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Abstract. The problem considered below is that of determining information about the topology of

a subsefX C R" given only a finite point approximation t& . The basic approach is to compute
topological properties — such as the number of components and number of holes — at a sequence
of resolutions, and then to extrapolate. Theoretical foundations for taking this limit come from
the inverse limit systems of shape theory &eth homology. Computer implementations involve
constructions from discrete geometry such as alpha shapes and the minimal spanning tree.

1 Introduction

Two objects have the same topology if they are homeomorphic, i.e. when there is a

continuous transformation from one to the other, with a continuous inverse. This means

topological properties give a fundamental description of structure, and one that is inde-

pendent of geometry. It is clear that objects can have the same topology and completely
different geometry (a coffee cup and a donut are archetypal examples). However, the
converse is also true: objects can have very similar geometric properties but a vastly dif-

ferent topology —the fractals in Selct. 5.2 are one example. Thus, in order to characterize
spatial structures, we need both geometric and topological information.

Much attention has been given to the computation of geometric quantities from data,
for example the Minkowski functionals [21, 22] and fractal dimensidns [B3, 26], but the
field of ‘computational topology’ is relatively new|[6]. The earliest work on extracting
topological information from data targeted digital images. For black and white pixel
or voxel images there are algorithms for labelling connected components [16], and for
computing the Euler characteristic [19! 25] (a measure of connectivity that also appears
as the zero-dimensional Minkowski functional). The technique of erosion and dilation
is used in conjunction with these algorithms to probe structure at different length scales
in digital images(]2].

In this paper we discuss topological properties such as the number of connected
components and number bfdimensional holes, i.e., the Betti numbefpg, The Betti
numbers are related to the Euler characteristiajia the Euler-Poincé&formula:

X=00—p1+B2—...4 Ba.

It follows that the Betti numbers give a more detailed description of topological structure
than the Euler characteristic alone. Formal definitions of the Betti numbers are given in
Sect[2.
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We assume the data are given as a finite point pattern R¢. To give this finite set
of points some non-trivial topological structure, we must first fatten or coarse-grain the
set. This can be achieved, for example, by overlaying a digital mesh and colouring pixels
if they contain data points, or by attaching spheres of radiaseach point. We focus
on the latter objects, called alpha neighbourhoods or alpha parallel bodies, because they
form a more flexible framework.

Once we choose the coarsening method, we have to set an appropriate level of
coarse-graining. This might be physically motivated, or we may have complete freedom
to choose. Without any a priori information, it is helpful to coarse-grain at a sequence of
resolutions. This has the additional advantages of allowing us to detect fractal scaling,
and if the data,S, approximate an underlying objeck, ¢ R?, we can extrapolate
information about the topology of . Theoretical underpinnings of this coarse-graining
and extrapolation are described in SELt. 3.

To compute Betti numbers, we need a discrete complex (e.g., a triangulation) that has
the same topology as the alpha neighbourhood. One solution comes from Edelsbrunner’s
alpha shape<[8] and their construction is described in §kct. 4. We use the publicly
available alpha shape software [1] to compute Betti numbers of some example data in
2D and present the results in Sédt. 5.

2 Homology Groups and Betti Numbers

Homology theory is a branch of topology that attempts to distinguish between objects
by constructing algebraic invariants that reflect their connectivity properties. Readers
should be warned that the homology groups do not completely determine the topology
of an object. If two objects have different homology groups, then they certainly have
different topologies. The converse, however, does not hold. For example, thé set
shown in Fig[B has the same homology groups as a circle, but it is not homeomorphic
to a circle because of the branch-point where the ‘O’ joins the ‘C’.

In this section, we give a brief outline of the definitions for simplicial homology,
following Munkres [24]. The basic building block is ariented k-simplex o*, the
convex hull ofk + 1 geometrically independent points® = [x¢, z1, ..., z]. Its ori-
entation is defined by an arbitrary but fixed ordering of the vertices. Even permutations
of this ordering give the same orientation and odd permutations reverse it. For example,
a0-simplex is just a point, a-simplex is a line segment, &simplex a triangle, and a
3-simplex is a tetrahedron. simplicial complexC, is a collection of oriented simplices
with the property that the non-empty intersection of two simplices inust itself be a
simplex inC. The set-theoretic union of all simplices frafnwhen viewed as a subset
of R%, is called gpolytope If a subsetX of R? is homeomorphic to a polytope, we say
X istriangulatedby C.

