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The cloud of negative charge that determines the relative positions of the nuclei in a molecule or
solid can be understood in terms of the motion of the electrons that form the cloud. Usually one

pictures the charge cloud as a distribution in coordinate space. One can equally well picture it as a
distribution of velocities, i.e., in momentum space. The probability that an electron has a certain

energy—momentum combination is called the energy—momentum density. It is directly measured by
electron-momentum spectroscopy. The results of this technique provide the most direct

experimental documentation of simple ideas of orbitals and bonding, thus opening a fresh and
comprehensive perspective on electronic structure. We show how measurement of the motion of
electrons in solids can help us understand the bonding of atoms in molecules and solids. We give
examples of a free-electron metal and an ionic insulator.19€r American Association of Physics Teachers.

[. INTRODUCTION all the orbitals gives the density of the orbitals per unit en-
ergy interval and thus the energy—momentum density which
A major aim of physics is to obtain direct measurementsye compare with experiment.
of properties closely related to the electronic wave functions  Although both coordinate and momentum representations
of atoms, molecules and solids. This goal has been somewhgéntain identical information, we are more accustomed to
elusive. Most techniques measure properties that are relatggsyalizing things in coordinate space. We therefore first de-
in a rather indirect way to the wave function; for example, s¢ripe atomic orbitals in momentum space, form an idea of
absorption and emission spectroscopies measure the diffefyyy the orbitals form a chemical bond, and show how the
ences between energy levels. The resistivity of a metal iﬁydrogen-molecule bond can be observed by EMS.

another indirect property. To illustrate the transition from a molecule to a crystalline

The technique that measures quantities most closely 1&g we show a one-dimensional model in which, for a large

lated to the wave function is electron-momentum SPectros; \mber of atoms, each orbital is associated with a unique

copy (EMS).* Here the kinetic energies and momenta of an, . =" ot momentum. The relationship of the momentum to

incident electron and two outgoing electrons, detected Mhe energy eigenvalue of the orbital is the dispersion relation

time coincidence, are observed and recorded for a large UMYy the resulting band of one-electron states, which becomes

ber of events. For each event the sum of the kinetic energie : ' ! -~
and momenta of the two outgoing electrons is different frOméssentlally continuous in the limit of a large crystal. We use

the Kinetic energy and momentum of the incident electronthe insights developed here to understand the EMS results

The energy difference is the binding energy of the targeIOr two completely Q|ffe_rent S.OI'(.jS'. metallic alumllnum and
electron. For high enough energies of the external eIectroné‘Ium'num °X"?'¢’ which is an lonic msulato_r. In this way we
the momentum difference is equal to the momentum of théfe\.’eIOIO a “”'f'?d understanding of atomic, molecular and
target electron just before the collision. The experimentClid-state physics, based on EMS. . .
therefore estimates, from the number of target electrons in WO Other techniques determine momentum information
each small energy—momentum range, the probability of fing@Pout electrons in materials. Compton scattérigeter-
ing an electron in that range. This is the energy—momenturfl'iN€S energy-summed and partially momentum-integrated
density of target electrons. The experimental criterion forProbabilities. Angle-resolved photoelectron spectrostopy
high enough energy is that the measured energy—momentuﬁ?term'”es the band dispersion rela_tlons_ln terms of energy
density should not change if the energy of the incident elec@d crystal momentum for electrons in a single crystal with a
tron is increased. flat surface. Crystal momentum is essentially a set of quan-
The relationship of the energy—momentum density to théum numbers characterizing the or.bltal ata partlcula_r energy.
ground state wave function of an electronic system is easiljt is @ property of the crystal lattice. EMS determines the
understood in terms of the independent-particle model, ilensity of the electrons as a function of their energy and real
which the motion of each electron is determined by a onemomentum, irrespective of crystal structure. It applies to
electron function, called an orbital. The orbital is the solutiongaseous, amorphous or polycrystalline materials as well as to
of a Schralinger equation for the motion of an electron in an single crystals.
electrostatic potential determined by the nuclei and the self- For a more technical description of EMS as applied to
consistent motion of all the electrons. Each orbital is ofteratoms and molecules we refer to McCarthy and Weidold.
calculated as a function of the position of the electron, but ifFor applications to solids see Vos and McCartapd Den-
is mathematically equivalent to the orbital represented as gison and RitteP. Here, it is necessary to have target thick-
function of the electron momentum. Each function is thenesses no greater than about 100 A, because the external
Dirac—Fourier transform of the other. Each orbital representglectrons must be transmitted through the target. Recently it
an electron with a particular eigenvalue of energy. Its absohas become possible to study larger organic molecules with
lute square gives the probability of finding the electron in athis technique as well. This application has been described
particular small range of momentum. Hence, a calculation oby Zhenget al.’
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II. WHAT IS MEASURED BY EMS? From the experimental point of view, the main challenge
is the detection of the slow and fast electrons in coincidence
The experiment uses a beam of electrons of known kinetigo as to determine which pairs of electrons originate from the
energyE, and known direction. Its momentuky, is there-  same collision. Coincidence experiments have been notori-
fore known. The beam is incident on a target consisting obusly difficult because of slow count rates. The first EMS
atoms, molecules, or a solid film. The incident electronexperiment was on solid carbon. Each detector was tuned to
knocks a second electron out of the target. Both the electroa single energy and momentum, with an energy resolution of
from the incident beam and the knocked-out target electro®0 eV, and the count rate was of the order of one count per
are detected after the collision. Their kinetic energies angninute® Nowadays, we can get count rates three orders of
momentaE; andk; for the faster one anl andk, for the  magnitude larger by the use of detectors that measure simul-
slower one, are observed. taneously a range of energies and a range of momenta. En-
One can deduce the binding energgnd momentung of  ergy resolution is approximately 1 eV, which is good enough
the target electron from the conservation laws, assuming thad distinguish electronic states in most cases. Vibrational
the energies and momenta of the external electrons depenghd/or rotational bands built on the electronic states are not
only on the motion of the two colliding electrons immedi- resolved and do not affect the energy—momentum prdfiles.
ately before and after the collision. This assumption is distMomentum resolution is approximately 0.1 a.u.

