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The cloud of negative charge that determines the relative positions of the nuclei in a molecule or
solid can be understood in terms of the motion of the electrons that form the cloud. Usually one
pictures the charge cloud as a distribution in coordinate space. One can equally well picture it as a
distribution of velocities, i.e., in momentum space. The probability that an electron has a certain
energy–momentum combination is called the energy–momentum density. It is directly measured by
electron-momentum spectroscopy. The results of this technique provide the most direct
experimental documentation of simple ideas of orbitals and bonding, thus opening a fresh and
comprehensive perspective on electronic structure. We show how measurement of the motion of
electrons in solids can help us understand the bonding of atoms in molecules and solids. We give
examples of a free-electron metal and an ionic insulator. ©1997 American Association of Physics Teachers.
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I. INTRODUCTION

A major aim of physics is to obtain direct measureme
of properties closely related to the electronic wave functio
of atoms, molecules and solids. This goal has been some
elusive. Most techniques measure properties that are re
in a rather indirect way to the wave function; for examp
absorption and emission spectroscopies measure the d
ences between energy levels. The resistivity of a meta
another indirect property.
The technique that measures quantities most closely

lated to the wave function is electron-momentum spectr
copy ~EMS!.1 Here the kinetic energies and momenta of
incident electron and two outgoing electrons, detected
time coincidence, are observed and recorded for a large n
ber of events. For each event the sum of the kinetic ener
and momenta of the two outgoing electrons is different fr
the kinetic energy and momentum of the incident electr
The energy difference is the binding energy of the tar
electron. For high enough energies of the external electr
the momentum difference is equal to the momentum of
target electron just before the collision. The experim
therefore estimates, from the number of target electron
each small energy–momentum range, the probability of fi
ing an electron in that range. This is the energy–momen
density of target electrons. The experimental criterion
high enough energy is that the measured energy–momen
density should not change if the energy of the incident e
tron is increased.
The relationship of the energy–momentum density to

ground state wave function of an electronic system is ea
understood in terms of the independent-particle model
which the motion of each electron is determined by a o
electron function, called an orbital. The orbital is the soluti
of a Schro¨dinger equation for the motion of an electron in
electrostatic potential determined by the nuclei and the s
consistent motion of all the electrons. Each orbital is of
calculated as a function of the position of the electron, bu
is mathematically equivalent to the orbital represented a
function of the electron momentum. Each function is t
Dirac–Fourier transform of the other. Each orbital represe
an electron with a particular eigenvalue of energy. Its ab
lute square gives the probability of finding the electron in
particular small range of momentum. Hence, a calculation
544 Am. J. Phys.65 ~6!, June 1997
s
s
at
ted
,
er-
is

e-
s-

in
m-
es

.
t
s,
e
t
in
-
m
r
m
-

e
ly
in
-

lf-
n
it
a

ts
-

f

all the orbitals gives the density of the orbitals per unit e
ergy interval and thus the energy–momentum density wh
we compare with experiment.
Although both coordinate and momentum representati

contain identical information, we are more accustomed
visualizing things in coordinate space. We therefore first
scribe atomic orbitals in momentum space, form an idea
how the orbitals form a chemical bond, and show how
hydrogen-molecule bond can be observed by EMS.
To illustrate the transition from a molecule to a crystalli

solid we show a one-dimensional model in which, for a lar
number of atoms, each orbital is associated with a uni
value of momentum. The relationship of the momentum
the energy eigenvalue of the orbital is the dispersion rela
for the resulting band of one-electron states, which becom
essentially continuous in the limit of a large crystal. We u
the insights developed here to understand the EMS res
for two completely different solids, metallic aluminum an
aluminum oxide, which is an ionic insulator. In this way w
develop a unified understanding of atomic, molecular a
solid-state physics, based on EMS.
Two other techniques determine momentum informat

about electrons in materials. Compton scattering2,3 deter-
mines energy-summed and partially momentum-integra
probabilities. Angle-resolved photoelectron spectrosco4

determines the band dispersion relations in terms of ene
and crystal momentum for electrons in a single crystal wit
flat surface. Crystal momentum is essentially a set of qu
tum numbers characterizing the orbital at a particular ene
It is a property of the crystal lattice. EMS determines t
density of the electrons as a function of their energy and
momentum, irrespective of crystal structure. It applies
gaseous, amorphous or polycrystalline materials as well a
single crystals.
For a more technical description of EMS as applied

atoms and molecules we refer to McCarthy and Weigo1

For applications to solids see Vos and McCarthy5 and Den-
nison and Ritter.6 Here, it is necessary to have target thic
nesses no greater than about 100 Å, because the ext
electrons must be transmitted through the target. Recent
has become possible to study larger organic molecules
this technique as well. This application has been descri
by Zhenget al.7
544© 1997 American Association of Physics Teachers
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II. WHAT IS MEASURED BY EMS?