The simplicial complex(C, is given a group structure by defining the addition of
k-simplices in a similar manner to addition in a vector space. The resulting free group is
called thechain group Cy. Its elements consist éf-chains the sum of a finite number
of orientedk-simplices:c;, = 3, a;0¥. The coefficientsg;, are typically integers, but
in general they can be elements of any abelian gréupm this paper, we use the rational
or real numbers for coefficients since this simplifies the homology group structure (we
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Fig. 1. The boundary operata®, maps a 2-simplex onto the sum of three 1-simpligles b, c| =
[b, c] — [a, ] + [a, b]. The boundary of this 1-chain is empty. This property holds for/again:
99(ck) = 0.
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Fig. 2. The boundary operata®,, maps allk-chains onto thé — 1-boundaries and thie-cycles
to zero.

can ignore torsion). A negative coefficient is interpreted as reversing the orientation of
the Simplex:—[l'(), L1y.-- ,.’Ek] = [1’1, oy .- - ,xk].

The next step towards defining the homology groups is to look at hoithains are
related to thé — 1-chains. This is done using theundary operatqro;, : C, — Ck_1,
a linear operator that mapskasimplex onto the oriented sum of &l — 1)-simplices
in its boundary

8k[$0,l‘1,...,l‘k] = [1‘1,.1‘2,...,1‘;6} — [mo,xz,...,xk]+...

+(—1)k[$0,{£17 e ,:L‘k,l].

For example, in Fid.]1 the boundary of the triangle is its three edges.

The action of the boundary operator on the chain groups leads to the definition of
three more groups. Firstly, the imagedfis a subgroup o€, _; called the boundary
group, and is denotell;, ;. Secondly, the set of all-chains that have empty boundary
forms the group ok-cycles,Z;. (i.e. Zy, is the kernel or null space @f;). These two
groups are related by the fact that the boundary of a boundary is empty. This is the
fundamental property of the boundary operaty9,1 = 0. It implies thatBy, is a
subgroup ofZ;. The relationships between the chain, cycle, and boundary groups are
illustrated in Fig[2.

The structures we are really interested in areitlogcles that do not bound anything,
since these indicate the presence é@fdimensional ‘hole’. It is this idea that leads to
the definition of the homology groups as the quotient gréfup= Z;./ Bi.. This means
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Fig. 3. The inclusion maps;, : X — X4, allow us to detect those holes which persist in the
limit. In this examples; (o) = 2, but 57 (a) = 1.

that twok-cycleswy, andz; belong to the same homology class if thehain formed
by their difference is the boundary of sortie+ 1)-chain,z, — wi = Jvg41.

The number of distinct equivalence classeslgfis thekth Betti numbeis;,.. Thekth
Betti number effectively counts the numberietlimensional holes ik, so is exactly
the type of information we seek. Whén= 0, the Betti number counts the number of
path-connected componentsXf For subsets dR?, we can interpres; as the number
of independent tunnels, ard as the number of enclosed voids. For example, the solid
torus hasi, = 1, B; = 1, andps = 0 (the same as a simple circle), whereas the surface
ofatorus hagdy =1, 51 = 2,andgy = 1.

Given a finite simplicial complex, the computability of Betti numbers using linear
algebra techniques is well establishzd|[24]. However, these algorithms have run times
at best cubic in the number of simplices. The development of fast algorithms for com-
putational homology is thus an active area of research! [5./7, 13, 18]. We will describe
one of these algorithms in Selct. 4.2.

3 A Theoretical Framework for Computational Homology

As mentioned in the introduction, we are interested in the situation where a finite number
of points, S, approximate a subséf ¢ R<. Our hope is to obtain accurate informa-
tion about the topological structure &f by coarse-graining the dataat a sequence
of resolutions, then extrapolating the limiting behaviour. There are two problems to be
addressed here. First, is the extrapolation valid, even supposing we have perfect infor-
mation aboufX ? Second, what happens when we only have the finite approximaton,
The mathematical theory that helps answer these questions comeéénmtnomology
[15] and shape theory [20]. We give a brief overview of the concepts here — details can
be found in[30, 31].

