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Abstract 
The use of Electron Momentum Spectroscopy for 
the study of thin, single-crystal films is sketched. 
These films have an anisotropic electronic 
structure. Resolving this anisotropy in (e,2e) 
experiments has been a dream that has become a 
reality in recent years. Here I describe some 
results for graphite, silicon and noble metals.  The 
experimental results are used to illustrate the 
concepts of Brillouin zone boundaries and Bloch 
functions, both central to condensed matter 
physics.  
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Introduction 
High energy scattering is an important probe of many-body systems. For 

high-energy, large angle scattering the probing particle interacts with a single 
particle of the many-body system and the collision appears to be between two 
free particles. In this high energy limit the energy lost by the scattered particle 
is entirely determined by the laws of energy and momentum conservation.   
The energy transferred from the scattered particle to the target in these so 
called Compton experiments depends on a specific momentum component of 
the scatterer (before the collision) and its mass.  Thus although the collision 
appears to be between two free particles, the energy transfer depends on the 
initial momentum and, because of this, the scattering experiment is a probe for 
an interacting many-body system. Compton type experiments can be used to 
probe the wave function of nucleons inside a nucleus, the wave function of 
electrons in atoms, molecules and solids, and even the wave function of nuclei 
in molecules and solids [1].   

If in these collisions enough energy is transferred to the scatterer, then it 
will be ejected from the system.  Now experiments can be done at a new level 
of sophistication, by measuring the ejected and scattered particles in 
coincidence.  These coincidence experiments have been done for incoming 
protons scattering from protons inside a nucleus and ejecting a proton (so 
called (p,2p) experiments see e.g. [2]) and incoming electrons scattering from 
electrons in atoms, molecules, or solid (so called  (e,2e) experiments, also 
referred to as electron momentum spectroscopy (EMS) [3]  ). Measurement of 
the momentum and energy of the scattered and ejected particles (in 
coincidence) allows for the determination of the momentum transfer to the 
target, as well as the binding energy of the ejected particle. The observed 
intensity is proportional to the spectral function, or within an independent 
particle model, the probability that a target particle has momentum q and 
binding energy E. Often the target (nuclei, molecules) does not have spherical 
symmetry and is randomly oriented in space. The measurement obtains, in 
such a case, the spherically-averaged spectral function, and a great deal of 
information is lost in this averaging process. A more stringent test of theory 
would be possible if this averaging could be avoided. For (e,2e) experiments of 
molecules there are attempts being made to recover this information for the 
special case where the molecule fragments as a consequence of the ionization 
event [4]. Measuring the direction of the velocity of the fragments can reveal 
the original orientation of the molecule. 

For (e,2e) experiments from solids one can completely avoid this problem 
by studying single crystals with known orientation.  This is an important 
motivation for the study of these targets, and the significance of these 
measurements were realized in the early days of (e,2e) spectroscopy, see e.g. 
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the paper by Neudachim et al [5].  However the experiment turned out to be 
challenging.  It requires good energy resolution to resolve the valence band 
structure, and high energies of the incoming and outgoing particles. Only when 
high energies for the incoming and outgoing particles are used (10 keV and 
above), and the thinnest of films, is the probability reasonably high that no 
scattering occurs, besides the (e,2e) event itself.  Hence it was not until 1988 
that Ritter and coworkers succeeded in measuring a single crystal (graphite) 
with a meaningful, but modest, resolution [6]. Since that time there have been 
significant improvements in the experimental capabilities, in particular the 
development of two-dimensional detectors [7], and nowadays single crystal 
measurements are done quite routinely (provided sufficiently thin crystals are 
available). In this contribution I want to show some examples of these 
measurements and emphasize that these measurements provide insightful 
illustrations of fundamental condensed matter concepts such as Brillouin zone 
boundaries and Bloch functions. 

Mainly to keep the language simple I have adopted the independent 
particle picture in this paper. The target wave function is the product of single 
particle wave functions ψi(r)) (i=1…n). The momentum space representation 
of these orbitals is )(qiϕ  and 2|)(| qiϕ is then the probability that electron i 
had momentum q. 

