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The energy loss of fast ions at close collision is mainly due to electron-ion collisions. The electrons
are approximately stationary and they collide with a fast moving ion. Here we study the same colli-
sion experimentally, in a reference system where the ions (or atoms) are stationary and interacting
with keV electrons. Scattering cross sections under these conditions deviate from Rutherford, and
we link these deviations, at higher energies, to the Z3 contributions to the electronic stopping and
the related Barkas effect and, at lower energies, also to quantum interference. The present mea-
surements are well described by partial wave calculations of the elastic cross-section of electrons
scattering from atoms. Encouraged by this agreement we use these calculations to estimate the
Barkas factor for all elements and many energies. A universal curve for the Barkas factor due to
close collisions is obtained for neutral projectiles and similar curves with smaller magnitude are
found for ions.

PACS numbers: 34.50.Bw, 34.80.Bm, 34.50.Fa

I. INTRODUCTION

The slowing down of energetic particles in matter has
been an active area of research since the early days of
quantum physics. Bethe formulated a very successful
theory describing the energy loss as the consequence of
collisions between the fast moving ion and nearly station-
ary electrons. In this approach, based on perturbation
theory, the energy loss is proportional to the square of
the charge of the projectile: Z2 [1] and therefore the en-
ergy loss is independent of the sign of the charge. Careful
measurements by Anderson and coworkers [2] indicated
that this is not quite true, there were small, but signif-
icant contributions to the stopping proportional to Z3

and Z4. The term proportional to Z3 is intriguing, as it
suggest that the stopping power of a particle may differ
from that of its anti-particle. Indeed this was later con-
firmed by experiments comparing the stopping of protons
and anti-protons [3–5]
Such effects that depend on the sign of the charge of a

particle have always fascinated scientists since they are
a stringent test of the understanding of the underlying
physics. In general it is not an easy task to perform
experiments with negatively and positively charged pro-
jectiles (or targets) since it involves the production of
antimatter. When possible, these charge-sign-dependent
effects provide a key test of our understanding. The first
indications of such a dependence came from the work of
Barkas and coworkers, who observed different ranges for
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positive and negative pions in matter [6]. Initially this
observation was attributed to a difference in the pion
masses, but latter it was demonstrated that it is due
to higher-order contributions to the energy loss rate or
stopping power [7, 8]. From then on a difference that de-
pends on the sign of the charge is referred to as a Barkas
effect. Its origin was initially ascribed to polarization, as
a medium reacts differently to positively and negatively
charged particles [9]. In this picture positively (nega-
tively) charged particles attract (repel) the electron cloud
giving rise, in a second-order process, to an enhancement
(a depletion) of the electronic density around the ion path
which in turn increases (decreases) the energy loss. Sev-
eral years later Lindhard [10] suggested that projectile
screening also leads to different energy losses depending
on the sign of the charge of the projectile. This means
that for close collisions, (when the energy loss is domi-
nated by momentum transfer of individual electrons from
the medium to the projectile), the sign of the charge of
the projectile is important. There are two reasons for
the screening of the projectile nuclear charge. One is the
re-arranging of the valence electrons. This results in a
screening length determined by the plasmon frequency
(i.e. the electron density) of the target material. A
second screening mechanism exists for partially ionized
ions, also referred to as dressed ions. Here the remaining
core electrons screen the nuclear charge and, as explained
later, also cause a Barkas effect which is largely indepen-
dent of the target electronic structure. We will concern
us here mainly with the latter type of screening.