We can coarse-grain a set by taking its intersection with a digital mesh, or by applying
opening and closing operations. In this paper we use the cleserighbourhood of a
set (also known as the parallel set)

X = {y such that in)f( ly — z| < a}
IS
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where|.| is the Euclidean metric oR“. The following theory is easily adapted to the
case of digital meshes and other standard methods of coarse-graining.

Our question now is: for what spaces do the Betti numbers aftheighbourhoods,

X., converge to those ak? That is, doesi;(X,) — Fk(X) asa — 0? For the
number of componentg, (X, ), this holds for any compact set (i.e. closed and bounded
subsets oR?) [15,[28]. This restriction to compact sets is not unreasonable, since we
are primarily interested in objects that are well approximated on a computer by a finite
number of points.

Higher-order Betti numbers present a more subtle problem, because fattening a set to
its a-neighbourhood can introduce holes, as illustrated in[fFig. 3, and also remove holes
by filling them in. Mathematically, this problem is resolved by incorporating information
about how a smaller neighbourhood maps inside a larger one. This leads to the definition
of persistent Betti numbeBupposé® < A\ < «, so thatX, C X,. The inclusion map
i: X = X, induces ahomomorphism onthe homology growps,H(\) — Hy ().

We define the\-persistent Betti numbef (), to be the rank of, i.e. the number of
non-equivalent, non-boundirgcycles inH(«) that are the image of &cycle from
Hy()\). This leads to the formula

Bi () = rank Zy,(\)] — ranki.(Zi(\)) N Br()] 1)

Geometrically,3; () is the number of holes iX, that do not get filled in by taking a
fatter neighbourhoodX,, .

Cycles in X, that genuinely come from a cycle iX are the 0-persistent Betti
numbersBY(a) < () forall 0 < A < a. From the continuity ofech homology,
we know that the O-persistent Betti numbers ofdéhreighbourhoods converge to those
of the original space3?(«) — Br(X), whenX is compact. Thus, to find the regular
Betti number of X3, (X), from the persistent Betti numbesg (), we must first fix a
sequence ofi-values and leA — 0 to get the limits3) (av,) — BY(av,). Then we can
find 3 (X) as the limit of this sequence: far, — 0, 82 () — Bk(X).

The second problem we must address concerns the relationship between the neigh-
bourhoods of the dataS,, and those of the set they approximafé,. Intuitively
speaking, the idea is that if the data and the underlying set are “close” themtheir
neighbourhoods should have similar topological properties, providisdsufficiently
large. We measure the distance between the datmd the underlying spac#,, using
the Hausdorff metric on compact sets. This is defined as

dy(S,X) =min{a | X C S, andS C X, }. 2

If p = dg (S, X), it follows thatS, C X,, andX, C S, forall o > 0. These
inclusions allow us to derive a number of inequalities relating the persistent Bettinumbers
of X to those ofS [31]. For example, we have that for > p, 8)(Xa1,) < 85(Sa)
andg; ”(Sat,) < Br(Xa). For the number of connected components, the persistent
Betti number is the same as the regular Betti number and we findsghiat,—,) >
Bo(Xa) > Bo(Sat,). We refer top as thecutoff resolutionsince we cannot hope to get
valid topological information abouX” from S, unlessx > p.
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4 Computer Implementation

We now describe some algorithms for computing Betti numbers from scattered point data
at a sequence ef-values. We begin with the simple problem of counting the connected
components of,,.

o

Fig. 4. The MST of10* points on a Cantor set, and a close up of a small region.

4.1 Connected Components

For scattered point dat&, ¢ R?, the Euclidean minimal spanning tree (MST) encodes
all the relevant information about connected components at all resolutions [29]. Recall
that the MST is a tree (i.e. a graph with no cycles) that passes through every pointin such
away as to minimize the total length. There are a number of algorithms for constructing
the MST; the most easily implemented one is due Prini_[4, 27]. This starts with any
point and joins its nearest neighbour to create an initial subtree. The algorithm proceeds
incrementally by adding the point which is closest to the existing subtree, finishing when
all points have been added. The computational complexity is quadratic in the number of
data points.