The experiment uses a beam of electrons of known kin
energyE0 and known direction. Its momentumk0 is there-
fore known. The beam is incident on a target consisting
atoms, molecules, or a solid film. The incident electr
knocks a second electron out of the target. Both the elec
from the incident beam and the knocked-out target elec
are detected after the collision. Their kinetic energies a
momenta,Ef andk f for the faster one andEs andks for the
slower one, are observed.
One can deduce the binding energye and momentumq of

the target electron from the conservation laws, assuming
the energies and momenta of the external electrons de
only on the motion of the two colliding electrons immed
ately before and after the collision. This assumption is d
cussed below:

e5E02Es2Ef ~1!

and

q5ks1k f2k0 . ~2!

In the independent-particle model, the probability that o
measures a certain binding-energy–momentum combina
is proportional to the absolute square of the momentu
space orbital of the target electronufe~q!u2. The momentum-
space orbital is related to the coordinate-space orbitalce~r !
by the Dirac–Fourier transformation,

fe~q![^qufe&5~2p!23/2E d3r exp~2 iq–r !ce~r !.

~3!

Thus both contain the same information. However wha
measured is the absolute square of the momentum-spac
bital, so the phase information is lost. One cannot obt
uce~r !u

2 from ufe~q!u2 or vice versa.
In the case of atoms or molecules the energye of the

orbital can often be resolved, so that we measure the mom
tum densityufe~q!u2. For a large system such as a solid the
are many orbitals within the resolvable energy interval. W
we then measure is the energy–momentum density, i.e.
average for the energy interval of all the momentum den
ties.
Equation~2! assumes that momentum changes to the

ternal electrons are due only to the elementary electro
electron collision and not to effects of their interaction w
the remainder of the target system. Such effects are cha
terized by the generic term ‘‘distortion,’’ since they disto
our knowledge ofq. Distortion effects are small if each ex
ternal electron has a high enough energy. There is an ex
mental criterion for the energy. If the target energ
momentum density deduced from an experiment does
change when the external energies are substantially
creased, then they are high enough. The beauty of the t
nique is that the energy and momentum of the target elec
are determined by subtraction, so that arbitrarily high ex
nal energies, consistent with experimental feasibility, can
used. Therefore the high-energy criterion can be satisfied
dependently of the target energy–momentum range to be
served. The experiment is set up to scan a range of en
and momentum, the rate of coincidence counts in partic
small energy–momentum intervals giving an energ
momentum density profile.
545 Am. J. Phys., Vol. 65, No. 6, June 1997
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From the experimental point of view, the main challen
is the detection of the slow and fast electrons in coincide
so as to determine which pairs of electrons originate from
same collision. Coincidence experiments have been no
ously difficult because of slow count rates. The first EM
experiment was on solid carbon. Each detector was tune
a single energy and momentum, with an energy resolution
90 eV, and the count rate was of the order of one count
minute.8 Nowadays, we can get count rates three orders
magnitude larger by the use of detectors that measure si
taneously a range of energies and a range of momenta.
ergy resolution is approximately 1 eV, which is good enou
to distinguish electronic states in most cases. Vibratio
and/or rotational bands built on the electronic states are
resolved and do not affect the energy–momentum profil1

Momentum resolution is approximately 0.1 a.u.
Throughout the article we use Hartree atomic units~a.u.!,

for which e5m5\51, wherem is the electron mass. Th
atomic unit of length is the Bohr radius of the hydrog
atom,a050.529 Å. The atomic unit of momentum is\/a0,
which is 1.89 Å21. In atomic units, momenta and reciproc
lengths~for example, wave numbers! have the same numeri
cal values. For energy we use the laboratory unit, elect
volt ~eV!; 1 a.u. of energy corresponds to 27.2 eV.
A difficulty of the technique in the case of solid targets

that, if one wants to measure the complete energ
momentum density profile down to zero momentum, one
do it only if one uses transmission experiments through t
films. For Eqs.~1! and ~2! to apply, it is necessary that n
additional collisions occur along any of the three trajector
of the external electrons. Due to the small mean free pat
electrons in the appropriate energy range 1–20 keV, i
necessary for the films to be very thin~roughly 100 Å!. Only
for such thicknesses will the desired electronic structure
formation not be obscured by distortion. A schematic dra
ing of the spectrometer for solid samples at Flinders Univ
sity is given in Fig. 1. For more details see Storeret al.9