 

Experimental Results 
The experimental apparatus used at the Australian National University is 

described extensively elsewhere [8]. It is sketched in figure 1, together with  
the coordinate system used. It has two analyzers, each measuring 
simultaneously electrons emerging from the sample along a range of azimuthal 
angles (±7°) and over a range of energies (∆ E=60 eV). It uses an incoming 
electron beam of 50 keV and both analysers detect electrons with an energy 
near 25 keV.  The z-axis is taken along the direction of the incoming electrons.  
The azimuthal range of one analyzer is centered at φ1=0°, the other 
at  φ2=180°.The exact polar scattering angle θ1,2 can be adjusted using two 
deflector sets.  If one applies no voltage to the deflectors then the scattering 
angles are θ1=θ2=44.3°, which means that for 50 keV electrons:  k1cosθ1+ 
k2cosθ2 = k0, and k1sinθ1 cos φ1 ≈ − k2sinθ2 cosφ2.  In this case one can thus 
expect coincidences originating from target electrons with no momentum 
component in the px-pz plane. Their momentum component along the py-axis is:  
qy=  k1 sinθ1 sin φ1+  k2 sinθ2 sinφ2. The analysers determine φ1 and φ2. If one 
applies  deflector voltages in such a way such that θ1  =θ2  <44.3° then one still  
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Figure 1: (a) Sketch of the EMS spectrometer. Electrons that emerge from 
the sample in the shaded part of the cone are detected. (b) An illustration of 
the use of deflectors for changing the scattering angles. Without deflector 
voltages the trajectories drawn as a full line are entering the analyzer 
through the slits, with  voltages those drawn as a dashed line are entering. 
(c) The analyzers are positioned such that one measures electrons with no 
momentum in the px-py plane if one does not apply voltages to the 
deflectors. By applying equal voltages and polarities as shown in (b), we 
can measure target electrons with a momentum component along the pz-
axis.  (d) For graphite the 2p electrons perpendicular to the graphite plane 
retain much of their atomic character and form the π band. The momentum 
space wave function is sketched together with the first Brillouin zone. (e) 
For the measurement without voltages on the delectors the intensity of the π 
electrons is absent (left), but its contribution appears if the deflectors are 
used (right), which moves the measurement line from Γ→M to 
(Γ→M)+pc. 
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 has k1sinθ1  cosφ1 ≈− k2sinθ2 cosφ2 (i.e. qx = 0) but  k1cosθ1+ k2cosθ2> k0,  

hence coincidences are expected for target electrons with qz > 0. 
The dramatic effect of orientation of the orbitals is best illustrated for the 

case of graphite.  Graphite is a layered material, with strong covalent bonding 
in the hexagonal planes (giving rise to the “σ band”), but weak van der Waals 
bonding in between the planes.  One 2p orbital (in coordinate space) is oriented 
perpendicular to the hexagonal planes, it forms the π band in graphite, and its 
wave function changes sign when crossing this plane.  Hence the density is 
zero at the hexagonal plane. The graphite sample is positioned in the 
spectrometer with the z-axis along the surface normal of the hexagonal planes 
[9].  In momentum space this wave function changes sign relative to the qz=0 
plane and hence the momentum density is 0 here.  Thus no coincidences are 
expected from the π band for θ1= θ2 =44.3°, but the π band should contribute 
if deflector voltages are applied. This is indeed the case, as can be seen in the 
last panel of Fig. 1. 

Brillouin zone boundaries play an important role in the theory describing 
the electronic structure of crystalline materials. It can be defined as the plane in 
momentum space, containing vectors k for which 22 G=⋅Gk , with G a 
reciprocal lattice vector [10].  Its role is best illustrated starting with a free 
electron model and treating the lattice potential as a perturbation.  The solution 
of the free electron  model consists of plane waves, and the  perturbation 
(crystal potential V) is periodic and can be  written as   rG

Gr ⋅Σ= ieVV )(   with 
the sum extending over all reciprocal lattice vectors. From the definition of the 
reciprocal lattice vector it is clear that for each plane wave with momentum 
vector q on a Brillouin zone boundary there is another momentum vector (q - 
G) that has the same kinetic energy.  These two states are degenerate and will 
thus split due to the interaction VG. 