The property of connecting closest points gives the MST a natural correspondence
with the connected components of theneighbourhoodS,,, [29]. In fact the number
of componentsfy(«), is just one more than the number of MST edges that are longer
than2a:

Bo(a) = 1+ #{MST edges> 2a}. 3)

Note that we need only build the MST once to get component information at all scales.

4.2 Alpha Shapes and Homology

We now want to compute higher-order Betti numbers ofdheeighbourhoods,, for

a sequence ok values. This requires a sequence of simplicial complexes that reflect
the topology of thex-neighbourhoods. An elegant solution to this problem comes from
alpha shape- a construction based on the Voronoi diagram and its dual, the Delaunay
triangulation. Alpha shapes were defined by Edelsbruanatl. for finite sets of points
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Fig. 5. Left: the Voronoi diagram of ten points. Middle: the corresponding Delaunay triangulation.
Right: The alpha diagram is the intersection of the Voronoi diagram with the union of balls of
radiusa centred on the data points; itis shown together with its geometric dual, the alpha complex.

in the planel[9], then generalised to higher dimensions [11], and to points with weights
[8]. Here we describe unweighted alpha shapes, and an algorithm to compute their Betti
numbers.

LetS = {z1,...,z,} be a set of points inR¢ which satisfy the general position
assumption that no four points simultaneously lie on the boundary of a circle. We write
V (x;) for the Voronoi cell ofr;, i.e. the region that contains all pointsi4 closer tox;
than to any other pointif. The dual tessellation of the Voronoi diagram is the Delaunay
complex,D(.S). This is obtained by associating a point with each Voronoi cell, an edge
with two cells that share @— 1 face, a triangle with any triple of intersecting cells, and
so on. See Fid.l5 for an example in the plane.

Edelsbrunner introduces a resolution parameter by taking the intersection of the
Voronoi cell of each; with a ball of radiusy centered at;, B, (x;). This gives us the
alpha diagram

Qu(5) = | Bala:) NV (). 4)
=1

The alpha complexC,(.S), is the dual of the alpha diagram. Th&pha shapss the
subset ofR? covered by the alpha complex. Figlide 5 shows, for a simple example, the
alpha diagram and its dual alpha complex. From the above definitions we have that
Ca(S) C D(S) for all & > 0. Also, if a; < ag, thenQ,,(S) C Q,(S), and this
implies thatC,, (S) C C,,(S). Note that for sufficiently smalk, the alpha complex
consists of the vertices;, . . ., z,,, while at the other extreme, for large enough alpha,
we get the Delaunay comple&, (S) = D(S).

The power of this construction comes from transforming the “continuous space”
alpha diagrams into the discrete geometry of alpha complexes. The nerve theorem in
topology [8)15] guarantees that the alpha diagram is homotopy equivalent to the alpha
shape. Thus, for a given alpha, each of these objects has the same Euler characteristic
and Betti numbers.

Delfinado and Edelsbrunner’s algorithi [5] for computing the Betti numbers of a
simplicial complex relies on a sequential ordering of simplices, termed a filtration. The
subset propert¢,, C Ca,, for a1 < az, means that every simplexhas a threshold,
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a.(0), suchthat € C, forall a > «a.(c). The filtration orders the simplices according

to their thresholds. Note that two simplices may have the same threshold, and in this
situation they are ordered by adding the lower dimensional simplices first. The Betti
numbers are computed incrementally as each simplex is added to the complex. This
process depends on a test to determine whether the new simplex belongsyola

of the new complex. There are efficient algorithms for testing 1-cycles, and homology-
cohomology duality theorems transform thé — 1)-cycles into 1-cocycles that are
equally easy to test for. However, there is no fast test for dtheycles, so Delfinado

and Edelsbrunner’s algorithm applies only to subcomplex@afr R3.

The computational complexity involved in building the Delaunay triangulatid@yin
is quadratic in the number of points, and the incremental algorithm for computing Betti
numbers is barely super-linear in the number of simplices. The NCSA ftp site provides
software that implements the above alpha shape constructidké amdR? [1]. The
Betti number data for the examples in the following section were generated using this
software.

The numerical computation of persistent Betti numbers is possible using linear al-
gebra techniques but is not yet implemented. Recently, Edelsbrunner [10] has made a
similar definition of persistence specific to alpha shapes and has developed an incremen-
tal algorithm for this quantity.