To give a more-detailed description of what is measur
we need the probability amplitude for a reaction with
many-body target ground state 0 and a final electronic
stateI that is isolated by the binding-energy measureme
The probability, and hence the experimental count rate
proportional to the absolute square of the amplitude, whic
expressed as the matrix element of an operatorT that gov-
erns the transition between the initial and final states of
colliding system,

FI0~k0 ,k f ,ks!5^k fksI uTu0k0&. ~4!

The kinematic conditions of the experiment are chosen1 so
that the amplitude is essentially proportional to the quan

^qI u0&5^k fksI u0k0&

[~2p!23/2E d3r 1•••E d3r N

3exp~2 iq–r1!C I* ~r2 ,...,rN!C0~r1 ,...,rN!,

~5!

which we call the structure amplitude. The notationC de-
notes a many-body wave function for the system indica
by the subscript. The electron coordinates arer1,...,rN . The
kinematic conditions are essentially the high-energy con
tions described above and the approximation involved
the same experimental verification.
545M. Vos and I. McCarthy



trons are
energy and
ctrons.
Fig. 1. In ~a! we show the collision geometry of the experiment. Two analyzers detect the emerging particles over a range of angles. If two elec
detected at the same time, they would originate from the same event. From the measured momenta and energies we can infer the binding
momentum of the target electron before the collision. In~b! we show the target geometry, and the approximate energies of the incident and detected ele
Due to the short mean free path of the 1.2-keV electron, most information is obtained from the shaded part of the 100-Å-thick film.
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In the independent-particle model the ion stateI results
from taking an electron from an orbital of the target, who
energy ise. The structure amplitude is then

^qI u0&5^qufe&5fe~q!, ~6!

and the count rate is proportional toufe~q!u2.
A refinement is to consider the target ground state 0 i

full many-body representation and the ion stateI as a linear
combination of states formed by removing an electron fr
one orbital of an arbitrary target eigenstate. The coefficie
in the linear combination for each ion eigenstate are fou
by diagonalizing both the target and ion Hamiltonians in
representation constructed from target orbitals. Only the o
hole states formed by removing an electron from an orb
of appropriate symmetry in the target ground state will ha
a finite projection on the ground state, since the target eig
states are orthogonal. Each projection is a momentum-s
orbital fe~q!. To a good approximation, if the orbital set
well chosen, only one will contribute to the one-hole line
combination of orbitals. Thus many-body ion states are
sociated by the reaction with particular orbitals1 and Eq.~6!
still applies.

III. ATOMIC ORBITALS IN MOMENTUM SPACE

To get more of a feeling for the representation of the
bitals in momentum space, we show in Fig. 2 examples
the densities for orbitals of the hydrogen atom. As there
only one electron, it is possible to solve the Schro¨dinger
equation exactly. We plot densities in coordinate space
well as momentum space. We do this for electrons in
ground state~1s orbital!, and the lowest two excited state
~2s and 2p orbitals!. Let us stress that there are a lot
similarities between the orbitals in momentum and coor
nate space. The symmetry properties of each orbital are i
tical in both representations; even the shapes are similar.
of the major differences is that those orbitals whose den
is confined to a region close to the origin in coordinate sp
~e.g., the 1s orbital! extend far away from the origin in mo
mentum space~and vice versa!, as expected on the basis
the uncertainty principle.
More generally it turns out that the low-momentum part

fe~q! is related to the distant part ofce~r !. This is intuitively
clear if one realizes that near the nucleus the electron
little potential energy and a lot of kinetic energy, whereas
away the situation is reversed. Similarly, chemical bond
546 Am. J. Phys., Vol. 65, No. 6, June 1997
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in molecules is due to the interference of atomic orbitals
from the nuclei and will show up as significant deviatio
from the atomic orbitals at small values ofq.
All the diagrams of Fig. 2 are the results of calculation