cussed below: Throughout the article we use Hartree atomic ufeéts),
for which e=m=7#%=1, wherem is the electron mass. The
e=Eo—Es—E (1) atomic unit of length is the Bohr radius of the hydrogen
and atom,a,=0.529 A. The atomic unit of momentum iga,,

which is 1.89 AL, In atomic units, momenta and reciprocal
q=ks+k;—Ko. (2)  lengths(for example, wave numberbave the same numeri-
cal values. For energy we use the laboratory unit, electron
In the independent-particle model, the probability that onevolt (eV); 1 a.u. of energy corresponds to 27.2 eV.
measures a certain binding-energy—momentum combination A difficulty of the technique in the case of solid targets is
is proportional to the absolute square of the momentumthat, if one wants to measure the complete energy—
space orbital of the target electrgfi(g)|°>. The momentum- momentum density profile down to zero momentum, one can
space orbital is related to the coordinate-space oriifal)  do it only if one uses transmission experiments through thin
by the Dirac—Fourier transformation, films. For Egs.(1) and (2) to apply, it is necessary that no
additional collisions occur along any of the three trajectories
_ . of the external electrons. Due to the small mean free path of
P(=(al¢)=(2) 3/2f dr exp(—ig-1)i(r). electrons in the appropriate energy range 1-20 ke\[;, it is
(3)  necessary for the films to be very thimughly 100 A. Only
] ] ] _for such thicknesses will the desired electronic structure in-
Thus both contain the same information. However what igormation not be obscured by distortion. A schematic draw-
measured is the absolute square of the momentum-space @iy of the spectrometer for solid samples at Flinders Univer-
bital, s0 the phasze information is lost. One cannot obtalrg;ity is given in Fig. 1. For more details see Stoe¢rl?
|p(r)|” from |(q)|* or vice versa. To give a more-detailed description of what is measured,
In the case of atoms or molecules the eneegyf the  \ye need the probability amplitude for a reaction with a
orbital can often bze resolved, so that we measure thg Momeany-body target ground state 0 and a final electronic ion
tum denSIty|qb_E(q)| . For a large system such as a solid theregiate| that is isolated by the binding-energy measurement.
are many orbitals v_v|th|n the resolvable energy mterval._ Whatrpe probability, and hence the experimental count rate, is
we then measure is the energy—momentum density, i.e., thgoportional to the absolute square of the amplitude, which is
average for the energy interval of all the momentum dens'expressed as the matrix element of an operatthat gov-

ties. erns the transition between the initial and final states of the
Equation(2) assumes that momentum changes to the exgg|jiding system,

ternal electrons are due only to the elementary electron—
electron collision and not to effects of their interaction with  F,o(Kg,K; ,ks) = (k¢kgl | T|OKg). (4)