5 Example Data

The random point clouds we study tend to have three regimes determined by the cutoff
resolutionp discussed in Sedi] 3. Far>>> p we recover the coarse-scale topology of the
approximated regioX . Atthe other extremey < p we see purely the statistical effects

of a point process. Whem is on the same order as there is transitional behaviour as

the finite data effects begin to dominate the underlying topological structure.

In the following two subsections we analyse the Betti numbers for data from a
binomial point process and a family of self-similar fractals. For a finite domain, the coarse
scale topology of the binomial point pattern is extremely simple, so the interesting Betti
number behaviour occurs only far < p. The fractal examples have identical fractal
dimension, but greatly differing topological structure. The Betti number data at coarse
resolutions distinguishes between the different topological typesx Forp, however,
the fractals show essentially the same behaviour, presumably dictated by the iterated
function system technique of generating the data points.

5.1 Binomial Point Process

We begin by analysing/ points that are randomly distributed in the unit square accord-
ing to a binomial point process. The coordinates of each point are assigned using the
uniform distribution o0, 1] and the point pattern therefore constitutes a finite-domain
approximation to a Poisson process with intengity N/1. We describe the behaviour

of a typical single realisation oWV points, and then present results from a numerical
investigation of the mean values 6§ and3; as functions of the radius.
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Fig. 6. Left: An example alpha neighbourhood (faint outline) and alpha shape (shaded region) of
10* points sampled from the uniform distribution on the unit square. On the right we plot the Betti
number data on logarithmic axes;— the number of component%, and — number of holes; .
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Fig. 7. On the left we show that the Betti number data rescale to functioms=efrAa?. We

compute sample mean values@f/N and /N for N = 500 (---), N = 1000 (- -), and
N = 5000 (—).

Figure[6 shows for an example theshape ofV = 10* points. The points form an
approximation to the unit square, a connected region that has extremely simple topology
and geometry. Fotw above the cutoff resolution we expect to see a single connected
componentwith no holes, and this is reflected by the data presentedih Fig. 6for04.

For sufficiently small values af, each point is a single component, so there are no holes
andfy(«a) = N, the number of points. A& increases, edges are added to the alpha
complex, decreasing, and possibly increasing;. When a triangle is added to the
complex,3; may decrease; this is the reason for the noisy non-monotonic behaviour
in the number of holes. As alpha approaches the cutoff resolution there is a sharp drop
in the number of components until the point when the alpha neighbourhood forms a
single connected component. At around the sanvalue, the number of holes reaches

a maximum then starts to decrease with increasiag the holes are filled in.
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Readers familiar with the field of stochastic geometry will recognize thatthe
neighbourhoods of a random point process are analogous to a Boolean model with
circular grains of radius.. Most geometric quantities associated with such a circular-
grain Boolean model are really functions ®f= wAa? [32]. For example, the mean
Euler characteristic per unit areaeis= \(1 — n)e~" [21]. Unsurprisingly, the expected
value of the mean Betti numbers per unit area (writigandb,) are also functions of
this quantity. The graphs in Figl 7 show the mean specific Betti number curves from 500,
1000, and 5000 points in the unit square.

Hopes for deriving analytic formulas for the mean Betti numbers are limited by their
connection with percolation. (The percolation transition is signalled by a singularity in
the second moment of the cluster size distribution@nid the total number of clusters.)
However, an expression for the expected number of components per unit area in the
low-intensity limit, \ — 0, is known [14]:

bo(n) = A1 —2n+ 2(4 — 3V3/m)n?) + O(n®).

Assuminge = by — by [23], we can find the limiting behaviour &f (n) asn — 0.
Specifically

bi(n) = A& — 2v3/m)n? + O(n®) =~ 0.0640An* + O(n?).

Data from the alpha shapes closely match these expressions, gée Fig. 7.

f3[S]

S f[S]

f1[S] | f2lS]

Fig. 8. Template for the iterated function system that generates the Sierpinski triangle relatives.

5.2 Sierpinski Triangle Relatives

The fractals we study here are a family of iterated function systems [12], illustrated by
the template in Fid.18:

S = fIS] = f[SIU f2[STU f3[S].

