Chapter 5

Topological Growth Ratesand Fractal
Dimensions

5.1 Intr oduction

Throughouthis thesis we obsenre closecorrelationsbetweernvaluesof thetopologicalgronth
ratesandvariousotherfractalindices. Theseobserationsarebasednbothanalyticderivations
andnumericaktomputation®f therelevantexponentsin thischaptemwe derive inequalitieghat
relateour topologicalgrowth ratesto existing scalingindicessuchasthe box-countingdimen-
sionandthe Besicwitch-Taylor exponent.Suchrelationshipdeadto a betterunderstandingf
thetopologicalgrowth rates.

Thechaptehasthreesections We startby giving definitionsof box-countingdimensionfat
fractal exponentsand Besicaiitch-Taylor index. Thesemeasuresf fractal scalinghave close
connectionsvith oneanother andwith the topologicalgrowth rates. Sections5.3.1t0 5.3.3
examinethe disconnectednesmddiscretenesmdices,y andd for subsetof R andR™. The
mostdetailedresultsarefor compactotally disconnectedubset®f theline; thesearegivenin
Sectionb.3.1.Suchsetsaredefinedin termsof countablymary complementarppenintenals.
It is well known that the fractal dimensionis relatedto the scalingof the lengthsof these
deletedintenals. We adaptthis resultto shav thaty and§ arealsorelatedto this scaling. In
Section5.3.2 we study subsetof higherdimensionalspacesand obtain simple inequalities
involving ~, §, andthe box-countingdimensiondimpg. We give examplesin Section5.3.3to
illustrate someof the casedor the inequalitiesof Sectionss.3.1and5.3.2. A consequencef
theresultsin this chaptetis thatfor zeromeasureCantorsubset®f R

vy=dimp and (1—+)<é<1,

providing the appropriatdimits exist. Althoughthe disconnectednesadex v takesthe same
value asthe box-countingdimensionundertheseconditions,we emphasizehat this doesnot
imply that+y is a “fractal dimensiori. Any definition of fractal dimensionshouldextend the
classicalnotion, andthereforean m-dimensionamanifold musthave dimensionm, for exam-
ple. The disconnectednesadex, however, is zerofor ary compact,connectednanifold. In
Section5.3.4,we take afirst steptowardsrelatingthe growth rateof “k-dimensionaholes”
to the box-countingdimension.

We discusssomeof the mary openquestionsn the concludingsectionof this chapter The
mostinterestingunproven conjectureconcernsstrictly self-similarfractals. We have obsered,
for the examplesin this thesis,thatwhena self-similarfractal hasa non-zeroy, thenit takes
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the samevalue asthe similarity dimension.This is not surprising— self-similarityis a strong
conditionandwe expectit to dominateary scalingproperties.

5.2 Definitions

We recall the necessarylefinitionsof box-countingdimension fat fractal exponents,andthe
Besicwitch-Taylorindex — ascalingindex thatprovidesalink betweerourtopologicalgrowth
ratesandfractaldimensions.

5.2.1 Box-countingdimension

We discussedhe box-countingdimensionand its relationshipto the Hausdorf dimension
briefly in Chapterl. Here,we restatehe definitionandgive anequivalentformulationin terms
of e-neighborhoodsef a set.

Box-counting dimension

Recallfrom Chapterl that the box-countingdimensionis definedin termsof covers of the
fractalby setsof sizee. If N (e) is the smalleshumberof setswith diametersat moste needed
to cover X, then

dimg = lim log N(e)

A
e—0 —loge ®-1)

Of course this limit may not exist, in which casethe lim sup andlim inf areused. The cor

respondingimits are the upperand lower box-countingdimensions dimp anddimg. The
numberN (e) canbedefinedin mary ways,all of whichyield anequialentvalueof dimp (see
Falconer{23] for details). Thedefinitionsof N(e) thatwe usein Section5.3are

1. thesmallestnumberof closedballsof radiuse thatcover X; and

2. thelargestnumberof disjoint balls of radiuse with centersn X.

Mink owski dimension

The Minkowski dimensionis the scalingrateof the Lebesguemeasuref the e-neighborhoods
of X. We write u(X) for the Lebesguanmeasuren R™, and X, for ane-neighborhoof X.
Thedefinition of Minkowski dimensionis asfollows:

- oss]

dimy; = lim
loge

e—0

(5.2)

If thelimit doesnot exist we usethelim sup andthelim inf. This definition of dimensionis
equialentto box-counting. To seethis, let N(¢) be the largestnumberof disjoint balls from
definition 2 above. If we write ¢, for thevolumeof theunitballin R* —i.e.,c; = 1, ¢ =
m, cg = 4m/3, etc.—then

p(Xe) > cpe" Ne).
If wetriple theradiusof the balls,we have that

u(Xe) < cn(3€)"Ne).
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Theseboundsmply thatdimp = dimj,; see[23] for amoredetailedproof. Thetwo different
formulationsof box-countingdimensionmeanwe canderive differenttypesof relationships
with thetopologicalgrowth rates.

5.2.2 Fat fractal exponents

We have givena few examplesof fat fractalsin this thesis.Recallthatthesesetshave positive

Lebesgueneasureandthereforeinteger Hausdorf andbox-countingdimensionslt is possible
to characterizeéheirregular structureof a fat fractal by modifying the definition of Minkowski

dimension. The measureof the e-neighborhoodsX, convergesto the measureof X; the fat

fractalexponentcharacterizethe corvergencerateasfollows:

log (u(Xe) — p(X
dp = limsup |n — 280X — p(X))
e—0 log €

(5.3)

The exponentdy is not a dimensionbecauset givesinconsistenwaluesfor the dimensionof
the unit n-cube,I™, dependingon the ambientspace.If I C R”, thendr = n — 1; but if
I" C R™ with m > n, thendp = n.