Apart from a few exceptions [11–16] most of the the-
oretical work published after the paper of Lindhard [10]
have treated the Barkas effect as a consequence of close
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collisions [17–28]. The Barkas effect at close collision af-
fects not only the stopping power but manifests itself also
in other physical areas but the corresponding intercon-
nections are less known. One such example is the binary-
encounter-peak enhancement for partially stripped ions
[29–31]. Another example is keV electron scattering [32–
35] . The latter experiment describes the scattering in
the reference frame where the ion (or atom) is at rest.
Such an experiment is relevant for stopping theory, as
the momentum transfer rate (and as a consequence the
stopping power) is determined by the elastic scattering
cross-section of the electrons in the reference frame where
the screened ion is at rest [17]. These scattering ex-
periments are used nowadays to characterize thin films
and small molecules [35, 36]. They are the electron ana-
logue of the well-established (ion) Rutherford Backscat-
tering Spectrometry (RBS) [37] and we refer to it as
ERBS (electron RBS). The element selectivity is based
on the recoil energy transferred by the keV electron un-
der backscattering conditions. As in RBS, the elemental
quantification is accomplished by the differential elastic
cross-section dσ/dΩ, which is determined by the atomic
potential. Conversely if the atomic composition is known
we can compare the ratio of the cross section of two ele-
ments to the calculated one. It turns out that the cross
section does not scale exactly as Z2 and we can use these
experiments thus to elucidate higher-order contributions
to the cross section.

In this work we explore the similarities of the Barkas
effect for stopping power with the screening effect found
in keV electron scattering [33] to quantify the Barkas ef-
fect for near central collisions (impact parameters close to
zero). In these experiments we use targets consisting of
two elements with a well-defined stoichiometry. The elas-
tic peak of both elements are resolved due to the recoil
effect and an enhanced intensity of the heavy element is
observed, which is interpreted as a sign of the Barkas ef-
fect. The results from high-energy-electron-scattering ex-
periments of oxides, water (ice or gas) and methane(gas)
are used to validate the theoretical calculations from Sal-
vat and coworkers [38, 39], that were used here to calcu-
late the Barkas effect for many elements with different
ionization degrees. The calculated results for neutral or
strongly screened projectiles tend to collapse on a sin-
gle universal curve at high velocities and small projectile
charges. However, at high Z and low energies, in contrast
to classical calculations from ref[25], the simple scaling
breaks down due to quantum effects. These quantum ef-
fects are also demonstrated experimentally. We also show
that, although there is a single universal curve represent-
ing the Barkas effect for neutral and bare ions, no simple
scaling exists for other projectile charge-states.

The remainder of the paper is organized as follows.
In the next section we discuss the physics of ERBS. In
Sec. we show connection between the Barkas effect at
close collisions and high-energy electron scattering. Ex-
perimental results for the elastic cross-section are shown
in Sec. . In Sec we present the theoretical method for

calculating the elastic cross section and the Barkas fac-
tor. Theoretical results are shown for neutral ions as well
as for ions with different degrees of ionization. The re-
sults are summarized in Sec . Unless otherwise indicated,
atomic units are used throughout the paper.

II. PHYSICS OF ERBS

In these experiments we measure the energy of elec-
trons (incoming energy E0) backscattered from an atom
(either part of a molecule in the gas-phase or part of a
solid), focusing on energies very close to the incoming
energy. Here we separate the contribution of different el-
ements at high momentum transfer K (i.e high incoming
energy and large scattering angles). Under these con-
ditions the impulse approximation applies [40] and the
recoil energy (Erec) , transferred to the scattering atom,
can be determined assuming a collision between free par-
ticles (this is the impulse approximation):

Erec =
K2

2Ma
= 2E0

me

Ma
(1− cos θ), (1)

with Ma,me the mass of the atom and and electron re-
spectively and θ the scattering angle. The energy of the
incoming electron is reduced by the recoil energy. The
width of the elastic peaks is not just determined by the
experimental resolution but also by Doppler broadening
due to the momentum distribution (thermal vibration) of
the scattering atom. This is well corroborated by experi-
mental outcomes and the obtained spectra are very sim-
ilar to neutron Compton scattering spectra at the same
momentum transfer [41]. Details of the ERBS technique
can be found elsewhere [33].