The functionsf; are similarity transformations of the unit square with contraction ratio
%, Le.|fi(x) — fi(y)| = 1| — y|. Those that generate the Sierpinski triangle, shown
in Fig.[d, are simple contractions followed by a translation; the generators of the other
examples involve additional rotation or reflection symmetries of the square. There are
232 different fractals in this family [26]. Their topology ranges from simply connected
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Fig. 9. Left column: an example alpha neighbourhood (outline) and alpha shape (shaded) of
10" points on two fractals. Right column: Betti number data on logarithmic axes. The Sierpinski
triangle (top row) is a connected set with infinitely many holes. The Betti numbers of its alpha
neighbourhoods aré, () = 1fora > 0, andB: (a1 /2") = $(3"*"—1), wheren = 0,1,2, ...

andq; is the radius of the circle inside the largest triangular hole. This behaviour is accurately
reflected by data from the finite point approximation foe> 0.005. The other fractal is simply
connected, so in principl§, = 1 and3; = 0. There are spikes in the hole data however, and
these are due to the geometry of the fractal — the way it hooks around creates non-persistent holes
in the a-neighbourhoods.

(Fig. [@ bottom) to connected (Fig] 9 top) to totally disconnected (Eij. 10 top) to a
class of examples with infinitely many connected components of non-zero diameter
(Fig.[10 bottom). This range of topological structure makes them ideal test cases for our
techniques 28,29, 31].

We generate a finite number of points on a fractal using Barnsley’s chaos game
techniquel[B]. This records the trajectory of an initial point under the iteratjon =
fi. (z), settingi,, = 1,2 or 3 with equal probability at each step.

We present data for the number of componefiggn), and the number of holes,
B1(«), for a fractal of each topological type in FIg. 9 and [Fig. 10. The Betti numbers are
plotted on a logarithmic scale to show the self-similar fractal scaling.
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—

Fig. 10. Left column: an example alpha neighbourhood (outline) and alpha shape (shatigtl) of
points on two fractals. Right column: Betti number data on logarithmic axes. The upper fractal is
a Cantor set so it is totally disconnected and perfect. We [find§g8ko/2") — 3™ asn — oo
(whereay is the width of the largest gap) afd (o) = 0. Although topologically the Cantor set
does not contain any holes, the graplBofa) has regularly spaced spikes. The reason for these is
seen in thex-neighbourhood picture. The edges bridging the gaps cause holes in the triangulation
that disappear for slightly smaller valuescofvhen the edges are removed from the alpha shape.
The lower fractal is disconnected, and consists of infinitely many line segments. Again, there are
no topological holes in this fractal. It is the geometry of the set, i.e., the arrangement of the line
segments in the plane, that creates holes imtheighbourhoods. Agairfiy (o /2") — 3™. The
regular Betti number shows fractal growdh(«, /2™) = 3™, while the O-persistent Betti numbers
are?(a) = 0.

Each of these fractals has a cutoff resolufios 0.005. Fora < p, the behaviour of
the Betti number data is quantitatively similar for each fractal and qualitatively similar to
that of the point process in Sect.b.1. Preliminary analysis suggests that for each of these
fractals, the Betti numbers are really functions of the rescaled quantityr Na‘s,
whered; = log 3/ log 2 is the fractal dimension. In particular we figd(n) /N — 1—n
andB;(n) = O(n?) asn — 0.

It is in the regiona > p that we see the effects of the different topology of each
fractal. The difference between the connected and disconnected fractals shows up clearly
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in the number of components. The connected sets il Fig. 9figwe = 1 for a > p.
The difference between the Sierpinski triangle and the simply connected fractal is seen
the behaviour off;. The Sierpinski triangle has regular staircase growth in the number
of holes, as expected, while the simply connected fractal has no persistent holes.

The disconnected fractals show a stair-step decrease in the number of components
due totheir self-similar structure. The slope is equal to the fractal dimersigsy, log 2,
in both cases. In order to distinguish between the totally disconnected Cantor set, and
the other disconnected fractal, we need information about the size of the connected
components [28, 29]. (For a totally disconnected set, the diameters go to zere &s)
The disconnected fractal at the bottom of Figl 10 illustrates the need to compute the
persistent Betti numbers to obtain an accurate diagnosis of the underlying topology.
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