the remainder of the target system. Such effects are charac- _ . : 3
terized by the generic term “distortion,” since they distort | N Kinematic conditions of the experiment are chossm

our knowledge ofy. Distortion effects are small if each ex- that the amplitude is essentially proportional to the quantity
ternal electron has a high enough energy. There is an experi- (q1]0) = (k¢kel | Oko)
mental criterion for the energy. If the target energy— st im0

momentum density deduced from an experiment does not B —anf 3 3

change when the external energies are substantially in- =(2m) f d rl---f dry

creased, then they are high enough. The beauty of the tech-

nique is that the energy and momentum of the target electron Xexp(—iq-r)Wi(ry,...rn)Polry,....rn),
are determined by subtraction, so that arbitrarily high exter- (5)

nal energies, consistent with experimental feasibility, can be

used. Therefore the high-energy criterion can be satisfied inwhich we call the structure amplitude. The notatidnde-
dependently of the target energy—momentum range to be olmotes a many-body wave function for the system indicated
served. The experiment is set up to scan a range of enerdy the subscript. The electron coordinates iare..ry. The

and momentum, the rate of coincidence counts in particulakinematic conditions are essentially the high-energy condi-
small energy—momentum intervals giving an energy—tions described above and the approximation involved has
momentum density profile. the same experimental verification.
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(b)

Fig. 1. In(a) we show the collision geometry of the experiment. Two analyzers detect the emerging particles over a range of angles. If two electrons are
detected at the same time, they would originate from the same event. From the measured momenta and energies we can infer the binding energy an
momentum of the target electron before the collisionlbnwe show the target geometry, and the approximate energies of the incident and detected electrons.
Due to the short mean free path of the 1.2-keV electron, most information is obtained from the shaded part of the 100-A-thick film.

In the independent-particle model the ion sthteesults in molecules is due to the interference of atomic orbitals far
from taking an electron from an orbital of the target, whosefrom the nuclei and will show up as significant deviations

energy ise. The structure amplitude is then from the atomic orbitals at small values of
(al10Y=(ql )= b.(q) ©) All the diagrams of Fig. 2 are the results of calculations.
q A Pe ), The only one of these that has been verified experimentally
and the count rate is proportional [ig (q)[>. is the hydrogen & momentum density. This was done by

A refinement is to consider the target ground state 0 in ohmann and Weigofd!! using EMS of hydrogen atoms
full many-body representation and the ion states a linear made by dissociating molecular hydrogen by the application
combination of states formed by removing an electron fromof a strong radio-frequency field. In Fig. 3 we compare the
one orbital of an arbitrary target eigenstate. The coefficientexperimental momentum density with the absolute square of
in the linear combination for each ion eigenstate are foundhe analytic solution of the Schdinger equation in momen-
by diagonalizing both the target and ion Hamiltonians in atum space. The agreement is excellent.
representation constructed from target orbitals. Only the one- The 2s, 2p and higher orbitals are not occupied for hy-
hole states formed by removing an electron from an orbitatirogen in the ground state and hence we cannot measure
of appropriate symmetry in the target ground state will havehem in EMS. However, one can measure analogous orbitals
a finite projection on the ground state, since the target eigerfor heavier elements where they are occupied. Due to the
states are orthogonal. Each projection is a momentum-spad¢arger nuclear charge these orbitals contract in coordinate
orbital ¢(q). To a good approximation, if the orbital set is space (and hence become more extended in momentum
well chosen, only one will contribute to the one-hole linearspace relative to the ones calculated for the hydrogen atom.
combination of orbitals. Thus many-body ion states are asThere are corrections due to the influence of the other occu-
sociated by the reaction with particular orbifaésd Eq.(6) pied orbitals. The many-electron problem of course requires
still applies. numerical approximations. The self-consistent-fi¢RICH

approximation calculates an orbital in an electric field due to

the nucleugor nuclei for molecules and soligand the self-
lll. ATOMIC ORBITALS IN MOMENTUM SPACE consistent motion of the other electrons, taking account of