The only one of these that has been verified experiment
is the hydrogen 1s momentum density. This was done b
Lohmann and Weigold10,11 using EMS of hydrogen atom
made by dissociating molecular hydrogen by the applicat
of a strong radio-frequency field. In Fig. 3 we compare t
experimental momentum density with the absolute squar
the analytic solution of the Schro¨dinger equation in momen
tum space. The agreement is excellent.
The 2s, 2p and higher orbitals are not occupied for h

drogen in the ground state and hence we cannot mea
them in EMS. However, one can measure analogous orb
for heavier elements where they are occupied. Due to
larger nuclear charge these orbitals contract in coordin
space ~and hence become more extended in momen
space! relative to the ones calculated for the hydrogen ato
There are corrections due to the influence of the other oc
pied orbitals. The many-electron problem of course requ
numerical approximations. The self-consistent-field~SCF!
approximation calculates an orbital in an electric field due
the nucleus~or nuclei for molecules and solids! and the self-
consistent motion of the other electrons, taking accoun
the Pauli exclusion principle. There remains a general res
blance between the higher hydrogen orbitals and th
atomic orbitals.
For the argon atom we show in Fig. 4 the momentu

densities of the 3s and 3p levels, which are its outermos
occupied levels, observed with the spectrometer used
Flinders for studying solids. Again thes density is spheri-
cally symmetric and has a maximum~both in coordinate and
momentum space! at the origin. The density for a fully oc
cupiedp level ~the sum of the absolute squares ofpx , py ,
andpz densities! is again spherically symmetric. However,
still has a node at the origin. The small density measure
zero momentum is a consequence of the finite momen
resolution of the experiment, which is built into the corr
sponding calculation.

IV. THE CHEMICAL BOND IN MOMENTUM
SPACE

The next step is to get some understanding of the chem
bond and how it affects the orbitals in momentum space
546M. Vos and I. McCarthy



lso note

Fig. 2. Three-dimensional plots of the probability densityuc(x,y,0)u2 in coordinate space and the probability densityuf(px ,py,0)u2 in momentum space are
shown for the 1s, 2s, and 2py orbitals of the hydrogen atom. Note that in momentum and coordinate space the orbitals have the same symmetry. A
that the more extended the orbital is in coordinate space, the more confined in momentum space. The node for the 2s orbital results in a density minimum
which is visible as a circle centered at the origin in both the coordinate- and momentum-space pictures.
b
in
r-
io
om

i
in

1
us
m

ha

en
la
m
a
s
m
n

dal
ult
the
is-
the

of
re
rge
or-

e-

.
re-
lap
two

rger
er-
re-
this context it is interesting to note an early discussion
Coulson,12 who emphasized the potential of momentum
formation for studying chemical bonding. At that time pa
tially momentum-integrated and energy-summed informat
on molecular momentum densities could be obtained fr
Compton scattering.2,3

The prototype for the discussion of the chemical bond
the hydrogen molecule. The distance between the nuclei
hydrogen molecule is 1.4 a.u.~0.74 Å!. This is considerably
smaller than the spatial extension of two atomic hydrogens
orbitals~see Fig. 2!, each of which has an rms charge radi
of 1.73 a.u. The orbitals of two undisturbed hydrogen ato
at the molecular distance would therefore overlap.
The chemical bond is described by molecular orbitals t

are SCF solutions of the molecular Schro¨dinger equation.
The most stable solution is one that minimizes the total
ergy of the system. There are different types of molecu
orbitals, each with a different symmetry property. In a si
plified description we understand them in terms of line
combinations of atomic orbitals. For two identical atom
indistinguishability of the electrons limits the possible co
binations of atomic orbitals to two, one symmetric and o
547 Am. J. Phys., Vol. 65, No. 6, June 1997
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antisymmetric. The antisymmetric combination has a no
plane equidistant from the nuclei. Nonidentical atoms res
in analogous molecular orbitals, but the nodal surface in
analogue of the antisymmetric orbital is deformed and d
placed. The electron density is the squared magnitude of
molecular orbital.
The key to understanding the energies of different types

molecular orbitals in the atomic-orbital picture, and therefo
their bonding properties, is the density of negative cha
resulting from the interference of the overlapping atomic
bitals. This is called the interference density.13 The interfer-
ence ofs orbitals is constructive in the symmetric case, d
structive in the antisymmetric case.
We first compare the symmetric combination of two 1s

orbitals with two bare 1s orbitals at the molecular distance
Constructive interference results in charge density being
distributed from the region near the nuclei to the over
region between the nuclei. The density changes are of
kinds.
First, the volume occupied by the electrons becomes la

and the density smoother. This results in a significant low
ing of the kinetic energy, since lower absolute momenta
547M. Vos and I. McCarthy
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sult from larger volumes and smaller orbital gradients. W
call this the overlap effect. Potential-energy changes in
overlap region are comparatively small.
The redistribution results in reduced density near e

nucleus, causing the second effect which is called promot
The reduced charge cloud is attracted to the nucleus m
strongly so that the effective atomic orbital shrinks in spa
We can model each effective atomic orbital by exp~2zr !.

