity,
starting from = 0. This is not physical as the energy loss should be at
least the core level binding energy. The GOS and A q( ) method maintain
an edge at the same position as at =q 0 but the intensity of the GOS
method near the edge is, away from =q 0 larger than the A q( ) method.
Again all ELF curves have the same Bethe sum, so they necessarily
cross. The derived stopping curves are shown in Fig. 6, the absolute
values are of course determined by the density of atoms assumed in the
model system. The negative A and Penn method do not have a threshold
value above which the stopping becomes appreciable, as their ELF have
for large q (unrealistic) intensity for small ω values. The GOS has the

Fig. 4. A comparison of Im q[ 1/ ( , )] at the q values as indicated for a single
broad Mermin oscillator ( = 791 eV, = 1521 eV) (dashed line) and its de-
scription using the Penn approach (solid line). At =q 0 both approaches co-
incide.
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largest value of the ELF just above 55 eV and hence it has the largest
stopping value for E 100 2000 keV. For large E0 values all stopping
values converge to the Bethe formula result.

Montanari and Miraglia [28] calculated the 1s stopping using the
shellwise local plasma approximation based on the Levine-Louie (LL)
dielectric function [29]. It is shown in Fig. 6 as well and has an onset of
the stopping at larger projectile energies than the other models. In that
case the contribution of a core electron level to the ELF is taken as a
delta function (with the appropriate area) at the core hole binding
energy (which is taken to be the band gap of the LL dielectric function),
and no attempt is made to fit the optical ELF. Vos and Grande discussed
the use of the Levine-Louie dielectric function plus relaxation time
(Mermin-Levine-Louie or MLL) [30] but found that fitting of an ELF
with inner shell edges with the MLL has similar complications as the
fitting with a Mermin dielectric function. At larger q values the MLL
dielectric function (Fig. 3 of ref. [30]) remains very small at ω values
below the core level energy (in contrast to negative A and Penn

approach) and no sharp increase at the edge position is observed (in
contrast to the GOS and A(q) method. The intensity in the shellwise
local plasma approximation is thus concentrated at larger ω values
explaining its slower onset with increasing projectile energy.

4. Lithium

4.1. Stopping in the linear regime

Now we want to illustrate the various effects discussed for one of
most simple cases: lithium metal. It should be reasonably close to a free-
electron metal and has only a single core level. Experimental proton
stopping data exist [31,32] and this case has been studied theoretically
by Mathar et al. [33] and Montanari et al. [28]. We will first neglect
charge exchange effects which become important at lower energies and
were extensively discussed by Cabrera-Trujillo et al. [34] for atomic Li.
We will compare the ELF at specific q values with the inelastic X-ray
data as measured by Nagasawa et al. [35,36] and high-resolution
Compton measurements by Chen et al. [37].

First we need to establish a reasonable estimate for the ELF in the
optical limit. For the valence band we can use the optical result of
Rasigni et al. [38], which gives for the plasmon energy 7.0 eV (max-
imum intensity of the optical ELF) in good agreement with (transmis-
sion) electron energy loss measurements of ref. [39] (7.08 eV). This is
less than the calculated plasmon energy, assuming 1 free electrons per
Li atom (8.0 eV) indicating that a plasmon at 7 eV does not account for
all Li valence electrons and that band structure effects are significant.
Unfortunately there appears to be no optical data for Li beyond 10 eV.
To account for all Li valence electrons we take for the plasmon at 7 eV

=A 0.8i and added another broader (4 eV wide) oscillator at 11 eV with
intensity =A 0.183i . (Note that the sum of these two amplitude is
slightly less than 1 to allow for the contribution of the core level to the
Kramers Kronig transform).

At larger energy losses ( > 30 eV) we use the data of Henke [40]
to help us establish the ELF. We obtain a reasonable fit of the 1s ELF
structure from Henke (edge at 55 eV) using either 4 truncated Mermin
loss functions or a combination of oscillators with positive Ai values
and another 4 with negative Ai values.

There are some complications using the GOS approach for shallow

Fig. 5. Model calculations for the development of the ELF of the Li 1s level as a function of q for the models as indicated.(The exact parameters used in the calculation
are given in the supplementary materials.)