To get more of a feeling for the representation of the or-the Pauli exclusion prmc.lple. There remains a general resem-
bitals in momentum space, we show in Fig. 2 examples op/ance between the higher hydrogen orbitals and these
the densities for orbitals of the hydrogen atom. As there itomic orbitals. o
only one electron, it is possible to solve the Sclinger For the argon atom we show in Fig. 4 the momentum
equation exactly. We plot densities in coordinate space adénsities of the 8 and J levels, which are its outermost
well as momentum space. We do this for electrons in th@Ccupied levels, observed with the spectrometer used at
ground statg1s orbital), and the lowest two excited states Flinders for studying solids. Again the density is spheri-
(2s and 2 orbitalg. Let us stress that there are a lot of Cally Symmetric and has a maximufioth in coordinate and
similarities between the orbitals in momentum and coordiMementum spageat the origin. The density for a fully oc-
nate space. The symmetry properties of each orbital are ideifUPiedp level (the sum of the absolute squaresmf, py,
tical in both representations; even the shapes are similar. Orf/dP; densitieg is again spherically symmetric. However, it
of the major differences is that those orbitals whose densitgt!l 1as @ node at the origin. The small density measured at
is confined to a region close to the origin in coordinate spac4€r° momentum is a consequence of the finite momentum
(e.g., the & orbital) extend far away from the origin in mo- resolupon of the experiment, which is built into the corre-
mentum spacéand vice versa as expected on the basis of SPonding calculation.
the uncertainty principle.

More generally it turns out that the Iow-mome_ntu_m part of|\v. THE CHEMICAL BOND IN MOMENTUM
¥ ()] is related to the distant part gf(r). This is intuitively ~ gpacE
clear if one realizes that near the nucleus the electron has
little potential energy and a lot of kinetic energy, whereas far The next step is to get some understanding of the chemical
away the situation is reversed. Similarly, chemical bondingoond and how it affects the orbitals in momentum space. In
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Coordinate Space

Hi1s H2s H2p

Momentum Space

His H2s H2p

Int.

Py (a.u.)

Py (a.0) Py (a0

Fig. 2. Three-dimensional plots of the probability densitgx,y,0)? in coordinate space and the probability densitfp, ,p,,0)* in momentum space are

shown for the %, 2s, and 2p,, orbitals of the hydrogen atom. Note that in momentum and coordinate space the orbitals have the same symmetry. Also note
that the more extended the orbital is in coordinate space, the more confined in momentum space. The nods fobitad 2sults in a density minimum

which is visible as a circle centered at the origin in both the coordinate- and momentum-space pictures.

this context it is interesting to note an early discussion byantisymmetric. The antisymmetric combination has a nodal
Coulson'? who emphasized the potential of momentum in-plane equidistant from the nuclei. Nonidentical atoms result
formation for studying chemical bonding. At that time par- in analogous molecular orbitals, but the nodal surface in the
tially momentum-integrated and energy-summed informatioranalogue of the antisymmetric orbital is deformed and dis-
on molecular momentum densities could be obtained fronplaced. The electron density is the squared magnitude of the
Compton scattering?® molecular orbital.

The prototype for the discussion of the chemical bond is The key to understanding the energies of different types of
the hydrogen molecule. The distance between the nuclei in molecular orbitals in the atomic-orbital picture, and therefore
hydrogen molecule is 1.4 a.(0.74 A). This is considerably their bonding properties, is the density of negative charge
smaller than the spatial extension of two atomic hydrogen 1 resulting from the interference of the overlapping atomic or-
orbitals(see Fig. 2, each of which has an rms charge radiusbitals. This is called the interference densityThe interfer-
of 1.73 a.u. The orbitals of two undisturbed hydrogen atom®nce ofs orbitals is constructive in the symmetric case, de-
at the molecular distance would therefore overlap. structive in the antisymmetric case.

The chemical bond is described by molecular orbitals that We first compare the symmetric combination of twe 1
are SCF solutions of the molecular Scifimger equation. orbitals with two bare & orbitals at the molecular distance.
The most stable solution is one that minimizes the total enConstructive interference results in charge density being re-
ergy of the system. There are different types of moleculadistributed from the region near the nuclei to the overlap
orbitals, each with a different symmetry property. In a sim-region between the nuclei. The density changes are of two
plified description we understand them in terms of linearkinds.
combinations of atomic orbitals. For two identical atoms, First, the volume occupied by the electrons becomes larger
indistinguishability of the electrons limits the possible com-and the density smoother. This results in a significant lower-
binations of atomic orbitals to two, one symmetric and oneing of the kinetic energy, since lower absolute momenta re-
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Electron Momentum (a.u.) Fig. 5. The chemical bond derived frofa) s orbitals and(b) p orbitals. In

the case of orbitals the bonding molecular orbital is formed if the orbital
_ ) ) on one atom is obtained from the orbital on the other atom by a simple
Fig. 3. The experimental measurement|@fq)|” for the hydrogen atom.  translation. For the orbitals the bonding orbital is formed if the orbital on

The experiment was done using three different energies of the incomingne atom is obtained from the orbital on the other by a translaiuh
electrons, as indicated in the figure. All three experiments gave identicafyyltiplication by —1.

momentum densities. The exact solution of the Sdimger equatior(solid
curve fits the EMS data perfectly.