Umbegeret al. [20, 22, 84] give a finer characterizatiorof the scalingof p(X.) by sep-
aratingout contritutions from “f attening”and “filling in holes” of the fractal. This involves
consideringhefatteningof X to its e-neighborhoodX, andthenthe unfatteningof X, to aset
U.. Theunfatteningoperationis achieved by fatteningthe complemenbf X, i.e.,

U. =R — (R" — X,)..

ThesetU. is largerthan X — ary structureof sizelessthane arefilled in or smoothedut.
Now defineF(e) = p(Ue) — p(X), andG(e) = pu(Xe) — u(Ue). F(e) is themeasuref filled
in holes— i.e., the small-scalestructure— and G(e) is the measureof fatteningcausedoby
large-scalestructure. Umbegeret al. definescalingratesfor both F'(e) andG(e) ase — 0, and
usetheseratesasa characterizatiomwf fat fractal structure.In the notationof [22]

log F' — log G
—1im 28 F ) g 7 i 0BG
e—~0 loge e—0 loge

Notethat F(e) + G(e) = u(Xe) — p(X) sodr = n — min{3, B}.

5.2.3 The Besicwitch-Taylor index

Thisindex is derivedfrom a proces®f packingthe complemenbf a setwith regularcells. We
startby describingthe casefor compacttotally disconnectedgubsetof R. Let X C [a,b] be
suchaset. Thecomplementfa, b] — X is theunionof acountablenumberof openintenals, U;,
fori=1,2,... [81]. Thatis,

X:@M—Gm. (5.4)
1

We let u; = u(U;), the Lebesguemeasureof U;, and assumethat the setsare orderedby
decreasindength,i.e.,u; > ug > .... SinceX C [a, b] andtheU; aredisjoint, we have that

u(X):b—a—Zui.
1
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Figure5.1: Packingthecomplemenbf afractal.

The cornvergenceof the series) " u; canbe characterizedn a numberof ways. The original
formulationof Besicwitch andTayloris theindex:

(e}
dpr = inf{a | Zuf‘ < oo} (5.5)
1

Propertieof corvergentmonotoneseriescanbeusedto shav thatthefollowing ratesareequi-
alentto the Besicwitch-Taylor index [81].

log k
dpr = lim sup o8 (5.6)
k—oo — logug
1 o0 uy
= lim sup [1 — M] . (5.7)
k—00 log uy,

We shav in Section5.3.1that(5.6) hasa closeconnectiorwith our disconnectednessdex.

Tricot [80] extendsthe definition of the Besicwitch-Taylor index to subsetsX C R" by
packinga boundedcomplementaryegion with regularcells. For example,we canusen-cubes
with facesthat are parallelto the coordinateaxes. Let Uy be the smallestclosedn-cubethat
containsX, andlet ug be the sidelengthof Uy. Now let U; be thelargestcubein Uy — X,
U, bethelargestcubein Uy — X — Uy, andsoon; seeFigure5.1. If we setu; equalto the
sidelengthof U;, thenwe candefinethe Besicwitch-Taylor index asin (5.5). The Lebesgue
measureu(U;) = u?, sothe series) u} corvemges,andthereforedgr < n. Theequivalent
formulain (5.6) remainghe same put (5.7) becomes

log 3% w7
dpr = limsup [n ~ M] . (5.8)
k—00 log ug,

We alsonotethatthe setsusedin the packingcanbe more generatthann-cubes;see[80] for
details.The“cut-out sets"describedn Falconer{24] involve similarideas.
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5.2.4 Topologicalgrowth rates

For easeof referencewe recalldefinitionsfrom Chapter® and3 for scalingratesin thenumber
of componentssizeof componentsandpersistenBetti numbers.

Disconnectednesand discreteness

For disconnectedets,the rate of growth in the numberof e-connecteccomponentsC (e), is
measuredby thedisconnectednessdex, v. Thatis, C(e) ~ ¢~7, and
1
y = lim 28€(9). (5.9)
e—0 —loge
The sizeof the e-componentss measuredy the largestcomponentiiameter D(e). If asetis
totally disconnectethenD(e) ~ ¢ and

(5.10)

is the discretenesidex. If the limits do not exist, we usethe lim inf or lim sup andwrite
~inf ysup 5inf or 55UP for the correspondingndices.We alsonotethattheresolutionparameter
e is relatedto distancedetweerpointsin theset.

Growth rates of Betti numbers

In Chapter3 we introducedhe notionof persistenBetti numberﬁg(Xe), to countthenumber
of k-dimensionaholesin aspacesafunctionof resolution.Here theparametet relatego the

e-neighborhoodsoit is aradiusmeasurementf /3,3(X€) — 0o ase — 0, thenwe characterize
therateof growth by thefollowing index

. log BR(X)
Y, = lim ——%———+.

5.11
e—0 — 10g€ ( )

As always,if thelimit doesnot exist, we usethelim sup or lim inf. Recallthatfor £ = 0, the
Betti numberis just the numberof connecteccomponentsso the definition of v, agreeawith
thatfor thedisconnectednessdex, +. In thedefinitionof ~;, we comparehe numberof holes
to their size. The Besicwitch-Taylor index alsocompares numberwith a sizeparameterthis
is thereasorwe expectalink betweerthetwo.