Fig. 6. The derived stopping curves for the model core level for the various
extension methods as indicated as well as the Li 1s stopping power as calculated
by Montanari and Miraglia [28].
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core levels. The predicted edge position, based on Slater effective
charges [41] can be different from the actual observed one, and the
model does not describe excitations to bound states. To describe the ELF
we calculate the GOS starting not from the theoretical edge position but
from the actually observed edge position. This affects the area of the
GOS, and we apply a q dependent scaling factor so the right number of
electrons (2 electrons per atom for Li 1s) is derived from the Bethe sum
rule. The results of the fit for the ELF are shown in Fig. 7.

We also used the Penn approach to calculate the dielectric function
at various q values and the stopping. Here we took the ELF at =q 0 of
the truncated A q( ) method as the ELF that defined the Penn dielectric
function at all q via eq. (9).

For Li there exist inelastic X-ray scattering (IXS) results by
Nagasawa et al. [35,36] that can be compared to the calculated ELF at
specific q values. IXS measures the dynamical structure factor S q( , )
that is related to the loss function by:

=S q q
n q

( , )
4

Im 1
( , )

.
2

2 (11)

We compare in Fig. 8 our energy loss functions at =q 0.59 a.u. with
IXS results from Ref. [35], and our energy loss function at 3.1 a.u. and
4.1 a.u. with those published in Ref. [36].

Many of the trends shown in these experimental spectra are re-
produced by the calculations but there are also distinct differences. For
the GOS, truncated A q( ) and negative A model the valence band loss
feature is described identically as the same valence band oscillators are
used. The Penn dispersion is somewhat larger (in agreement with our
findings in section 3.1. The experimental dispersion at =q 0.59 a.u.
(about 2 eV) is significantly smaller than the dispersion predicted using
the Mermin dielectric function (3.5 eV). As we saw in Fig. 1 this means
that the actual stopping for low projectile energies should be larger
than calculated from these dielectric functions. For the K edge region at

=q 0.59 a.u. It is obvious that experimentally the position of the K edge
does not depend on q whereas the position within the Penn and Ne-
gative A model does increase with q.

For the larger momentum transfers studied ( =q 3.1 and 4.1 a.u.) the
behaviour of the valence electrons approaches the Compton limit, i.e.
their contribution is centered at q /22 (130 eV for q=3.1 a.u., 230 eV
for q=4.1 a. u.) and the width increases linearly with q. The 1s con-
tribution becomes very broad and extends from the edge over several
hundred eV. Experimentally the K edge remains distinct and at the same
energy. In the calculations there is substantial difference how their
intensity is distributed over ω in the various models. The edge dis-
appears at large q values for the negative A model and the Penn ap-
proach and the ELF extends then all the way to = 0. The edge of the
truncated A q( ) model stays, by definition at the same ω value. The
original model by Abril et al. [20] that makes the truncation energy a

function of q would see the edge shift significantly to larger ω values.
At even larger q values the 1s electrons can also be treated in the

Compton limit. In Fig. 9 we show a Compton profile, as measured by
Chen et al. [37] and compare it with the dielectric function as calcu-
lated for =q 10 a.u. At these high momentum transfers it is a reason-
able approximation to assume one interacts with only one electron and
its final state can be considered a free electron. Then the energy loss
(shown on the top) axis and the momentum of the electron before the
collision (lower axis) p are related as [42]:

= + q pq
2

,
2

(12)

i.e. the energy loss is that of scattering from a free electron plus a
Doppler broadening term due to the movement of that electron.

Fig. 7. The ELF at q= 0 from the data from Rasigni and Rasigni [38] and
Henke et al. [40] and their description using 3 different model ELF's. For the
Penn calculations we assumed it to be identical with the A q( ) method at =q 0.
(The exact parameters used in the calculation are given in the supplementary
materials.)