For the hydrogen-molecule bond the decay constamt-
sult from larger volumes and smaller orbital gradients. Wecréases from 1 in the bare-atom case to 1.193 in the molecu-
call this the overlap effect. Potential-energy changes in thé?' case. The kinetic energy is considerably increased and the
overlap region are comparatively small. potential energy considerably decreased. These changes al-
The redistribution results in reduced density near eactinost balance for the hydrogen molecule. .
nucleus, causing the second effect which is called promotion. ' comparison with two bare atoms at the molecular dis-
The reduced charge cloud is attracted to the nucleus mof@NCce there is a net increase in kinetic energy due to the
strongly so that the effective atomic orbital shrinks in spaceC°mPeting effects of promotion and the overlap region. This

We can model each effective atomic orbital by exgr). 'S outweighed by the decrease in potential energy due to
promotion. The decisive effect is the decrease in kinetic en-

ergy in the overlap region, since the effects of promotion on
the kinetic and potential energies almost cancel. The sym-
High Momentum (A" ") metric combination is a bonding orbital.
-4 -2 0 2 4 The energy arguments work exactly in reverse for the an-
tisymmetric combination. Charge is taken from the overlap
region and placed near the nuclei. The increased density gra-
dient causes an increase in kinetic energy, which is decisive
in the bonding consideration. The promotion effect is an ex-
pansion of the effective atomic orbitals, with the correspond-
ing decay constant being smaller than for bare atoms. The
antisymmetric combination is an antibonding orbital.
Bonding forp orbitals is different from that fos orbitals.
A p orbital has lobes of opposite sign on opposite sides of
the nucleus. Hence increased interference density in the
overlap region, resulting in a bonding molecular orbital, is
obtained by adding adjacept orbitals with opposite signs.
The antisymmetric combination is the bonding orbital. We
40 ! ™ show later that this difference results in different behavior of
-2.5 0 25 -3 -z -1 0 1 203 s- andp-derived electronic states in ionic soli¢see Fig. 5.
Momentum (atomic units) Momeotum (8.5) There is another approach to the hydrogen molecule. As
we have seen before, the highest momentum density is near
Fig. 4. The measured energy—momentum density of the valence levels dP€ Origin and corresponds to the part of the orbital in coor-
argon gas. On the left we show it as a greyscale plot. There is significanlinate space that is far away from the nucleus. At large dis-
density for two different binding energies corresponding to tpead 3 tances one electron experiences the attractive potential of
orbitals. Their completely different nature is evident from the fact that thetyo protons, rather close together and screened by the other
3s electrons have maximum density at zero momentum, whereasghe 3a|actron. Near the origin the momentum-space orbital there-
electrons have minimum density at zero momen(me density would be fore resembles that of aslelectron in a helium atom.
zero for perfect momentum resolutiorin the right half we show a com- . LT
parison of the measured momentum densities with ones obtained from SCF To what extent is the momentum proflle influenced by the

calculations(broken curvesand after convolution with the experimental bonding? |_n Fig. 6 we ShOW the gbsolute squares of calcu-
momentum resolutiofull curves. lated bonding and antibonding orbitals of the hydrogen mol-

Argon Valence Band

Binding Energy (eV)
Intensity (arb. units)
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Fig. 6. Chemical bonding in momentum space. In the top panel we show the

momentum density distribution of the bonding orbital for a hydrogen mol- rig. 7. Experimental momentum-density profiles for the hydrogen atom, the
ecule oriented along the axis. As the electrons become more delocalized hydrogen molecule and the helium atom. The curves are calculated from the
along thex axis the distribution becomes narrower along fleaxis. At exact solution of the Schdinger equation for the hydrogen atom and SCF
large distances the electrons probe the attractive potential of two protongpproximations for the two-electron cases. The data are arbitrarily normal-
screened by one electron. The resulting momentum distribution for thg,ed to the same zero-momentum value.

bonding orbital is then between those of thedtbital of the hydrogen atom

and the 5 orbital of helium. The antibonding orbital peaks at larger mo-

mentum values and thus has more kinetic energy.