Fig. 3. The experimental measurement ofuf~q!u2 for the hydrogen atom.
The experiment was done using three different energies of the incom
electrons, as indicated in the figure. All three experiments gave iden
momentum densities. The exact solution of the Schro¨dinger equation~solid
curve! fits the EMS data perfectly.

Fig. 4. The measured energy–momentum density of the valence leve
argon gas. On the left we show it as a greyscale plot. There is signifi
density for two different binding energies corresponding to the 3p and 3s
orbitals. Their completely different nature is evident from the fact that
3s electrons have maximum density at zero momentum, whereas thep
electrons have minimum density at zero momentum~the density would be
zero for perfect momentum resolution!. In the right half we show a com-
parison of the measured momentum densities with ones obtained from
calculations~broken curves! and after convolution with the experimenta
momentum resolution~full curves!.
548 Am. J. Phys., Vol. 65, No. 6, June 1997
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For the hydrogen-molecule bond the decay constantz in-
creases from 1 in the bare-atom case to 1.193 in the molec
lar case. The kinetic energy is considerably increased and t
potential energy considerably decreased. These changes
most balance for the hydrogen molecule.
In comparison with two bare atoms at the molecular dis

tance there is a net increase in kinetic energy due to th
competing effects of promotion and the overlap region. Th
is outweighed by the decrease in potential energy due
promotion. The decisive effect is the decrease in kinetic e
ergy in the overlap region, since the effects of promotion o
the kinetic and potential energies almost cancel. The sym
metric combination is a bonding orbital.
The energy arguments work exactly in reverse for the an

tisymmetric combination. Charge is taken from the overla
region and placed near the nuclei. The increased density g
dient causes an increase in kinetic energy, which is decisi
in the bonding consideration. The promotion effect is an ex
pansion of the effective atomic orbitals, with the correspond
ing decay constant being smaller than for bare atoms. T
antisymmetric combination is an antibonding orbital.
Bonding forp orbitals is different from that fors orbitals.

A p orbital has lobes of opposite sign on opposite sides o
the nucleus. Hence increased interference density in t
overlap region, resulting in a bonding molecular orbital, is
obtained by adding adjacentp orbitals with opposite signs.
The antisymmetric combination is the bonding orbital. We
show later that this difference results in different behavior o
s- andp-derived electronic states in ionic solids~see Fig. 5!.
There is another approach to the hydrogen molecule. A

we have seen before, the highest momentum density is ne
the origin and corresponds to the part of the orbital in coo
dinate space that is far away from the nucleus. At large di
tances one electron experiences the attractive potential
two protons, rather close together and screened by the oth
electron. Near the origin the momentum-space orbital ther
fore resembles that of a 1s electron in a helium atom.
To what extent is the momentum profile influenced by th

bonding? In Fig. 6 we show the absolute squares of calc
lated bonding and antibonding orbitals of the hydrogen mo

g
al

of
nt

e

CF

Fig. 5. The chemical bond derived from~a! s orbitals and~b! p orbitals. In
the case ofs orbitals the bonding molecular orbital is formed if the orbital
on one atom is obtained from the orbital on the other atom by a simp
translation. For thep orbitals the bonding orbital is formed if the orbital on
one atom is obtained from the orbital on the other by a translationand
multiplication by21.
548M. Vos and I. McCarthy
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ecule in momentum space, as well as the 1s momentum
densities of hydrogen and helium atoms. Figure 6 is a c
tour plot of the electron density in thepx–py plane, with the
direction of thepx axis being that of the internuclear axi
The three-dimensional density is symmetric under rotat
about thepx axis. In coordinate space there are centers w
high electron density at each of the two nuclei. In moment
space the bonding orbital has a single center atq50. As is
clear from Fig. 6 the momentum density of the bonding
bital is indeed between the densities for the atomic hydro
1s and helium 1s orbitals. The antibonding orbital is o
course centered at the origin of momentum but it has
concentrations of high density away from zero. It clearly h
the larger magnitude of momentum on average, i.e., it is
orbital with more kinetic energy.
The contribution of EMS to the understanding of t

hydrogen-molecule bond is shown in Fig. 7, where exp
mental momentum densities are compared for ato
hydrogen,10 molecular hydrogen14 and helium.15 Since target
molecules are randomly oriented the molecular momen
density is spherically averaged. The experimental points
supplemented by calculated momentum-density curves,
ing SCF orbitals in the two-electron cases. The data are
bitrarily normalized to equal density at zero momentum
convenience in comparison. The expected increase in a
age momentum, and hence kinetic energy, in compar
with bare atoms, is observed for the hydrogen molecule.
high-momentum part of the hydrogen-molecule data is co
patible with an increased effective decay constant, as
pected from the promotion effect. We also observe the
pected effect at low momenta. The trend of the hydrog
molecule data is away from the hydrogen atom and towa
helium.