It is instructive to consider the ion stopping power
dE/dx in the context of Eq. 1. In the framework of the
binary theory the stopping is due to fast ions scattering
from electrons that are approximately at rest. In the
reference frame where the electron is at rest the recoil
energy is Ma/me times larger than given by Eq. 1. For
an ion with velocity v such that v0 ≪ v ≪ c (v0 the Bohr
velocity, c the speed of light) the stopping power is then
given by [17]:

dE/dx =

∫
Ω

N
Ma

me
Erec(θ)

dσ

dΩ
dΩ = Nmev

2σtr (2)

with N the target electron density. The transport cross
section σtr is defined as:

σtr(e
−) =

∫
Ω

(1− cos(θ))
dσ

dΩ
(e−)dΩ, (3)

with dσ
dΩ (e

−) the differential cross section (DCS) for an
electron scattering from atom Z.
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III. SCREENING EFFECT IN HIGH-ENERGY
ELECTRON SCATTERING

In ERBS the electrons do not scatter from a bare nu-
cleus, and the effect of the atomic electrons on the scat-
tering potential has to be taken into account. The näıve
view, generally encountered, is that the screening will re-
duce the scattering cross section as the nuclear charge is
partly compensated by the core electrons, and hence the
scattering cross section should be less.
In reality the screening results in an increase of the

cross section i.e. the elastic cross-section values are larger
than the Rutherford cross-section of the bare nucleus
[33, 36]. The explanation for this enhancement can be
found in many places in the literature dealing with fast
ions moving through matter [10, 24, 30] and can be ex-
pressed, at least partly, in terms of classical mechanics.
Large-angle deflections correspond to small impact pa-
rameters and the main deflection occurs very close to the
nucleus. For a Coulomb potential the electrons are ac-
celerated as they approach the nucleus, so their velocity
near the nucleus is increased. In the case of a screened
potential this prior acceleration is smaller. Therefore, for
a screened nucleus the electrons will have a lower veloc-
ity near the nucleus. Since the cross-section decreases
with increasing velocity, the final effect of screening is an
increase of the cross-section relative to Rutherford. The
distance of closest approach also changes with screening
but it can be shown that this effect is less important
than the change of the local velocity due to the screening
[24]. This mechanism was initially proposed by Lindhard
[10], who used the expansion of the Yukawa screening po-
tential at small distances to derive an energy offset that
corresponds to the change in local kinetic energy of the
electrons near the nucleus.
Later, this argument was used to explain the inten-

sity of energetic electrons ejected in the forward direc-
tion when swift, partially stripped, heavy ions transverse
a thin target[30]. From the reference frame in which these
heavy ions are at rest, the target electrons appear as fast-
moving projectiles and the energetic electrons appearing
in the forward direction are due to close collisions be-
tween the nucleus and these electrons (hence the name
binary encounter peak). The electron emission at zero
degree for projectiles carrying bound electrons (‘dressed
ions’) is much greater than for bare ions. This enhance-
ment is also attributed to screening, and the related re-
duction in velocity of the electrons at very close proximity
to the nucleus.
Our experiment is thus very similar to the one de-

scribed by ref. [30], but the laboratory frame now co-
incides with the frame in which the atom is at rest. We
will again see an enhancement of the intensity of electrons
scattered over large angles.
The enhancement of the elastic cross-section with

screening is quantitatively well reproduced by quantum
mechanical calculations such as the ELSEPA package
from Salvat et al. [38] (Dirac partial-wave calculation of

elastic scattering of electrons and positrons by atoms,
positive ions and molecules). The calculations also show
the opposite effect in case of high-energy positron scatter-
ing, namely an elastic cross-section smaller than the one
given by the Rutherford formula. At high energies the
Rutherford cross-section, which depends on Z2 only, lies
in between the cross-section for electrons and positrons.
This difference, roughly proportional to Z3 at high ener-
gies, can be directly related to the Barkas effect in stop-
ping power. In fact, it follows from Eq. 2 the Barkas
factor for the stopping power (RBarkas), which quanti-
fies the Barkas effect at close collisions, is determined
by the transport cross-section of the electron (σtr(e