V. MODEL FOR A SOLID

ecule in momentum space, as well as the homentum
densities of hydrogen and helium atoms. Figure 6 is a con- To understand the transition from a molecule to a solid we
tour plot of the electron density in thg—p, plane, with the  construct a hypothetical one-dimensional solid from a num-
direction of thep, axis being that of the internuclear axis. ber of hydrogen atoms by placing them with spacing equal to
The three-dimensional density is symmetric under rotatiorthat of the hydrogen molecule along a straight line. We do
about thep, axis. In coordinate space there are centers witmot know how to accomplish this in the laboratory, but still
high electron density at each of the two nuclei. In momentunwe can generate theoretical molecular orbitals. We use the
space the bonding orbital has a single centeq-af. As is  SCF program for moleculesamess'® with a basis ofs and
clear from Fig. 6 the momentum density of the bonding or-p functions appropriate to the hydrogen molecule, centered
bital is indeed between the densities for the atomic hydrogeat the nuclei.
1s and helium 5 orbitals. The antibonding orbital is of  Since the spatial extension of the atomic-hydrogen orbitals
course centered at the origin of momentum but it has twas not small compared to the distance between the nuclei, the
concentrations of high density away from zero. It clearly haslectrons will always experience the attractive potential from
the larger magnitude of momentum on average, i.e., it is thenore than one nucleus. Indeed, it turns out that, if one plots
orbital with more kinetic energy. the coordinate-space orbitals along the axis of the molecule

The contribution of EMS to the understanding of thefor a string of 32 hydrogen atoms, they resemble the solu-
hydrogen-molecule bond is shown in Fig. 7, where experitions of the problem of a particle in a one-dimensional box of
mental momentum densities are compared for atomidength equal to that of the molecuylEig. 8(@)]. They have a
hydrogent® molecular hydrogett and helium'® Since target  small modulation due to the difference between the actual
molecules are randomly oriented the molecular momentunpotential of the 32 atoms and the smooth average potential.
density is spherically averaged. The experimental points ar®nly the 16 orbitals with lowest energy are occupied and
supplemented by calculated momentum-density curves, uglotted. We characterize them by a principal quantum num-
ing SCF orbitals in the two-electron cases. The data are aberi. Along the hydrogen chain the potential of the box is
bitrarily normalized to equal density at zero momentum forlowered due to a rather uniform interaction between the elec-
convenience in comparison. The expected increase in avetrons and the nuclei. The attractive potential of the nuclei is
age momentum, and hence kinetic energy, in comparisonanceled in part by the repulsive interaction between the
with bare atoms, is observed for the hydrogen molecule. Thelectrons. Let us call this average potential inside the dgox
high-momentum part of the hydrogen-molecule data is comEach solution has a characteristic wavelength It is no
patible with an increased effective decay constant, as exsurprise that the momentum-space orbital, which is the
pected from the promotion effect. We also observe the exbirac—Fourier transforrjEq. (3)] of the coordinate-space
pected effect at low momenta. The trend of the hydrogenerbital, is peaked at a valug corresponding to the wave-
molecule data is away from the hydrogen atom and towardkength ;. We remind the reader that, in atomic units, wave
helium. numbers and momenta have identical numerical values. For
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Fig. 8. (a) Shows the 16 occupied coordinate-space orbitals of a model linganélecule. The orbitals resemble the solutions of the problem of a particle
in a box. The orbital has a characteristic wavelength of approximately 2/i wherel is the length of the molecule. Itb) we show the corresponding
orbital momentum densities. Each has a maximum closerth; 2 Each plot is offset vertically by an amount proportional to its binding energy. The relation
between binding energy and momentum is close to the free-electron parabola.

example the least-bound orbitad=16) has a wavelength of left side of the periodic table. Here, nesvand p levels are
about 6 a.u. and hence its momentum distribution is expecteleing filled with increasing atomic number. The electrons in
to peak near 2/6=1 a.u. these levels experience nuclear potentials that are screened to
In Fig. 8b) we show the momentum density for each of a large extent by the inner-shell electrons, and their atomic
the 16 occupied orbitals. Each curves shifted vertically by  orbitals are almost as extended as the corresporslargp
its calculated binding energy. The peaks at momegpseem  orbitals for the hydrogen atom.
to line up along a parabola. This is not a surprise. The bind- In Fig. 9 we show the measured energy—momentum den-
ing energye of each orbital is the difference between the sity for an aluminum filmt’ The qualitative resemblance
potential energy of the electron due to the interaction with
the remainder of the system and its kinetic energy. The
kinetic energy of a free particle ig%/2. Thus the binding