Fig. 8. A comparison with the calculated energy loss function at q values as
indicated compared to the inelastic x-ray scattering results. For the Li 1s level
four different ways were used to describe its contribution to the ELF (GOS
formula, fitting with truncated Mermin, and fitting with both positive and ne-
gative Mermin contributions as well as the Penn approach). Note that the
Mermin approach gives a dispersion of the plasmon feature at 0.59 a.u. That
differs from the experiment. Also the position of the edge remains clear at larger
q in the experiment, but the edge disappears in the negative A and Penn ap-
proach.
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The Compton profile consists of a contribution of the (almost free
electron-like) 2s electrons and the atomic 1s electrons. The Compton
profile of a free-electron gas resembles an inverted parabola and ex-
tends up to kF the Fermi wave vector (0.325 a.u. For Li), whereas the
Compton profile of the 1s electron is broader and does not have a sharp
cut-off. For comparison we show the calculated 1s Compton profile
from Biggs et al. [43] as well. Note that the GOS approach describes the
1s contribution much better, then the truncated A q( ) method or any of
the other approaches based on the Mermin loss function (not shown).
The 2s contribution is narrower in the calculations as the theory ne-
glects broadening due to the influence of the lattice [33] and electron
correlation effects beyond the RPA [44].

4.2. Stopping beyond the linear regime

Non-perturbative treatments of the stopping power are possible by
considering the problem from the reference frame where the projectile
is at rest. In this frame the projectile interacts with (relatively fast)
electrons with a velocity distribution centered around −v. The inter-
action of fast electrons with an atom can be solved exactly assuming a
central potential for the ion-electron interaction through the partial
wave analysis approach. Once this interaction is calculated, the stop-
ping of the ion in the laboratory frame can be obtained. The standard
approach to do that relies on the transport cross section (TCS) which
only converges very slowly to the Bethe stopping value at large energies
[45]. A property of perturbative (linear) stopping power calculations is
that the stopping is proportional to Z2. In non-perturbative calculations
contributions proportional to Z3, Z4 etc. Appear. We refer to the terms
proportional to Z3 as the Barkas contribution [46]. Recently, a new
non-perturbative formula was derived by Grande [47] that calculates
the stopping ( dE dx( / )IDA) using the induced (charge) density (induced
density approximation or IDA) for an electron gas and this solution
converges to the Bethe limit for large projectile energies much faster.

Incorporating these effects for non-free electron materials one de-
composes the target as the sum of electron gases with different densities
as described for the Penn method, using eq. (9):

=dE
dx

v d g dE
dx

v( ) ( ) ( , ),p p
IDA

p0 (13)

where the function g ( ) defined in Eq. (10) is from the Penn model. The
stopping in the IDA (or TCS) approximation of an actual material, is
then considered to be the weighted sum of the IDA (TCS) stopping
calculation of the corresponding electron gas contributions. The results,
using the same ELF in the optical limit as a starting point are shown in
Fig. 10. For all calculations in this figure the extension of the dielectric
function is the same, the differences are due to the non-linear effects
only included in the IDA and TCS.

For the IDA method differences with the first-order Penn approach
are noticeably around 150 keV and at very low energies. Splitting up
the contribution from the 1s and 2s electrons we can more clearly ob-
serve non-linear (higher-order) effects, the difference the Penn and IDA
curves. For the 2s electrons both curves are very similar except for low
energies ( <E 10 keV). This means that non-linear effects are of minor
importance at high energies for this shell. In addition the standard
transport cross section (TCS) method converges very slow to the Penn
(and Bethe) results for large E0 values and therefore it is not able to give
properly the first higher-order term (Barkas contribution, proportional
to Z3). At low energies ( <E 10 keV) both methods (IDA and TCS) are
similar and give a positive Barkas effect. For 1s electrons the Barkas
effect is more pronounced at high energies since it depends linearly on
the binding energy or resonance frequency of the shell [48]. At low
energies, the Barkas effect should be smaller for inner-shells and since,
in the framework of FEG, the corresponding Fermi velocity is larger,
and hence the FBA is applicable. Overall, considering all electrons, for

Fig. 9. A comparison with the dielectric function in the high−q limit with the
Compton profile as measured by Chen et al. [37]. The calculations were con-
voluted with the experimental resolution or the Compton measurement (0.16
a.u. FWHM). The 1s contribution, as obtained from a Hartree-Fock calculation
by Biggs et al. [43] for atomic Li is shown as well. The energy loss and target
electron momentum are related by eq. (12) and here we assumed that =q 10
a.u.