−))
and the transport cross-section of positron (σtr(e

+)) in
the reference frame where the ion is at rest according to
[24, 25]:

RBarkas =
σtr(e

−)− σtr(e
+)

σtr(e−) + σtr(e+)
, (4)

The DCS is determined by the electron-ion potential
V which can be written as [17]:

V = − (Z − q)

r
Φ(r)− q

r
exp(−r/adyn) (5)

where Z and q are the atom (or ion) nuclear-charge and
charge-state, Φ(r) is the screening function due to the
bound electrons, and adyn is the screening length due to
dynamical screening (about v/ω, where ω is the plasmon
frequency and v is the ion velocity) [17, 21].

For neutral atoms or slightly charged ions (the cations
in a chemical compound 0 ≤ q . 6) the similarity
between the Barkas effect and the strong enhancement
(reduction) of the elastic cross-section in comparison
to the Rutherford one observed in high-energy electron
(positron) scattering is evident. The interaction potential
V for a neutral, moving atom and for a stationary atom
should be nearly the same as far as high-energy electrons
are concerned. In fact, the origin of the Barkas effect at
close collisions is the different influence of screening on
the DCS for positively and negatively charged particles,
which can be measured directly using either an electron
or a positron as a projectile.

IV. ELECTRON RUTHERFORD
BACKSCATTERING

A. Experimental procedure

The experimental setup is thoroughly described in
ref.[42, 43]. Two different spectrometers were employed,
one for gas-phase measurements with E0 between 600
eV and 6 keV, and one for surface studies using energies
up to 40 keV. In short, an electron beam with a small
thermal spread is obtained using an electron gun with a
BaO cathode. Slit lenses are used to focus and deceler-
ate the electron beam from the scattering energy to the
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FIG. 1. (color online) Spectra of 40 keV electrons backscat-
tered over 135.5 deg from thick layers of SiO2, Nb2O5, HfO2

and Ta2O5. For all samples, the peak of the heavy and light el-
ement is well resolved but the measurement is not always com-
pletely background free. The O elastic peak was subtracted,
with an area chosen such that the resulting background (red
line) is similar in shape to the energy loss spectrum observed
for E0 = 5 keV (not shown here).

pass energy of (nominal) 200 eV. A 0.2 mm wide conical
slit aperture, placed 130 mm away from the sample de-
termines which electrons enter the analyzer. This means
that the scattering angle is well determined (uncertainty
about 0.1◦). The energy resolution of the system is close
to 0.3 eV full-width half maximum.

B. ERBS results

In Fig. 1 we show ERBS spectra for four oxides
(Ta2O5, HfO2 , Nb2O5 and SiO2 ) for an incident energy
of E0= 40 keV taken at normal incidence and a scattering
angle of 135.5 deg. The corresponding elastic peaks for
Ta, Hf, Nb, Si and O atoms are shown. Indeed, as seen in
Fig. 1, each ERBS spectrum consists of two peaks corre-
sponding to the elements present in the oxide. The huge
elastic cross-section difference between the heavier ele-

ments and oxygen is reflected in their peak heights. From
the ratio of the elastic-peak areas we obtain the ratio of
the elastic cross-sections taking into account the nominal
stoichiometry of each oxide. This analysis is complicated
by the presence of a background under the small oxygen
peak. This is due to electrons scattered from the cation
that have created also an electronic excitation. The oxy-
gen peak is at a known energy loss and has a width that is
almost the same for all oxides[33]. The area of the peak is
determined such that after subtracting the O peak from
the measured spectrum one obtains a background (red
curve) that resembles the loss spectrum as is measured
for much lower E0 values (5 keV) where the O and cation
peak virtually coincide [44]. It is worthwhile to point out
that the area ratio does not depend on the IMFP since
this cancels out when taking the ratio of intensities for
homogeneous thick materials. All films are thick enough
so we do not need to consider the signal of the substrate
[36, 44].