5.3 Results

In this section,we derive a numberof inequalitiesthat relateour topologicalgronth ratesto
differentfractal scalingindices. Sections5.3.1and5.3.2 examinethe disconnectednesand
discretenesmdices.Thefirst resultsarefor totally disconnectedubset®f anintenal. Thein-
equalitiesarestraightforvard consequenceasf existing resultsthatrelatethe Besicwitch-Taylor
index andthe Minkowski dimension.We thenconsiderin Section5.3.2,totally disconnected
subset®f higherdimensionabpacesTheexamplesof Sections.3.3aremainly Cantorsubsets
of [0, 1], chosersoasto illustratevariouscasef equalityandinequalityfor the resultsof the
two precedingsectionsFinally, in Section5.3.4,wetake afirst steptowardsrelatingthegrowth
ratesof Betti numbergo fractaldimensions.
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5.3.1 Subsetsof theline

We startwith compacttotally disconnectegubsetf the real line andshaw that the discon-
nectednesmdex, v, is closelyrelatedto the Besicwitch-Taylor index, which is in turn related
to the Minkowski dimensionandthe fat fractal exponent. We thenderive generalboundsfor

thediscretenesmde, §.

Disconnectedness

SupposeX C R is compactandtotally disconnectedandlet X, denotean e-neighborhood
of X. Asin (5.4) the complemenbf X is a union of openintenals, U;. The numberof e-

connecteacomponent®’(e) of X is justonemorethanthenumberof complementaryntenals

with lengthu; > €. Thisgivesusawayto relatethedisconnectednedésdex, v, anddpr. Given

€, choosen sothatu,, < € < u,—1. ThenC(e) = n and

1 1 1 1 1
ogn ogC’(e)< ogn  logu, ogn (5.12)

—logu, ~ —loge — —logup_1 logup_i1 —logu,
Following [21] we define

L= lim 1%8Y
n—oo log Uy 1

This quantitysatisfiesl < L < oo. Takingthelimit of eacheachquantityin (5.12),we have
that

‘dBT <~ < Ldpr. ‘ (5.13)

It is arguedin [21] thatfor physicalexamples,L = 1, andthendgr = ~. In generalhowever,
L canbearbitrarilylarge— e.qg.,if a,b > 1, setu; = a~®), thenL = b. If thelimits in (5.12)
do not exist, we canobtainsimilar resultsto (5.13)by usingthelim sup or lim inf.

Both Falconer[24] and Tricot [81] derive inequalitiesinvolving dgr andthe Minkowski
dimensiondim,; whenX haszeroLebesgueneasureTheseresultsthereforeextendto . In
summarythetheoremof Section3.4in [81] shaws that

dpr = dimyy. (5.14)
Slightly differentresultsin Falconer{24] imply theabove, andalsothat

dim,(1 - dimyy)
(1 —dimy,)

< dgh < dim,,. (5.15)

Theabove inequalitiestell usthatfor totally disconnectedubset®of R with zeromeasurethe
limit dimy, existsif andonly if thelimit dgr exists,in which casethey areequal. Translating
thisinto anexpressiorfor v we have, providing thelimits exist,

dimps < v < L dimyy . (5.16)
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A proof

To illustratethetechniquesnvolvedin proving theabove inequalitieswe give a proof of (5.14)
following thatin Tricot [81]. We startby observingthatsincethelengthsu; aredecreasingfor
sufficiently smalle > 0 we canfind anintegern suchthat

Up < 26 < Up_1-

Now considetthe measuref thee-neighborhooaf X — this canbebroken down asfollows:

w(Xe) = p(X) +2en+ > ui. (5.17)

i=n

The secondermrepresentshe overlapof the e-neighborhoodnto gapsof lengthgreaterthan
2¢ andthe third termis the lengthof the gapsthatarefilled in completely For zero-measure
setsthefirst termdisappears.

The following proof usescritical exponentdefinitionsof dgr anddimj,, ratherthanthe
limit formulationsgivenin (5.2) and(5.5). Specifically the Minkowski dimensionis

dimps = inf{a | € pu(X) — 0}. (5.18)
Version(5.6) of the Besicwitch-Taylor index is equivalentto
dpr = inf{a | nuj — 0}. (5.19)

See[81] for a proof thatthesedefinitionsare equivalentto the earlierones.We nowv compare
critical exponentdor the left andright sidesof (5.17) proceedingn two stages.Thefirst step
shawvsthatdgr < dim,,, thesecondhatdimy, < dp7.

Stepl. dpr < dimy,. Multiplying bothsidesof (5.17)by e, we have

o
(X)) = 2% + 71 Z uj-

i=n

If @ > dimyy, thenby definition,e*~1u(X,) — 0, whichimpliesthattheright sidealsotends
to zero. Thus,2e¢*n — 0 andsincee > u,/2, we have that21—augn — 0 andthisimplies
a > dgt. Thereforedpr < dimjy.