A - g . . i i Experiment

energy of orbitali in this approximation is given by o ; Momentum plots
€,= €,—02/2m* . The parametem* describing the shape of I S
the parabola is thédimensionlesseffective mass. In Fig. = £ iy 12
8(b) it is slightly (about 10% less than the free-electron = *""“‘"’f& &’"‘"2‘“3’"’
value 1. g i i

For a string ofn hydrogen atoms there would Ié2 oc- & 4 - ,_k,__..gﬁfm-eﬁ“ o
cupied states, since each is occupied by two electrons o is 5 E s =5 45 |
opposite spin projection. In the limit—oo, corresponding to Theory g P P 56
a one-dimensional solid, the spacing between the energy lev o g ”‘3&% .
els would become infinitesimally small and we would have a _ 2 = .
continuous dispersion relatios=e,—q%/2m*. The continu- & I T
ous energy levels form an electronic band. The continuurr & Fan 8.9
guantity replacing the principal quantum numbersf the - s
discrete orbitals is a wave vector that is often called the 0 B
crystal momentum, and which we denotelbto distinguish 15 . ,‘,_&f-f‘”‘gw o1
it from the real momentung of the electron, measured by -2 0 2 2 0 2
E M S . Momentum (a.u) Momentum (a.u.)
V1. A FREE-ELECTRON METAL Fig. 9. The experimental results of EMS measurements for an aluminum

film (top left). The parabolic shape for the binding-energy—momentum re-

In practice, we expect free-electron-like behavior, as i”us_latlon is indicative of a free-electron metal. At bottom left we show the

L . results of detailed calculations of this energy—momentum density. The
trated by the model of Sec. V, for solids in which the eXt(:"n'agreement is excellent. In the right panel we show the momentum densities

_Sion of th? outermost at(_)m_ic orbitals is large compared to theyr binding-energy slices indicated in eV for each plot. The resemblance to
interatomic spacing. This is the case for the elements at thee results for the model 44 system is striking.
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ALO, Momentum (A") by the electrostatic attraction of two relatively inert, oppo-
SRR sitely charged ions and the electrons are mainly associated
,ﬁ'l,i # P with an orbital of one ion only.
B That the free-ion picture is too simple is clear from a
b ";lf I somewhat-more-careful inspection of Fig. 10. Both the
{ !,I deeper ‘s” density and the ‘p” density are not associated
ﬁ"‘ i with a constant energy level as in the case of a noble gas, but
i ﬂ’mﬁ; there is dependence of the binding energy on the momentum
(i.e., dispersion The maximum binding energy of the inner
2s level is at zero momentum. However, thdevel has its
p B maximum binding energy at a finite momentum. This can be
1000 oy interpreted in a straightforward manner using a chain of hy-
; '1% drogen atoms similar to that introduced in Sec. V.
i i, In ionic solids the overlap between orbitals centered at
F‘ﬁ‘ww Wiyt different nuclei is small. In the linear-chain model, the hy-

- — drogen atoms are now separated by a much larger distance
Momentum (atomic units) than in a hydrogen molecule. We consider both a chain of
Momentum (atomic units) hydrogen atoms with occupieds brbitals (mimicking thes

level in Al,O3) and one where theorbitals are occupied
Fig. 10. The experimental results of EMS measurements on gDgAlm mimicking thep level of Al,O5).

and the results of a corresponding calculation. The right panel shows th : - .
experimental momentum density, integrated over energy. Note that the rel—_ In Fig. 11(3‘) we show a C.haln of 11 hydroqeg\s;brblt.als'
sults are completely different from those of aluminum metal. If anything | N€ SPacing of the atoms is chosen to be 2.5 A in this case,
they more closely resemble the argon gas data of Fig. 4. so there is only small overlap between neighboring atomic
orbitals. For theses electrons we can construct the lowest
bonding orbital if we add all atomic orbitals with the same
.phase. This is shown by the thin line of Fig. (L It is