The ratio of cross-sections for each element relative
to oxygen is shown in Fig. 2 for 40 keV and scattering
angle of 135.5 deg. This energy would correspond to pro-
jectiles with about 70 MeV/u. The ERBS results were
taken from Fig. 1 and the error bars represent the un-
certainty in the background subtraction procedure. Note
that for oxygen the ratio is one by definition. The curves
correspond to theoretical calculations using the ELSEPA
program [38] using default options (in particular, no ab-
sorption is considered) and, in case of electrons, the re-
sults are the same as in NIST electron elastic-scattering
cross-section database [45]. As can be observed from this
figure the calculations from ELSEPA agree reasonable well
with ERBS results and are larger than the simple esti-
mate for the ratio (Z/8)2 from the Rutherford formula.
This shows that the screening effect at a large scattering
angle enhances the cross-section for high values of Z (as
for Hf and Ta) and is less important for low values of
Z. ELSEPA calculations for positrons are also displayed
in Fig. 2 and their cross sections are smaller than the
Rutherford prediction. However, the screening effect is
smaller than for electrons and indicates that the large
enhancement observed for electrons on Ta or Hf is not
totally due to the Barkas effect.

The ERBS technique can be also used at much lower
energies to quantify hydrogen atoms. Fig. 3 shows ERBS
results for 2 keV electrons impinging on water ice and
vapor (a) and methane gas (b) with the same scattering
angle as in Fig. 1. The elastic peaks of O and H from
Fig. 3a (C and H from Fig. 3b) are well resolved. From
the ratio of the areas of the elastic peaks and the num-
ber of H atoms in each molecule the ratio of the O (C)
cross-sections relative to H was determined for different
electron energies as shown in Figs 3c and 3d. The error
bars are mainly due to uncertainties in the background
subtraction. The experimental ratio of intensities multi-
plied by the number of H atoms is compared to ELSEPA
calculations for the cross-section ratio and show the same
tendency as the results for heavy elements at much higher
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FIG. 2. (color online) Experimental and theoretical values
for the ratio of the elastic cross-sections relative to O as a
function of Z for 40 keV electrons and scattering angle of
135.5 deg. The experimental values for Si, Nb, Hf and Ta were
obtained from Fig. 1 after taking into account the nominal
stoichiometry and background subtraction. The solid curves
correspond to ELSEPA calculations for electrons (thick red)
and positrons (thin blue). The dashed line (Rutherford) is a
function (Z/8)2. For O the ratio is one by definition.

energies. The screening effect amounts to about 25% for
C at E0 = 800 eV (which corresponds to 1.5 MeV/u for
O and C in the reference frame where the electrons are
at rest). In contrast to the cases in Fig. 2, the screening
effect is larger for positrons, and the average curve be-
tween the results for electrons and positrons lies below
the Rutherford curve. This indicates a somewhat larger
Barkas effect for strongly screened 1.5 MeV/u O and C
projectiles at small e−-atom impact parameters of about
40%. However, for ion stopping measurements there is no
impact parameters selection, so the overall Barkas effect,
calculated in the next section, is expected to be smaller.