Fig. 10. The total (upper panel) and the contribution to the stopping power of
the 2s (central panel) and 1s (lower panel) electrons of Li using the Penn ap-
proach (‘Penn’) and based on the same decomposition into contributions of
electron gas of different densities, but now using two non-pertubative ap-
proaches to the calculation of the stopping of these electron gases.
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IDA method differences with the first-order Penn approach are notice-
ably around 150 keV and at very low energies and are a consequence of
the above described shell-wise Barkas effect.

4.3. Neutral fraction and charge exchange effects

For lower energies the approximation of the projectile as a charged
particle is poor, as electrons tend to attach to the proton resulting in a
neutral projectile of the time. For neutral H (H0) the interaction with
the electron gas is less, especially at larger q values. On the other hand,
transition from a charged state to a neutral state and vice versa will
induce charge-exchange losses. These effects were investigated for the
IDA and the model that is expected to be most appropriate at lower
projectile energies. The charged fraction was calculated using the CASP
program [49,50]. The stopping for neutral H was implemented as de-
scribed in Ref. [51], and the charge exchange losses was taken from Ref.
[52]. As is clear from Fig. 11 the stopping is reduced due to presence of
a H0 fraction. However, in this case the reduction is almost perfectly
cancelled by the additional losses due to charge exchange processes.
The almost perfect cancellation could be a consequence of the ap-
proximations made. We will not consider the effecs of a neutral fraction
and charge exchange in the remainder of this paper.

4.4. Comparison with experimental stopping data

None of the extension schemes is in 100% agreement with the X-ray
scattering results. What does this mean for the validity of the derived
stopping values? To discuss this we show in Fig. 12 the obtained
stopping power and compare it with the limited available experimental
results of Bader et al. [31] and Eppacher et al [32] as well as the es-
timate of the SRIM database [53]. For low projectile energy the valence
band contribution dominates and the GOS, truncated A q( ) and negative
A results, all treat the valence band using the same Mermin function
and are thus almost identical. The Penn method results in a somewhat
lower stopping, as expected based on the discussion in section 3.1. The
IDA results at higher energies ( 100 keV) are again very close

however, to the Mermin results. There are small differences between
the GOS, truncated A q( ) and negative A methods for E0 values in the
30–500 keV range, where the stopping due to the 1s electrons has its
maximum, but the differences are minor as most of the stopping for
these energies is still from the valence band. The differences are too
small to distinguish the different approaches based on the measured
stopping values. Note however, that below 50 keV the measured stop-
ping by Eppacher et al. [32] is slightly smaller than the calculated ones.
This is in spite of the fact that the experimentally observed dispersion is
less than the calculated one. Slower dispersion should lead to an earlier
onset of the stopping (see Fig. 1).

We have seen how the lithium dielectric function compares to the
experiment at various q-values. In order to get some understanding how
these observations relate to the calculated stopping power one needs
some insight in how much the ELF at momentum q contributes to the
stopping for a given projectile energy. For this purpose we plotted how
different q values the contribution to the stopping integral (eq. (1)) as a
function of E0 in Fig. 13. The Li modelled using the GOS approach was
used here, but similar results would apply to all other approaches. For
lower E0 values the contribution is for q near 0.7 a.u., where the qv line
approaches the plasmon branch. At larger E0 values the range of q that
contributes to the stopping is wider with the maximum contribution at
decreasing q values. The influence of the core level is first visible near

Fig. 11. The effect of the presence of a neutral H fraction for the case of the
IDA. The top panel shows the energy dependence of the charged fraction of the
projectile. The lower panel stopping for H+ and H0 and their weighted average.
Charge exchange (C.E.) effects cause additional energy losses. The total stop-
ping for a mixed 1+, neutral beam including C.E. is very close to the pure H+

stopping.

Fig. 12. The top panel shows the stopping values for protons in Li from the
various approaches described here, compared to the SRIM estimate and the
measurements of Eppacher et al. [32] and Bader et al. [31].

Fig. 13. The distribution of the contribution of the stopping integral (eq. 1)
over q as a function of E0. Integrating over q gives the total stopping shown on
the right. The valence band was modelled with a Mermin dielectric function.
The minimum q for which the 1s electrons (modelled as a GOS) contributes to
the stopping is indicated by the dashed line.
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=E 2000 keV at q 1 a.u. And extends to lower q values with in-
creasing E0. Thus below 10 keV it is crucial to get the description of the
ELF right for the < <q0.5 1 a.u. Range.