This basic physics is illustrated in figure 2 for a silicon crystal with <001> 
surface normal. Details are given elsewhere [11]. The measurements were 
done without deflector voltages (hence one observes coincidences from 
electrons with qz=qx=0 ). First the crystal was oriented so that the spectrometer 
y-axis coincides with a <110> direction of the crystal. Then the crystal was 
rotated, in several steps, along the surface normal until a <100> axis coincides 
with the y-axis.  Thus first one observes the electrons moving along the <110> 
direction, and finally the electrons moving along  the <100>  direction.   Two 
type of Brillouinzone boundaries come into play.  One is derived from 
G= )002( and the other is a crossing of two boundaries that are not 
perpendicular to the cut of fig. 2 (G= )111(  and G= )111( ). However, V200=0 
due to additional symmetry in the crystal. Hence one only expects splitting of 
the intensity near the latter Brillouin zone boundary.   
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Figure 2:  Measured intensities for a silicon single crystal as a function of 
orientation.  The leftmost set of grey-scale pictures displays the calculated 
spectral function along different directions. These calculations are based on the 
FP-LMTO (full-potential linear muffin tin orbital) approach.  Darker shades 
mean larger densities. The right column of grey-scale pictures are the 
corresponding experimental measurements.  In the right half of the drawing we 
show the <100> -<010> plane of the reciprocal lattice with the first 4 Brillouin 
zones. By rotating the crystal one can change the crystallographic direction that 
coincides with the spectrometer y-direction. The actual measurement directions 
are indicated by dashed lines. Brillouin zone boundaries are marked with the 
indices of the reciprocal lattice vector they dissect. A band gap appears for 
momenta where the measurement line intersects the )111(  and  )111(  Brillouin 
zone boundary.  This splitting moves to lower momentum values when the 
measurement direction is changed from <100> to <110>. The dashed circle is 
the Fermi sphere for an electron gas with the same electron density as the 
valence band of Si. Occupation outside this sphere is small. 
 



EMS of Crystals 7 
  

Indeed along the <110> direction the splitting is near qy=0.6 a.u. Here two 
Brillouin zone boundaries are crossed ( )111( and )111( and hence the 
occupation goes from band 1 to band 3.  This measurement line crosses 
another Brillouin zone (corresponding to )022( ) near 0.9 a.u. This is evident 
from a minimum in binding energy at this momentum. The band gap here 
separates the occupied and unoccupied part of the band structure.  Hence the 
next bands (band 5 and 6) are not observed. Rotating the crystal in steps from 
<110> to <100> causes a shift of the first band gap to higher momentum 
values. Finally for the <100> direction the theory predicts only one structure, 
whereas two structures are seen for small binding energies.  Due to finite 
momentum resolution the experiment probes part of Brillouin zone 4 abutting 
the measurement line, causing the extra structure. 

Another central concept in band structure theory is that of the Bloch 
function. As the potential is periodic, its Fourier transform contains only 
discrete contributions, separated by reciprocal lattice vectors. As a 
consequence the solution of the Schrödinger equation (called Bloch functions) 
consists of a set of plane waves that differ by a reciprocal lattice vector. A 
solution can then be characterized by the reduced momentum k, the 
momentum of the component in the first Brillouin zone that contributes to 
Bloch function [10].  The Bloch function is a sum of plane waves, with 
amplitude cG: 

rGk

G
Gk

⋅+∑= )(iecψ . 