Fig. 6. Chemical bonding in momentum space. In the top panel we show
momentum density distribution of the bonding orbital for a hydrogen m
ecule oriented along thex axis. As the electrons become more delocaliz
along thex axis the distribution becomes narrower along thepx axis. At
large distances the electrons probe the attractive potential of two pro
screened by one electron. The resulting momentum distribution for
bonding orbital is then between those of the 1s orbital of the hydrogen atom
and the 1s orbital of helium. The antibonding orbital peaks at larger m
mentum values and thus has more kinetic energy.
549 Am. J. Phys., Vol. 65, No. 6, June 1997
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V. MODEL FOR A SOLID

To understand the transition from a molecule to a solid
construct a hypothetical one-dimensional solid from a nu
ber of hydrogen atoms by placing them with spacing equa
that of the hydrogen molecule along a straight line. We
not know how to accomplish this in the laboratory, but s
we can generate theoretical molecular orbitals. We use
SCF program for moleculesGAMESS16 with a basis ofs and
p functions appropriate to the hydrogen molecule, cente
at the nuclei.
Since the spatial extension of the atomic-hydrogen orbi

is not small compared to the distance between the nuclei,
electrons will always experience the attractive potential fr
more than one nucleus. Indeed, it turns out that, if one p
the coordinate-space orbitals along the axis of the molec
for a string of 32 hydrogen atoms, they resemble the so
tions of the problem of a particle in a one-dimensional box
length equal to that of the molecule@Fig. 8~a!#. They have a
small modulation due to the difference between the ac
potential of the 32 atoms and the smooth average poten
Only the 16 orbitals with lowest energy are occupied a
plotted. We characterize them by a principal quantum nu
ber i . Along the hydrogen chain the potential of the box
lowered due to a rather uniform interaction between the e
trons and the nuclei. The attractive potential of the nucle
canceled in part by the repulsive interaction between
electrons. Let us call this average potential inside the boxe0.
Each solution has a characteristic wavelengthli . It is no
surprise that the momentum-space orbital, which is
Dirac–Fourier transform@Eq. ~3!# of the coordinate-space
orbital, is peaked at a valueqi corresponding to the wave
lengthli . We remind the reader that, in atomic units, wa
numbers and momenta have identical numerical values.

he
-

ns
e

Fig. 7. Experimental momentum-density profiles for the hydrogen atom,
hydrogen molecule and the helium atom. The curves are calculated from
exact solution of the Schro¨dinger equation for the hydrogen atom and SC
approximations for the two-electron cases. The data are arbitrarily nor
ized to the same zero-momentum value.
549M. Vos and I. McCarthy



ticle

tion
Fig. 8. ~a! Shows the 16 occupied coordinate-space orbitals of a model linear H32 molecule. The orbitals resemble the solutions of the problem of a par
in a box. The orbitali has a characteristic wavelengthli of approximately 2L/ i whereL is the length of the molecule. In~b! we show the corresponding
orbital momentum densities. Each has a maximum close to 2p/li . Each plot is offset vertically by an amount proportional to its binding energy. The rela
between binding energy and momentum is close to the free-electron parabola.
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example the least-bound orbital~i516! has a wavelength o
about 6 a.u. and hence its momentum distribution is expe
to peak near 2p/6.1 a.u.
In Fig. 8~b! we show the momentum density for each

the 16 occupied orbitals. Each curvei is shifted vertically by
its calculated binding energy. The peaks at momentaqi seem
to line up along a parabola. This is not a surprise. The bi
ing energyei of each orbitali is the difference between th
potential energy of the electron due to the interaction w
the remainder of the systeme0 and its kinetic energy. The
kinetic energy of a free particle isq2/2. Thus the binding
energy of orbital i in this approximation is given by
e i5e02qi

2/2m* . The parameterm* describing the shape o
the parabola is the~dimensionless! effective mass. In Fig.
8~b! it is slightly ~about 10%! less than the free-electro
value 1.
For a string ofn hydrogen atoms there would ben/2 oc-

cupied states, since each is occupied by two electron
opposite spin projection. In the limitn→`, corresponding to
a one-dimensional solid, the spacing between the energy
els would become infinitesimally small and we would hav
continuous dispersion relatione5e02q2/2m* . The continu-
ous energy levels form an electronic band. The continu
quantity replacing the principal quantum numbersi of the
discrete orbitals is a wave vector that is often called
crystal momentum, and which we denote byk to distinguish
it from the real momentumq of the electron, measured b
EMS.