The enhancement of the Ta and Hf peak seen in the
ERBS spectra of oxides is in-line with the observation
of an enhancement in the binary peak of the electron
spectra near 0◦ for high-energy ion experiments [29–
31]. Most of these experiments are done at considerable
lower energy (typically 1 MeV/amu ) compared to the
73 MeV/amu that is the equivalent ion kinetic energy
in the 40 keV e− scattering experiments described here.
Around 40 keV the elastic scattering cross section is a
smooth function of angle, but at lower energies the situ-
ation changes for high Z elements: quantum interference
effects then cause sharp minima in the DCS. There are
two reasons for using the high energy of 40 keV: it is
required for a clear separation of the elements involved
but it also means that the Barkas effect can be studied
without the competition of quantum interference effects.
We can obtain element separation at much lower ener-
gies if we use protons as a reference element rather than
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FIG. 3. (color online) Upper panels : measurements of 2
keV electrons with normal incidence backscattered at 135 deg
from H2O and CH4 molecules. For a better visualization the
H peak was multiplied by 100 in (a) and by 30 in (b). Lower
panels : The ratio of cross-sections relative to H as a function
of the electron energy. ELSEPA calculations are also present
for electrons (thick red line) and positrons (thin blue line) as
well as the ratio obtained from the Rutherford cross-section
(dashed-line).

oxygen. The low cross section of H requires that when
studying high-Z elements the number of H atoms present
exceeds the heavy atom concentration by at least an or-
der of magnitude. As no suitable compounds exist such a
study is best done using a gas-mixture of suitable concen-
trations in a cross beam configuration. By changing the
electron beam energy or scattering angle we can monitor
the quantum interference effects.

We illustrate this for Xe. The elastic DCS of electron
scattering from H and Xe, as obtained from ELSEPA are
plotted in the top panels of Fig. 4. The H cross sec-
tion is smooth and always close to Rutherford. The Xe
cross section is still a smooth function at 10 keV (but
deviates from Rutherford mainly as a consequence of the
Barkas effect) but this changes gradually below 2 keV
when sharp minima in the calculated elastic cross section
develop. Indeed the dip in the Xe DCS causes dramatic
variations in the H-Xe peak intensity ratio. The sharp
Xe peak at almost zero energy loss is followed by a much
broader H peak at several eV energy loss. At 1.55 keV
the Xe peak area is 7.1× the H peak area, but at 750 eV
the Xe area is only 0.05× the H area. Such a change by a
factor of 140 is in good agreement with the expectations
based on the ELSEPA calculation. See ref [46, 47] for more
details about these gas-phase measurements

In the ion-frame experiments measurements at the
emission angle corresponding to the minimum in the DCS
result in a splitting of the binary encounter peak [48].
The binary peak contains a Compton profile of the elec-
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FIG. 4. (color online) The top panel shows the calculated
DCS for Xe and H atoms (in a.u.) at the energies indicated.
The 4 panels at the left show the elastic peak of a Xe-H2

mixture at 750 eV at the angles as indicated. The right panels
show the elastic peak of a (different) Xe-H2 mixture taken at
135◦, and at the energies as indicated.

tron motion. The motion of the electron before the col-
lision affects the effective scattering angle. Thus, under
these conditions the intensity at the centre of the peak
is strongly reduced by the sharp minimum in the DCS,
whereas the wings of the Compton profile (correspond-
ing to slightly different scattering angles) are not. This
causes the apparent split of the binary encounter peak.

We have demonstrated that phenomena playing an im-

portant role in ion stopping can also be studied in the
frame where the ions are at rest. Now we proceed by us-
ing the theory developed to describe these electron scat-
tering experiment to study the Barkas effect in ion stop-
ping.

V. TRANSPORT CROSS-SECTION
CALCULATIONS

The theoretical calculations shown in Fig. 2 and 3 were
performed at a specific scattering angle, namely 135.5◦,
for which the high-energy electron scattering experiments
were performed. For the evaluation of the Barkas factor
related to the stopping power of ions in matter Eq. (4)
we have to evaluate the transport cross section σtr which
depends on all scattering angles. Formally this should be
done in the center-of-mass frame but this is well approx-
imated by the frame in which the atom is at rest. Using
the default options for the ELSEPA program (in particu-
lar, without considering absorption), we calculated σtr of
electrons and positrons for all elements and several ener-
gies ranging from 0.1 to 40 keV for neutral ions (q = 0)
and screening function Φ(r) given by Hartree-Fock den-
sities as detailed in ref [38]. From these transport cross
section we obtain the Barkas factor (RBarkas) according
to Eq. (4). Fig. 5 shows the results as a function of di-
mensionless parameter η defined as