Step2. dimy, < dgr. Corversely withoutlossof generalitywe canassumehatdgr < 1.
(This is becausef dgr = 1, thenstepl shaws thatdim,, > 1, but dimy, < 1 fromits
definition,sowe aredone.)Now choosex suchthatdgr < a < 1. Againwe have that

o
@ u(Xe) = 26%n + @71 Z Uj-
i=n
Sinceu, < 2¢ < u,_1, anda — 1 < 0 we havethate® < (u,_1/2)® ande® ! < (u,/2)* 1.
Therefore

o0
(X)) <217 n + 2172t Z u;.

i=n
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We wantto shav thattheright sidegoesto zero. Thefirst termdoesbecausex > dpr which
means:®_;n — 0. We canrewrite theseconderm (droppingthe2!~¢) as

o0 o0 Wi
a—1 s 1
Uy E U; = Uy, + E .
i=n

1
i=n+1 Un

We next shaw that >>>° u® — 0 asn — oo. Chooses suchthatdgr < 8 < a. Since

i=n 1

B > dpr thereis aninteger N sothatforn > N, nuﬁ <1,i.e u, <n Y8 Thus

o0 [e's)
Doud <Y1/,
i=n i=n

anda/p > 1 sotheright sidetendsto zero. Puttingall the piecesbacktogetherwe have that

€* tu(Xe) — 0 ase — 0, implying thata > dimy, andthereforethatdimy, < dpr.
Remark. If X is afat fractal, we cansubtractu(X) from eachsideof (5.17)andobtain

resultsidenticalto (5.14)and(5.15)for thefatfractalexponentdg, insteadof dimj,.

Discreteness

For a totally disconnectedubsetX C [a,b], the disconnectednedadex, +, is independent
of the arrangemenbf the complementanyntenals, U;, within [a,b]. This is not true of the
discretenesidex, §. In this section,we derive boundson § that are independentf the ar
rangemenbdf complementaryntenals. The argumentis the sameasonewe usedin Chapter2
for a Cantorsetwith v = 0.

Letu; > us > ug > ... bethelengthsof theU;. If u,11 < € < u,, thenthe largest
e-componentnustbelongerthanthe next intenal to beremoved, so

D(E) Z Un+1-
If nislargeenoughthatu,, < 1 andD(e) < 1, then

log D(e) < log tp41
loge ~ logu,

Takingthelimit on bothsideswe havethaté < L.
Ontheotherhand thediametercannotexceedthetotal lengthof whatremainsof theinter
val [a, b], SO

D(e) Sb—a—Zui :,u(X)—FZu,'.
1

We assumeagainthatu,.; < 1 andD(e) < 1 sothat

log D(e)  loglu(X) + 3 n% uil
loge ~— log Un 11 )

If u(X) = 0, thenthe quantityon theright is relatedto the Besicwitch-Taylor index via (5.7).
Takingthelimit on bothsides,we find thaté > (1 — dpr). If u(X) > 0, thenall we have is
thatd > 0. To summarizeif u(X) = 0 andtheappropriatdimits exist, then

((1—dpr) <6< L.| (5.20)

We give examplesin Section5.3.3to illustratetheresultsobtainedhere.
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5.3.2 Disconnectedsubsetsof R”

In this sectionwe explore connectiondetweerthe box-countingdimensiondimg andthe dis-
connectednesand discretenesindicesy and 4, when X is a compacttotally disconnected
subsebf R™. We startby shawing thatfor ary setX for which thelimits exist,

G20

This follows from comparingthe numberof e-connecteccomponents(C(e) with the largest
numberof disjoint /2-ballswith centersn X, N(e/2) (i.e., definition2 on pagel02). Since
ary two e-componentsreseparatetby a distanceof atleaste, ary two balls of radiuse/2 with
centersn differente-componentsnustbedisjoint. It follows that

C(e) < N(e/2).
If e < 1 wehavethat

log C(e) < log N(e/2) log N(e/2)

—loge = —loge  —log(e/2) —log2’

By takingthelimit ase — 0 on eachside, it follows thaty < dimpg. If thelimits do not exist,
we still have that

'yinf <dimg and ~*P < dimpg.

Any connectedractal (e.g.,the Sierpinskitriangle) hasy < dimpg, sincea connectedet
with morethanonepointhasy = 0 anddimp > 1. Moreinterestingexamples— for whichthe
inequalityis strict— arefat Cantorsetsin R! for whichdimp = 1, buty < 1 (seetheexample
in Section5.3.3). We have alsoseenexamplesof self-similarCantorsetswhereequalityholds
in (5.21).

Next, we shav thatif X is totally disconnecte@dndthe appropriatdimits exist, then

dimg < <. (5.22)

]2

We againstartby consideringhe e-connectecomponent®f X . Thenumberof e-components
is C(e) andthe largeste-componendiameteris D(e). We setr = D(e)/2, andlet N(r) be
the smallesthumberof r-ballsneededo cover X (i.e., definition1 on pagel02).Clearly C(e)
ballswith radiusr will cover X, sothat

N(r) < C(e).
Fromthisinequalityit follows thatwhene < 1,

log N(r) < log C(e)
—loge — —loge

If we multiply theleft sideby log r/ log r andrearrangeve have

logr log N(r) < log C(¢)
loge —logr — —loge
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Butr = D(e)/2 so

(log D(€) — log2) log N(r) < log C(e)

. 5.23
loge —logr — —loge ( )

SinceX is totally disconnecteave know thatD(e) — 0 (Lemma3in Chapter2). If weassume
thatthelimit definingd existsandis nonzerothenthelimit ase — 0 andthelimit asr — 0 are
equialent. We canthereforetake the limits on bothsidesof the inequalityandfind

ddimpg < .

If thelimits do not exist thenwe canusethe limsup or liminf instead.We mustbe a little
morecarefulwhenderiing theinequalitiessincefor positive functions,f, g > 0

lim inf[f(z)g(z)] > [liminf f(z)][liminf g(x)]
and

lim sup(f(x)g(x)] < [limsup f(z)][lim sup g(x)].
Takingthelim inf in (5.23)we have

log D log N 1

lim ing 282 jipy i BV () gy i 108 LS
0g € —logr —loge

And for thelim sup

log N(r) < limsup log C(e) imsup loge
—logr ~— —loge log D(¢)

lim sup

Sincelimsup(1/z) = 1/(liminf z), it follows that:

inf ,ysup
it and dimpg < St

dimp <

Finally, putting(5.21)and(5.22)togethertells usthatwhenthelimits exist and~y # 0 then

§<1. (5.24)

All of theabove inequalitiesareconsistentvith theresultsobtainedn the previous sectionfor
Cantorsubsetof the line. In fact, for totally disconnectegubsetof R with zeroLebesgue
measurewe have from (5.16)and(5.21)thaty = dimp, andif v # 0, then(1 — ) < 4§ < 1.