VI. A FREE-ELECTRON METAL

In practice, we expect free-electron-like behavior, as ill
trated by the model of Sec. V, for solids in which the exte
sion of the outermost atomic orbitals is large compared to
interatomic spacing. This is the case for the elements at
550 Am. J. Phys., Vol. 65, No. 6, June 1997
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left side of the periodic table. Here, news andp levels are
being filled with increasing atomic number. The electrons
these levels experience nuclear potentials that are screen
a large extent by the inner-shell electrons, and their ato
orbitals are almost as extended as the correspondings andp
orbitals for the hydrogen atom.
In Fig. 9 we show the measured energy–momentum d

sity for an aluminum film.17 The qualitative resemblanc

Fig. 9. The experimental results of EMS measurements for an alumin
film ~top left!. The parabolic shape for the binding-energy–momentum
lation is indicative of a free-electron metal. At bottom left we show t
results of detailed calculations of this energy–momentum density.
agreement is excellent. In the right panel we show the momentum dens
for binding-energy slices indicated in eV for each plot. The resemblanc
the results for the model H32 system is striking.
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with the calculated shape for the chain of hydrogen atom
striking. The outer valence electrons in aluminum are ess
tially free. They behave as in the model of a particle in a b
with the dimensions of the box being equal to the dimensi
of the solid sample. In Fig. 9 we also show the results
quantum-mechanical calculations using state-of-the-art c
puter codes.17 There is good agreement, both for the energ
momentum~dispersion! relation and the corresponding ele
tron density. The main difference is that there is mo
contrast in the theoretical plots. This is because in the exp
ment some of the external electrons have suffered additi
elastic collisions, causing slight broadening of the mom
tum peak for each energy, and thus decreasing the cont

VII. AN IONIC SOLID

That a free-electron type of behavior is not typical for
solids becomes clear if we expose the aluminum film to
The film will oxidize near the surface. Due to the small me
free path of the slow external electron in the EMS react
we obtain information only from the surface of the thin fil
nearest the detectors. Therefore the image obtained from
film shows only the oxidized layer. This image is shown
Fig. 10.18 It has no resemblance to the aluminum metal at
rather, it resembles the atomic-argon picture.
What is the explanation for this? Aluminum oxide has t

composition Al2O3. In the simple ionic picture we have Al
31

and O22. Both of them have the first two shells complete
filled, so that their electronic structure resembles that of
noble gas neon. The binding energies of the 2s and 2p elec-
trons in Al31 will be greater than those for O22, since the
oxygen nucleus has a smaller charge. Therefore the ou
most orbitals of Al2O3 are the 2p and 2s orbitals associated
with the oxygen atoms. All occupied orbitals are mu
smaller than the~now unoccupied! Al 3s and Al 3p orbitals.
So the free-electron picture, valid for metallic aluminu
does not apply to Al2O3. The image for the oxide is mor
like the pure ionic picture, in which the solid is kept togeth

Fig. 10. The experimental results of EMS measurements on an Al2O3 film
and the results of a corresponding calculation. The right panel shows
experimental momentum density, integrated over energy. Note that th
sults are completely different from those of aluminum metal. If anyth
they more closely resemble the argon gas data of Fig. 4.
551 Am. J. Phys., Vol. 65, No. 6, June 1997
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by the electrostatic attraction of two relatively inert, opp
sitely charged ions and the electrons are mainly associ
with an orbital of one ion only.
That the free-ion picture is too simple is clear from

somewhat-more-careful inspection of Fig. 10. Both t
deeper ‘‘s’’ density and the ‘‘p’’ density are not associated
with a constant energy level as in the case of a noble gas
there is dependence of the binding energy on the momen
~i.e., dispersion!. The maximum binding energy of the inne
2s level is at zero momentum. However, thep level has its
maximum binding energy at a finite momentum. This can
interpreted in a straightforward manner using a chain of
drogen atoms similar to that introduced in Sec. V.
In ionic solids the overlap between orbitals centered

different nuclei is small. In the linear-chain model, the h
drogen atoms are now separated by a much larger dist
than in a hydrogen molecule. We consider both a chain
hydrogen atoms with occupied 1s orbitals ~mimicking thes
level in Al2O3! and one where the 2p orbitals are occupied
~mimicking thep level of Al2O3!.
In Fig. 11~a! we show a chain of 11 hydrogen 1s orbitals.