5. Conclusion

We have seen in this paper that the shape of the ELF, as a function of
q, varies remarkably depending on the model used to describe the q
dependence. However, as all theories are restrained by the Bethe sum
rule, the range in stopping values that is obtained is considerably
smaller, as high intensities of the loss function for certain ω values are
always accompanied by low intensities at other ω values. At large q
values the ELF is concentrated along the Bethe ridge and the integration
over ω at large q is the same for all models.

At lower energies the charge state of the projectile will affect the
stopping and charge exchange effects are important, but both con-
tributions cancelled almost perfectly for the approximations used here.
Somewhat surprisingly, for the Li case studied here, deviations from
first Born theory, as predicted by the IDA are significant in particular at
energies close to the maximum of the stopping contribution of the core
electrons.

Having obtained a fair understanding of how the model dielectric
function affects the stopping, the question that remains to be answered

is which method is preferable, either in general or more specific for
stopping calculation. Experimentally, for Li the answer is difficult as
there is only one set of data in the interesting projectile energy range,
and the comparison is further complicated by charge exchange effects
and limitations of the FBA, for which we only can correct approxi-
mately within the Penn model. The differences between the various
models is smaller than the disagreement with the experiment. The Penn
stopping is somewhat smaller at lower energies ( <E 3000 keV) but the
IDA corrections beyond the FBA increases the stopping somewhat
above 100 keV.

In summary, large deviations can occur where certain levels start
contributing to the ELF, and then the dispersion model used is im-
portant. When fitting the ELF with Mermin functions the use of i values
of the order of i is probably best avoided, as it tends to lead to larger
stopping values.
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Appendix B

For completeness we show here explicitly that the dispersion relation assumed in eq. (5) indeed leads to the Bethe-like stopping (eq. (4)). The
stopping power is given in terms of the ELF as

=dE
dx

Z
v

dq
q

d
q

2 Im 1
( , )

,
qv2

2 0 0 (14)

Where Z is the projectile charge. Assuming the ELF given by the Drude model with a narrow peak ( 0) at q( )p the inner integral of the above
equation will be given by the Bethe sum rule Eq. (7) for <q qv( )p and zero otherwise. Therefore,

=dE
dx

nZ
v

dq
q

qv q4 ( ( )),
2

2 0 (15)

where x( ) is the Heavy-side function. The condition <q qv( )p is realized by < <q q qmin max see Fig. 1. For this case the stopping power reads

=dE
dx

nZ
v

q
q

4 ln .max

min

2

2 (16)

For the dispersion relation from Eq. (5) we have =q v/min p and =q v2max and therefore we get the Bethe-like formula:

=dE
dx

nZ
v

v4 ln 2 .
p

2

2

2

(17)

The parabola and the straight line in the ‘Bethe dispersion’ (Eq. (5)) meet at =q 2c p . The integral can be divided into two parts < <q q qmin c
and < <q q qc max .

= +dE
dx

nZ
v

q
q

q
q

4 ln ln .max

c

c

min

2

2
(18)

Inspection shows that =q q v/ 2 / 2max c p and =q q v/ 2 /( / )c min p p are identical. This is an example of the ‘equipartition principle’ [54] which
state that the plasmon and electron-hole excitations contribute equally to the stopping. One can use exactly the same approach to derive an analytical
expression for the stopping in the case of simple quadratic dispersion (in the limit of 0). In that case one has to replace simply qmax and qmin by the
solutions of = +qv q /22

p. One obtains:

=
+dE

dx
nZ
v

v v

v v
4 ln

2

2
,

2

2

2
p

2
p (19)

which should not overestimate the stopping at the stopping maximum as much as the Bethe-like equation does. Also in this case the equipartition
principle is fulfilled: =q q q q/ /max c c min as can be easily verified. Similarly, when using full dispersion the stopping becomes:
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(20)

A similar formula within the static electron gas model (i.e. =E 0f ) was given by Sigmund (ref. [4], eq. (5.77)).
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