η =
Z/ξ

E0
=

2Z

ξv2
, (6)

where ξ is a screening length. The Z/ξ term is a constant,
which has dimension of energy, and can be obtained, as
described by Lindhard [10], from the expansion of the
potential for small distances r, where the screened inter-
action potential can be described as a Coulomb potential
shifted uniformly by Z/ξ. Thus the scattering near the
nucleus is described as scattering from a bare Coulomb
potential, but with the kinetic energy of the scattered
particle changed by Z/ξ (corresponding to an decrease
for electrons and an increase for positrons). η is this
change normalized by the incoming kinetic energy.

For ξ we used the screening length from the Brandt-
Kitagawa (BK) statistical model [49], namely ξ =
ΛBK(Z, q = 0), where

ΛBK(Z, q) =
0.48(1− q/Z)2/3

Z1/3(1− 1/7(1− q/Z))
. (7)

This gives (in eV) an offset energy Z/ξ of ≈ 48.6Z4/3

for q = 0. First we compare our estimate of the Barkas
factor based on ELSEPA with recent calculations based
on classical mechanics [25]. For η < 1 the Barkas factor,
when plotted as a function of the dimensionless parame-
ter η fall on a single curve as in the classical calculation
of [25] . However, for large values of η, the scaling breaks
down in the present calculation because of quantum ef-
fects. As a matter of fact local minima are observed in
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FIG. 5. (color online) Barkas factor according to Eq.(4) as
a function of the dimensionless parameter defined in Eq.(6).
The calculations were done using the ELSEPA code for all
elements and using Hartree Fock densities for neutral atoms.
The energies indicated are the kinetic energies of electrons
scattering from a stationary nucleus, 1 keV corresponds to
1.836 MeV/u in an ion beam experiment.

Model a b c d

H-F (neutral) 2.1 2.8 3.4 0.035

B-K (neutral) 0.9 0 1.4 0.04

B-K (ion) 0.9 0 1.4(Z/N)1.5 0.04(Z/N)2.5

TABLE I. Values obtained for the constants in ‘universal
curve’ given in Eq. 8 for neutral atoms and charged ions
using either a Hartree-Fock(H-F) derived electron density or
the density of the Brandt-Kitagawa model for neutral atoms
and ions

the differential cross-section for particular scattering an-
gles for energies smaller than ≈ 2 keV and large nuclear
charge Z[38]. For the transport cross-section, oscillations
are also found as a function of Z [22] due to interferences
and shell effects. Nevertheless, for low values of η, (in the
so-called perturbative regime), a single universal curve
can be obtained. A best fit to calculations is given by:

RBarkas =
aη

+bη0.25 + cη + dη2
, (8)

with values of a, b, c, d as given in table I. Similar curves
were obtained in the framework of classical mechanics in
ref[25] for neutral ions and in ref[24, 25] for bare ions,
where the screening length ξ should be replaced by a
value proportional to the adiabatic radius v/ω.
Now we consider the Barkas factor as a function of

the ion charge state. In order to generate the curves
displayed in Fig. 6 we used the interaction poten-
tial from Eq.(5) with a BK screening function Φ(r) =
exp (−r/ΛBK(Z, q)) that depends on Z and q according
Eq.(7). In addition we considered adyn = v/ω , with
ω = 16 eV. The charge density corresponding to the BK

screening function was used as input for the ELSEPA
code. In addition we turned off exchange for this cal-
culation. The calculations were performed for different
energies (from 0.5 to 5 keV) and plotted using the average
screening length ξ defined as:

Z

ξ
=

Z − q

ΛBK(Z, q)
+

q

adyn
(9)

This expression is based on the small r expansion of
Eq.(5).