5.3.3 Examples

We now discusssomeexampleghatillustratevariouscase®f therelationshipsetweerdimen-
sionsandthediscretenesanddisconnectednessdices.
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Middle-third Cantor set

This Cantorsetis constructediy successiely remaving the middle third of eachremaining
interval. Thereare2f~! complementaryntenals with lengthsg;, = (3)*. Fromtheformulas
for middle« Cantorsetsin Chapter2 we have that

_ log2

= and § =1.
7 log 3

Sincethesetis self-similar we know that

log 2

dimp = dimy; = log3"

Thecorvergencerateof the gaplengthsis the limit

k+1)logi
L:limlOgng—li (k+1)logg

log g1, klog %

To computed g we needthe total numberof gapswith lengths> g;; thisis just

k—1 .
np =y 2 =2k
=1

Therefore,

It follows that equalityholdsin all the appropriaterelationshipsderived abore — i.e. (5.13),
(5.16),(5.22),and(5.24).

A fat Cantor set

We examinethe samefat Cantorsetasin Chapter2. Recallthat, K C [0, 1] andthereare2—!
gapsof sizegy = (3)%*71({) for k = 0,1,2,.... Thesethaspositive Lebesgueneasureso
dimpg = dimj, = 1. We shavedthatwhenthe gapsareremoved from the centersof intenals,

Thecornvergencerateof the gaplengthsis again

1 1

= lim =1.
log gy, (2k — 1)log 5 + log 75

For the Besicwritch-Taylor index we have thatthetotal numberof gapswith lengths> g, is 2%,
o)

1

OgMk klog2 _ 1
— log gk (2k —1)log2+log10 2

We seethaty = dpr, anddimp = /4.
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Finally, we shav thatthefat fractalexponentfor this setis also%, usingtheformula(5.17)
for themeasuref the e-neighborhooaf K. Givene, choosek sothatg, < 2¢ < gx_1. There
areatotal of 2¢—! gapslongerthan2e andthelengthof thesegapsis the sum:

k-1
SR = - (),

n=1

Since} ° 2"1g, = £, it follows thatthetotal lengthof all gapslessthan2e is ({5)(3)" .
From(5.17)we thereforehave that

(I — p(K) = 2¢(2"1) + (15)(3)"

[y

By our choiceof ¢, we have
(15)(3)* < p(Ke) — p(K) < (F)(3)
Usingthisin thedefinition of fat fractalexponent(5.3),we find thatdr = % Thus,we seethat
dpr = dp = 1.
A countabletotally disconnectedset

Finally, we considertheset

X=40,1,4,3,...}.
This setis totally disconnectetiut not perfect.Falconershavs [23] thatthe Hausdorf andbox-
countingdimensiondiffer for this set— the setis countable sodimg = 0, but dimg = %
Thedistancebetweemeighboringpointsin the setis

1 1 1

gn:ﬁ_n+1:n(n+1)’

soL = 1, anddpr = % To computethe disconnectednesmddiscretenesgrowth rates,let
e, beary numbersuchthatg, 1 < ¢, < g,. Thenthepointsl,... ,1/n aree,-isolatedand
therestbelongto a singlee,-componensothatC(e,) = n + 1. Thelargeste,-components
alwaysthetail of thesequencef0, 1/(n + 1)], whichmeansD(e,) = 1/(n + 1). Thus,

n—oo —logn(n+1) 2

and

. log(n+1) 1
vy= lim ———— = —.
n—oologn(n+1) 2

This exampleshavs thatit is possibleto have y = dimp butdimp < /4.

We obsered in Chapter2 thatthe Cantorsetexampleswith zeroLebesguanmeasurenad
4 = 1. We conjecturehatthisis the casefor all zero-measur€antorsets.The exampleof the
countablesequencef pointsdescribedabore is a totally disconnectedetwith zeromeasure,
but § # 1. It follows thatif our conjecturds true,thenthe proof will have to make explicit use
of thefactthat Cantorsetsareperfect,i.e., thatthey have noisolatedpoints.
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5.3.4 Other subsetsof R

We now examinefractal subsetof R" thathave unboundedyrowth in the numberof (n — 1)-

dimensionahon-boundingcycles. Supposdhat X € R™ andthat X is a compactconnected
fractal with persistenBetti numbers?_,(¢) ~ e 7n-t ase — 0. Undertheseconditionswe

canshav thatthe growth rate-, ; is boundedabore by the Minkowski dimensiondimj, if

u(X) = 0 Moregenerallyif u(X) > 0, v,-1 is boundeddy thefat fractalexponentdg:

529

We startby defininga type of Besicwitch-Taylor index for the sequencef persistenhole
sizes.Fromthe definition of persistenBetti number we know thatif 8%_;(e) = N > 0, then
thereare NV distinct(n — 1)-cyclesin the e-neighborhoof X. The presencef an(n — 1)-
cyclein X, impliesthe existenceof ann-ball with radiuse in the boundedccomplemenof X.
Thereforejf Uy is the smallestn-ball containing X, andﬁgfl(e) = N > 0, thenthereare N
disjointballs B;(e) C Uy — X. Now considerthevaluesof e wherethereis ajumpin thevalue
of B2, (e). Thesee-valuescharacterizehe sizeof a newly-createdpersistentole sincethey
definethelargestpossibleradiusof a ball thatfits insidethe correspondindpolein X . Lete; be
thesequencef valueswheres?_, (e) is discontinuousandlet V; bethedifferencebetweerthe
left andright limits of /33_1(6) ate;, i.e.,thenumberof holeswith sizee;. In orderto definea
Besicwitch-Taylor index, we list theradii of the persistentolesin decreasingrder with their
multiplicity, andobtaina sequencer; > ro > r3 > ... with r, — 0. Theindex is thenjust

log k
d, = lim sup o8

. (5.26)
k—oo —logrTy

This index hasidentical equivalent formulationsas for the Besicwitch-Taylor index in Sec-
tion 5.2.3. Despitethis similarity, d, is not the sameindex asthat obtainedby packingthe
complementwith cubes;the latterwill detectfractal boundariesaswell asthe growth rate of
holes.

Theindex d, is closelyrelatedto v4,,_1. Givena suficiently smalle > 0, we canchoosek
sothatry,1 < € < 7. It followsthat8%_, (¢) = k andthereforethat

log k < log 39 _; () < log k

< . (5.27)
—log rg11 —loge —log g

Thelimit of the quantityon theleft is not quite d,; the corvergenceof the sequence;, playsa
role. As in Section5.3.1,we introducethefactor

L — lim M_
k—oo logry

Takinglimits of eachquantityin (5.27)we find that

dr < Tn—1 < dr- (528)

-

If L =1 (acommoncase}hend, = ~v,_1.
We now shaw that

dy < dp.
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The proofis similar to onein [80], whereinequalitiesinvolving the Besicwitch-Taylor index
andfatfractalexponentarederived. Theideais to relatethe sizeof setsthatfill in thecomple-
mentof X tothemeasuref X.. Asweremarledearlier X is compactandconnectedsothere
areballsof eachradiusry, in theboundeccomplemenof X, i.e. B(ry) C Uy — X . Theseballs
aredisjoint,andif r, < ¢, thenB(ry) C X, — X. It follows that

p(Xe—X) > w(B(r:)) = carf.
ik ik

Theinteger k is the smallestsuchthatr;, < € andthe constante, is the measureof the unit
n-ball in R™ (ason pagel02).
Fromthisinequalityit follows that

o
logu(Xe — X) > logz Cnty.
i=k

Assumingr, < e < 1, we havethat) < —loge < —logry SO

log u(Xe — X) S log 32, el
—loge — —logr,

Fromthedefinitionof dz (5.3)

1 X 41
dp > limsup [n — o8 Zz:k r; +logen
k—o0 log 74

Thequantityonthe RHSis equivalentto d,. by (5.8),s0d, < dp.

It follows from this resultthaty, 1 < dp. If X haszeroLebesguaneasurethendyr =
dimjs, the Minkowski dimension. Thus,we have thatv,, 1 < dimp; whenu(X) = 0. As
anexamplewhereequalityholds,we sav in Chapter3 thaty; = dimy, = log 3/ log 2 for the
Sierpinskitriangle.

The above proof doesnot apply to v, with ¥ < n — 1 becausehe assumptiorthat the
n-ballsin thecomplemengaredisjointis notvalid.

5.4 Conjectures

In this section,we briefly discusssomerelationshipghat we conjectureto hold, basedon the
examplesin this thesis. The first problemconcernsthe discretenesindex of zero-measure
Cantorsets. The secondconjectures that self-similarfractalsshouldhave topologicalgrowth
ratesequialentto their similarity dimension.We finish with somequestionsaboutadditional
inequalitiesinvolving thefat fractalexponentandthe;.

Conjecture 1. Cantor setswith zero Lebesgue measure have§ = 1.

This holdsfor all the zeromeasureCantorsetexamplesthatwe have studiedin this thesis
andwe believe it to holdin generally In Section5.3.2,we shavedthatfor ary totally discon-
nectedsetwith v # 0, § < 1. Therefore,all thatremainsis to shav § > 1 undersuitable
assumptionsnthesetX. Sincewe have seenexamplesof afat Cantorsetandatotally discon-
nectednon-perfecsetwith § < 1, theassumptionsn X mustincludethatis haszeromeasure
andis perfect. It may alsobe the casethat§ = 1 only holdsfor a more restrictedclassof
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sets— for example,self-similarCantorsets.We have attemptedo prove the conjectureunder
this condition,but have sofar beenunsuccessfulTheindex ¢ is definedin termsof the largest
e-componentdiameter It is possiblethat a differentmeasureof componensizeis needed—
perhapghe smallest-componentliametersincethisis relatedto the propertyof perfectness.

Conjecture 2. If X isa self-similar fractal and y; # 0, then y; = dimsg.

This hasbeenthe casefor the examplesof Chapters2 and3. It is areasonableonjecture
becauseself-similarityis sucha strongpropertythatwe expectit to dominateary scalinglaw.
A proof of this conjecturemight userelatedconstructiongo thoseusedin proving that the
Hausdorf andsimilarity dimensionsareequivalentfor self-similarsetsthatsatisfythe openset
property;se€23], for example.lt seemghattheeasiesplaceto startis with self-similarCantor
setsthat satisfya “closedsetcondition” Thatis, X = | f;(X) with this uniondisjoint. Not
all self-similarCantorsetshave this property— for example,someCantorsetrelatives of the
Sierpinskitriangledo not.