Within this picture it is often stated that two momenta, which differ by a 
reciprocal lattice vector, correspond to the same reduced momentum and are 
considered equivalent. We explored what this means experimentally by 
measuring the spectral momentum density along lines that differ by a 
reciprocal lattice vector [12]. This can again be accomplished using the 
deflectors. For this purpose one applies different potentials to both deflectors. 
The experiment is sketched in fig. 3. Again silicon is used to demonstrate these 
principles. The crystal is aligned with the <110> direction along the y-axis. 
The deflectors can be used to create any momentum offset in the px-pz plane. 
Without deflector voltages the measurement line goes through zero 
momentum, a reciprocal lattice point also referred to as a Γ point. This is the 
same measurement as in the lower panel of fig. 2. The shortest reciprocal 
lattice vector is (111). Applying an offset corresponding to (001) (itself not a 
reciprocal lattice vector) causes a shift of the measurement line so it goes again 
through reciprocal lattice points (at (111) and at )111( ) (central panel of fig. 
3).   
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Figure 3: Calculated and observed intensities for a Si crystal measured with 
the <110> direction aligned with the spectrometer y-axis without the use of 
the deflectors (left panel, measuring along a line through zero momentum) and 
with voltages applied to the deflectors, in such a way that the measurement 
lines are shifted by [001] (central panel) and ]011[  (right panel). As is 
indicated in the lower half, each of the three measurement lines goes through 
reciprocal lattice points, and one measurement line can be obtained from 
another by a shift corresponding to a reciprocal lattice vector. The calculated 
band structure is superimposed on the calculated and measured intensity 
distributions in such a way that Γ points of the band structure coincides with 
reciprocal lattice points. For all three cases the experiment shows significant 
intensity only at binding energies corresponding to the calculated bands. 
Which band is observed is different however, for all three cases, both in 
experimentally and theoretically obtained. momentum densities. 
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Alternatively the deflectors can be used to create a )011( offset, and one 
measures the spectra at a reciprocal lattice point (200) or )022(  (right panel 
of figure 3). As these points are all separated by reciprocal lattice vectors it 
means that they are ‘equivalent’ with (000). Does this mean that the spectra 
measured that (000), (111) and (200) are identical? Inspection of figure 3 
reveals that this is not the case. At the Γ point there are two (occupied) 
solutions with different energies. The solution with maximum binding energy 
dominates the spectrum at (000) the other solution (minimum binding energy) 
dominates the spectrum at (111) and (200).  

To emphasize the Bloch theorem the band structure is superimposed, in 
the repeated zone scheme, on the measured intensity. Except for the high 
symmetry points, Γ and X, the band structure predicts 4 possible energies. 
Indeed the observed intensities always coincide with the energies predicted by 
the band structure. However, which branch of the band structure dominates, 
depends on the offset. The observed intensity is proportional to |cG|2 the 
modulus square of the coefficients of the Bloch function. 

Finally, to illustrate that these measurements are possible as well for 
targets of heavier elements, we show in figure 4 the measured intensity for the 
noble metals along the three main symmetry directions.  All noble metals have 
an FCC crystal structure with comparable lattice constants.  As a consequence 
the electronic structures of the three noble metals share many features. Near 
zero momentum a parabolic shape is observed. It is due to the s electrons. At 
larger momenta we observe more weakly dispersing features due to the d 
electrons.  But there are also clear differences between the three metals.  For 
Ag the 4d intensity is at larger binding energy compared to the 3d intensity of 
Cu   For Au the 5d intensity is split in different bands due to spin-orbit 
coupling. With increasing atomic number Z one also observes an increasing 
amount of diffraction.  Diffraction causes the momentum of the incoming or 
outgoing electron to change by a reciprocal lattice vector.  A tell-tale sign of 
this is a ghost-image of the s electron-derived parabola at higher momentum. 
Disentangling this contribution from the electronic structure proper is a 
problem that is currently being investigated. 
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Figure 4: The measured intensity for Cu (top), Ag (middle) and Au 
(bottom) single crystal films, for crystals aligned with the <100> (left row), 
<110> (central row) and <111> direction. Similarities are due to the fact 
that the noble metals have the same lattice structure, similar lattice 
constants and the same number of valence electrons. The horizontal 
branches are due to d electrons and the parabola due to the s electrons. 
Diffraction causes a repeat of the main features at higher momentum. The 
increasing influence of diffraction with increasing Z is clearly noticeable. 
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Conclusion 

We have shown that for single crystals we can obtain EMS results that are 
not affected by spherical averaging.  This makes it possible to explore directly 
the anisotropy of the electronic structure.  We demonstrated this capability by 
measuring the orientation of the π electrons in graphite and by determining the 
effect of rotation of the crystal for silicon.  Also for silicon we studied the 
electronic structure along lines that differ by a reciprocal lattice vector. These 
measurements are clear illustrations of concepts such as Brillouin zone 
boundaries and Bloch functions.  

These results are just one more example that kinematically complete 
collision experiments can provide very direct information of the structure of 
matter. It was made possible due to efforts of many collaborators, first at 
Flinders University, and more recently at the Australian National University. 
Ian McCarthy was pivotal in establishing the theoretical frame work that 
justified the simple interpretation of these experiments.  These collision 
experiments will undoubtedly continue to be refined, increasing its value as a 
tool to elucidate the structure of matter. This guarantees that the impact of 
Ian’s work will persist for quite some time to come.  
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