W't.h.the calculated shape for the chal_n of hydrogen atoms | nergetically most favorable since the interference between
striking. The outer valence electrons in aluminum are essen

tiallv free. Thev behave as in the model of a particle in a box he nuclei is constructive. If we construct an antisymmetric
Ay i, Y X P ; . _prbital by changing the sign of the atomic orbital at alternate
with the dimensions of the box being equal to the dimension

of the solid sample. In Fig. 9 we also show the results O?itoms, we get the antibonding orbital. It is energetically less

gquantum-mechanical calculations using state-of-the-art corﬂ;—?g;) r,aAblgir?str:te hrﬁ(sjrggﬁf[[]urﬁt_';/ea?eteggigcsviﬁewgzlfna:hr?]g_u'
puter codes! There is good agreement, both for the energy—" " 9 P P

; ; - : _menta corresponding to the characteristic wavelength of the
momenturm(dispersion relation and the corresponding elec coordinate-space orbital. At zero momentum the Dirac—

tron density. The main difference is that there is more . : ;
ourier transformation averages the orbital over all space.

contrast in the theoretical plots. This is because in the experly " onding orbital has a larae constant component and
ment some of the external electrons have suffered additional ’ 9 S a large C P
ence its momentum distribution will peak at zero momen-

elastic collisions, causing slight broadening of the momen;

tum peak for each energy, and thus decreasing the contradt™ The antibonding orb_ital averages to zero at zero mo-
P 9y 9 mentum. Its wavelength is& and thus its Dirac—Fourier

transform will peak agj=27/2a.
VII. AN IONIC SOLID _For the case of hydrogen atoms with the @rbital occu-
pied we choose the distaneebetween neighboring atoms
That a free-electron type of behavior is not typical for all larger(10 A) in order to have small overlap of the orbitals of
solids becomes clear if we expose the aluminum film to airadjacent atomgFig. 11(c)]. Again we construct symmetric
The film will oxidize near the surface. Due to the small meanand antisymmetric sums of these orbitfg. 11(d)] but
free path of the slow external electron in the EMS reactiorthere are some differences from thelerived orbitals. The
we obtain information only from the surface of the thin film Symmetric sum(thin line) and antisymmetric sunfthick
nearest the detectors. Therefore the image obtained from thiige) of the p orbitals both average to zero, i.e., they have
film shows only the oxidized layer. This image is shown inzero density for zero momentum. Now the antisymmetric
Fig. 10281t has no resemblance to the aluminum metal at all;sum oscillates with the longer wavelengtha)2and its mo-
rather, it resembles the atomic-argon picture. mentum density peaks neatr2a. It is the orbital with en-
What is the explanation for this? Aluminum oxide has thehanced charge density between the atoms, i.e., the bonding
composition A}Os. In the simple ionic picture we have &1  orbital (see also Fig. 6 The symmetric sum has a shorter
and G Both of them have the first two shells completely wavelength &) and hence its momentum density will peak
filled, so that their electronic structure resembles that of the&round 2r/a. It has a node between the nuclei, so it is the
noble gas neon. The binding energies of tisead 2 elec-  antibonding orbital. Different combinations occur at different
trons in AR* will be greater than those for?0, since the momenta from these two extremes and their binding energies
oxygen nucleus has a smaller charge. Therefore the outedre between the extreme values. Hence there is an energy
most orbitals of AJO; are the D and X orbitals associated minimum at momentum 2/2a.
with the oxygen atoms. All occupied orbitals are much What does this mean for AD;? The crystal structure of
smaller than thénow unoccupiefAl 3s and Al 3p orbitals.  Al,O; is very complicated. It even exists in three different
So the free-electron picture, valid for metallic aluminum, forms, -, -, or z-alumina. In thea-alumina form the mini-
does not apply to AD;. The image for the oxide is more mum distance between oxygen atoms is about 4.7(2.6.
like the pure ionic picture, in which the solid is kept togetherA). For thes level we find maximum binding energy as
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chain of 11 H 1 s wavefunctions 2.5 A apart chain of 11 H 2p wavefunctions, 10 A apart
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Fig. 11. Examples of different molecular orbitals constructed from atomic orbitals separated by a distan@ we have 11 hydrogenslorbitals and we
have chosem=2.5 A, so that the atomic orbitals have small but significant overlagb)lme show the symmetrigthin line) and antisymmetri¢thick line)
linear combinations. The symmetric combination has larger interference density and is therefore the bonding oiitak mave 11 hydrogenf2wave
functions. In order to have again small but significant overlap we #ak&0 A. Now the symmetric surfthin line) has smaller interference density than the
antisymmetric sunithick line). Each molecular orbital has a characteristic repeating distamaeelength L, which can be read from the figure. The
corresponding momentum distribution peaks atl2as explained in the text.
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