The spacinga of the atoms is chosen to be 2.5 Å in this cas
so there is only small overlap between neighboring atom
orbitals. For theses electrons we can construct the lowe
bonding orbital if we add all atomic orbitals with the sam
phase. This is shown by the thin line of Fig. 11~b!. It is
energetically most favorable since the interference betw
the nuclei is constructive. If we construct an antisymmet
orbital by changing the sign of the atomic orbital at altern
atoms, we get the antibonding orbital. It is energetically le
favorable as it has destructive interference between the
clei. Again the momentum-space orbital will peak at m
menta corresponding to the characteristic wavelength of
coordinate-space orbital. At zero momentum the Dira
Fourier transformation averages the orbital over all spa
The bonding orbital has a large constant component
hence its momentum distribution will peak at zero mome
tum. The antibonding orbital averages to zero at zero m
mentum. Its wavelength is 2a and thus its Dirac–Fourie
transform will peak atq52p/2a.
For the case of hydrogen atoms with the 2p orbital occu-

pied we choose the distancea between neighboring atom
larger~10 Å! in order to have small overlap of the orbitals
adjacent atoms@Fig. 11~c!#. Again we construct symmetric
and antisymmetric sums of these orbitals@Fig. 11~d!# but
there are some differences from thes-derived orbitals. The
symmetric sum~thin line! and antisymmetric sum~thick
line! of the p orbitals both average to zero, i.e., they ha
zero density for zero momentum. Now the antisymmet
sum oscillates with the longer wavelength (2a) and its mo-
mentum density peaks near 2p/2a. It is the orbital with en-
hanced charge density between the atoms, i.e., the bon
orbital ~see also Fig. 5!. The symmetric sum has a short
wavelength (a) and hence its momentum density will pea
around 2p/a. It has a node between the nuclei, so it is t
antibonding orbital. Different combinations occur at differe
momenta from these two extremes and their binding ener
are between the extreme values. Hence there is an en
minimum at momentum 2p/2a.
What does this mean for Al2O3? The crystal structure o

Al2O3 is very complicated. It even exists in three differe
forms,a-, g-, or h-alumina. In thea-alumina form the mini-
mum distance between oxygen atoms is about 4.7 a.u.~2.5
Å!. For the s level we find maximum binding energy a

he
re-
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Fig. 11. Examples of different molecular orbitals constructed from atomic orbitals separated by a distancea. In ~a! we have 11 hydrogen 1s orbitals and we
have chosena52.5 Å, so that the atomic orbitals have small but significant overlap. In~b! we show the symmetric~thin line! and antisymmetric~thick line!
linear combinations. The symmetric combination has larger interference density and is therefore the bonding orbital. In~c! we have 11 hydrogen 2p wave
functions. In order to have again small but significant overlap we takea510 Å. Now the symmetric sum~thin line! has smaller interference density than th
antisymmetric sum~thick line!. Each molecular orbital has a characteristic repeating distance~wavelength! L, which can be read from the figure. Th
corresponding momentum distribution peaks at 2p/L as explained in the text.
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expected at zero momentum and we reach the top of the b
at about 0.75 a.u., in fair agreement with the prediction
our model ~2p/2a50.67 a.u.! For the p-derived band our
model predicts maximum binding energy for this moment
value, as is indeed the case in the experiment. The minim
binding energy for thep-derived band is found experimen
tally near 1.3 a.u., again in good agreement with the pre
tion of our model~2p/a51.34 a.u.!.

VIII. CONCLUSION

We have shown how EMS observes electronic struct
very directly and in sufficient detail to confirm experime
tally our understanding of the chemical bond. By extend
the theoretical description of molecular bonding we have
veloped a simple understanding of the electronic band st
ture of solids. Explanations similar to some of ours are co
mon in textbooks on solid-state physics and are illustrated
simple calculations. For the first time it is possible to illu
trate them by experiments that directly measure ener
momentum densities.
We have described the transition from atom to molecule

solid by an interplay of experiment and theory. The mom
tum discrimination, in addition to the common spectrosco
energy discrimination, makes EMS the most powerful to
for this purpose.
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