From Fig. 6 we find that for q < Z/2 the Barkas factor
obtained for different energies still fall on a single curve
when plotted as a function of η, but the curves for differ-
ent charge states do not coincide, the magnitude of the
Barkas factor decreases with q. Further inspection of this
figure shows that RBarkas for different projectile charge-
states merge all with the curve for neutral atoms at high
velocities (small η values). Here the dynamical screen-
ing is less important compared to the screening due to
bound electrons. The breakdown of the scaling for dif-
ferent projectile charge-state at larger η values is due to
the interplay between the two screening functions con-
tributing to Eq.(5), each with a different characteristic
length.

For the limiting cases of a neutral atom and a fully-
stripped atom there is only a single screening length re-
sulting in a simple Yukawa type potential and hence the
graphs for q = 0 and q = Z are identical in fig 6, but the
respective values of ξ are totally different. Thus there is
a single universal curve for the Barkas factor (here for
η < 1) and in classical calculations (for all η values) [25])
for the neutral atom and the fully stripped ions but for
partially stripped ions the curves are q-dependent. For
partially stripped ions there are two Yukawa-type screen-
ing functions: one describing screening by bound-electron
and one the dynamical screening. The scaling proposed
in Eq.(9), which combines both screening types, describes
the Barkas factor for different E0 values quite well as long
as the charge of the ion is less than Z/2.

Only for a fully stripped ion is η proportional to Z.
This is the behavior expected for the Z3 contribution to
the stopping power, which results in a Barkas effect pro-
portional to Z. For neutral atoms and partial stripped
ions these calculations indicate a more complicated de-
pendence of the Barkas effect on Z.

VI. CONCLUSIONS

In this work we explore the connection between the
Barkas effect in the stopping power of ions and the
screening-induced enhancement of the differential cross
section in high-energy electron scattering experiments.
ERBS measurements at 40 keV for Ta2O5 and HfO2 show
a large screening-induced enhancement ( a factor of ≈ 2
relative to Rutherford) for Ta and Hf. For water and
methane at 0.75 to 6 keV the enhancement for O and
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FIG. 6. (color online) Barkas factor as a function of the dimensionless parameter defined in Eq.(6) using the average screening
length from Eq.(9). The calculations were done using the ELSEPA code for all elements and for projectile charge states as
indicated using the atomic potential according to the Brandt-Kitagawa model. The net charge of the ion is screened using
adyn = v/ω with ω = 16 eV. This approach is successful in mapping Rbarkas for different energies on a single curve for charge
states up to q = Z/2. The last panel shows the fit based on Eq. 8 for charge states up to q = 3Z/4 and the fully stripped ion.

C is ≈ 1.25. The results are in agreement with calcu-
lations of the elastic cross-section from the ELSEPA pro-
gram [38]. In combination with ELSEPA results for keV
positron scattering we can extract the Barkas factor in
the ion stopping power at MeV/u energies. At 70 MeV/u
ion energy (corresponding to an electron scattering en-
ergy of 40 keV) the Barkas effect is about 50% for (nearly)
neutral Ta and Hf ions. A similar value was found for 1.5
MeV/u O and C (nearly) neutral ions. For ions with a
substantial charge the Barkas effect at close collisions is
smaller.

The ELSEPA code was also used to investigate if it is
possible to describe approximately the size of the Barkas
effect for a range of different conditions with a simple for-
mula. For this purpose the Barkas factor was calculated

for all elements at many different energies. A universal
curve was found for (nearly) neutral projectiles based on
a dimensionless parameter η except for large Z and low
energies, where quantum interference effects are impor-
tant. For ions with a large charge the Barkas effect is
smaller than derived from the curve derived for (nearly)
neutral ions but up to q = Z/2 the Barkas factor can be
described quite well by a simple formula.
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