As mentionedn Section5.3.4,it maybe possibleo derive furtherinequalitiesnvolving the
topologicalgrowth ratesandthe Minkowski dimensionor fat fractal exponent.For example,if
X C R*, canwe shav thaty; < dp for 0 < ¢ < n — 2? Theresultsof this chaptethave used
Tricot’s formulation of fat fractal scaling[80]. We may be ableto obtaindifferentresultsby
comparingour indiceswith thefat fractalexponentsof Umbeigeret al. [22].

Thisis only a partiallist; therearemary promisingavenuego explore.
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Chapter 6

Conclusionsand Futur e Work

This thesishasconsideredhe problemof extractingtopologicalinformationabouta setfrom a
finite approximatiorto it. Theessencef ourapproachs to coarse-graitthe dataata sequence
of resolutionsand extrapolatethe limiting trend. Our theoreticalwork and numericalinvesti-
gationsshaw thatthis multiresolutionapproackcansuccessfullyecover informationaboutthe
underlyingtopologywhenthe dataapproximatea compactsubsef a metric space.The ex-
trapolationis alwaysconstrainedy the finite natureof the finite-precisiondata;we identify a
cutoff resolutionto measurehis. Althoughthe examplesstudiedin thisthesisarefairly simple,
thetheoryappliesin very generakontects. With fastemumericalimplementationswe believe
thatourapproacho computationatopologycouldbea usefultool for analyzingdatafrom both
physicalandnumericalexperiments.

In thefollowing sectionsve summarizeéhemainresultsof thisthesisthenoutlinedirections
for furtherresearch.

6.1 Summary of results

The main contritution of this thesisis the multiresolutionapproachtto computationatopology
developedin Chapter and3. This approacthasa numberof advantagesver existing single
resolutiontechniqueskFirst, it is applicableto both smoothandfractal sets,the only condition
is thatthey be compactsubsetf a metric space. Second by examining dataat a sequence
of resolutionswe obtain more accurateknowledgeof the underlyingtopology by identifying
persistenfeatures.Finally, it leadsto a practicalmethodfor estimatingthe cutof resolution
— ameasuref confidencen theresults. At presentthe major dravbackto computingtopo-
logicalinformation— especiallyhomology— at mary resolutionds the high time-costof the
computations.

In Chapter2, we consideredhe problemof distinguishingbetweenconnectedanddiscon-
nectedsets. The key stepwas introducingthe functionsC(e), D(e), and I(¢) to countthe
numberof e-connectedcomponentsthe largeste-componendiametey and the numberof e-
isolatedpointsrespectiely. Resultsfrom Section2.2 shav thatthe behaior of thesefunctions
astheresolutionparametee tendsto zerotells uswhetheror nota compactspacds connected,
totally disconnectedand/orperfect.For arbitrarypoint-setdata,C (¢), D(e), andI(e) areeasily
computedrom the minimal spanningree. Anotherconsequencef theseideasis a technique
for estimatingthe inherentaccurag of the data. Whenthe dataapproximatea perfectset,we
estimatethe cutof resolutionasthe smalleste-value for which thereareno e-isolatedpoints.
Our characterizatiorof connecteccomponentssa function of resolutionhasmary potential
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applicationssomeof which arediscussedh thefollowing section.

Thetopic of Chapter3 wascomputationahomology- in particularusingthe Betti numbers
to countthe numberandtype of non-boundingcyclesin a space.Sincethe zeroth-ordeBetti
numberis the numberof path-connectedomponent®f a spacethis formsa naturalextension
of thework in Chapter2. Thecentrallessonfrom this chapteiis thatit is notenoughto examine
theBettinumbersasafunctionof resolution.Thisis becauseoarse-graining setcanintroduce
spuriousholesthat are causeby the geometryratherthanthe topology of the space.Instead,
aninversesystemof e-neighborhoodss necessaryTheinclusionmapsfrom theinversesystem
identify holesthatpersistin thelimit ase tendsto zero. We quantifythis by the persistenBetti
numberﬂ,’c\(e) which countsthe numberof holesin the e-neighborhoodhat have a preimage
in a smallerA-neighborhood.This enablesusto detectthoseholesthataredueto the coarse-
grainingratherthanthe underlyingtopologicalstructure.The systemof e-neighborhoodsilso
allows usto formalizethe relationshipbetweenthe dataandthe underlyingspace.In particu-
lar, we derive inequalitiesinvolving the persistenBetti numbersof thedataandthe underlying
space.We anticipatethat both the persistentandregular Betti numbersof an e-neighborhood
will be usefulin characterizinghe structureof data. The persistenBetti numbersreflectthe
underlyingtopologicalstructurewhile the regular Betti numbersof e-neighborhoodgive ad-
ditional information abouthow the spaceis embedded.As we discussedn Chapter3, more
efficient numericalimplementationsreneededeforethesetechniquexanbefully appliedto
realdata.

In Chapter4, we appliedthe techniguesrom Chapter2 to study somesimple examples
from dynamicalsystemsTheseexampleseachhave well understoodtructure sothey provide
atestof our techniguesandillustratethe versatility of our approach.in the first example,we
confirmedthe Cantorsetstructureof cross-sectiongom the Hénonattractor We thenstudied
the breakupof invariantcirclesin an area-preservingvist map. The transitionfrom circle to
Cantorsetis continuousn ametricsensesothefunctionsC(e) andD(e) arenotvery sensitve
to this transition. However, by adaptingour techniquedo examinethe scalingof the “largest
gap, wedevelopanew criterionfor finding thecritical parametevaluethatcomparesvell with
previousresults.

Marny of the examplesin this thesisarefractals. By definition, a fractal hasstructureon
arbitrarily fine scalessoit is possiblefor C(e) or ﬂg(e) to goto infinity ase goesto zero. In
Chaptes, wederiveinequalitieghatrelatethetopologicalgrowth ratesto variousexistingmea-
suresof fractalscaling.We find thatthe growth ratesof the numberof component®r holesare
closelyrelatedto the Minkowski dimensiorandfat fractalexponentssia the Besicwitch-Taylor
index. Our exponentshowever, distinguishbetweerfractalsthathave the samedimensionbut
differenttopologicalstructure.They arethereforea usefuladditionto the collectionof toolsfor
characterizindractalstructure.

6.2 Directionsfor futur e work

A numberof openproblemswerediscussedh thebodyof thethesisasthey arose.Theseranged
from easyextensionsof the work presentedn this thesis,to potentialapplicationsto general
guestionsaboutwhetherwe canusesimilar techniquedo computeothertopologicalproper
ties, suchasbranchingstructureor local connectednes$;om finite data. The mostinteresting
problemsfrom eachchapterarerevisitedbelow.

We startby describingextensionsof our work in Chapter2 on connecteccomponentand
minimal spanningrees.Thefirst two itemsaresimplegeneralizationghatmaybe of interestin
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applicationsThelastquestiorconcernghedistribution of edgdengthsin theminimal spanning
tree.

1. We could usedifferentmeasure®f the size of an e-component.Examplesincludethe
relative numberof pointsin ane-componenbr then-dimensionalolumeof spaceoccu-
piedby acomponentSuchmeasureareoftenusedin applicationf percolatiortheory
Recallthatwe only examinedscalingin thelargeste-componentliameteysincethis was
our testfor total disconnectednest is likely thatthe entiredistribution of e-component
sizeswill give interestinginformationin applications.This would requireonly a slight
modificationof our algorithms.

2. We obseredin Chapter2 thatthe cutoff resolutionfor nonuniformlydistributed datais
larger thanthat for a uniform covering of the underlyingset. A large cutoff resolution
leadsto low confidencean the extrapolatedunderlyingtopology It may be possibleto
reducethe cutoff resolutionfor nonuniformdataby weighting the MST edgesby the
nearesneighbordistancefor eachpoint. This ideais appealingheuristicallybut needs
someformaljustification.

3. ThefunctionC'(e) is essentiallthecumulatie distribution of edgelengthsin theminimal
spanningree. For finite datathis distribution hastwo parts.Whene > p thedistribution
carriesinformationaboutthetopologyof theunderlyingset— thefocusof thisthesis.We
conjecturahatfor e < p thedistribution of MST edge-lengthss relatedto thedistribution
of the datapoints,i.e., a measureassociatedavith the underlyingset. It is possiblethat
formal resultsaboutthis alreadyexist in statistics. In [78] thereis a resultthat relates
the total length of a MST to the underlying point distribution. For subsetf R, the
relationshipbetweerdistributionsof pointsandcorrespondingMST edgelengthsshould
reduceto a problemin orderstatisticq10].

Ourwork on computationahomologyin Chapter3 focussedn the mathematicafounda-
tionsratherthantheimplementationsandthereis a significantamountof work to be doneon
thelatter

1. The alphashapealgorithmwe describedn Section3.4.1is a subcomplg approacho
generatingsimplicial complexesat multiple resolutions We arguedin Section3.4.3that
a more efficient approachis to usesubdvisions of cubicalcompleces. This requiresa
slight adjustmenbf thetheoryanda substantiahmountof work ontheimplementations.

2. We derived a formulafor computingthe persistenBetti numbersn Section3.3.5. This
is certainlynot the only way to computethem. Algorithmsfor computingregular Betti
numbershave exploited mary differentresultsfrom algebraictopology It maybe possi-
ble to adaptsomeof theseto our problem. Efficientimplementationsvill alsobe highly
dependenbnthetypeof cell compleesused.

3. In termsof theory we needa morecompleteunderstandingf the continuity of the per
sistentBetti numbqrsﬂ,;\(e), as A ande tendto zero. This is relatedto continuity and
tautnessesultsfor Cechhomology

We gave somedetaileddescriptionsof potentialapplicationsin dynamicalsystemsat the
end of Chapter4. The most challengingof theseis the break-upof invarianttori in four-
dimensionabymplectictwist maps.In generalwe anticipatethatour computationatechniques
will be particularlyusefulin suchhigherdimensionalsettingswherevisualizationis difficult.
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More theoreticalquestionghat arerelatedto the study of dynamicalsystemsncludethe fol-
lowing.

1. Justasthedimensioncanvary at differentpointsof a multifractal, the scalingof compo-
nentsor holeswith resolutionmay differ for subset®f afractal. Is it possibleto localize
ourtheoryto quantifythis?

2. Newhousedefinedthethickness of Cantorsubset®f R to analyzethe existenceof homo-
clinic tangencie®f stableandunstablemanifolds[62]. Thedefinitionis givenin terms
of ratiosof diametersanddeletedintenals. It may be possibleto generalizethis notion
to Cantorsubset®f R™ usingtechniquegrom Chapter2.

As we emphasizedn Chapter5 thereis ampleroom for mary more resultsrelating our
topologicalgrowth ratesto fractaldimensions SeeSection5.4 for details.

Fromthe numberof openproblemsin this shortlist, it shouldbe clearthat computational
topologyis arich, interesting andrapidly evolving discipline. Thework in this thesissuggests
thatfurtherresearchn thisfield is likely to befruitful.
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