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Theory and Algorithms for Constructing Discrete
Morse Complexes from Grayscale Digital

Images
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Abstract—We present an algorithm for determining the Morse complex of a 2- or 3-dimensional grayscale digital image. Each cell
in the Morse complex corresponds to a topological change in the level sets (i.e. a critical point) of the grayscale image. Since more
than one critical point may be associated with a single image voxel, we model digital images by cubical complexes. A new homotopic
algorithm is used to construct a discrete Morse function on the cubical complex that agrees with the digital image and has exactly the
number and type of critical cells necessary to characterize the topological changes in the level sets. We make use of discrete Morse
theory and simple homotopy theory to prove correctness of this algorithm. The resulting Morse complex is considerably simpler than
the cubical complex originally used to represent the image and may be used to compute persistent homology.

Index Terms—Discrete Morse theory, computational topology, persistent homology, digital topology.
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1 INTRODUCTION

THE rise of three dimensional (3D) imaging technol-
ogy has sharpened the need for quantitative analysis

of large 3D images. Typically, these quantities are geo-
metric in nature — for example, volume, surface area
and curvature. Topological information is also useful
as it is independent of geometric measures, but there
has been limited success to date in adapting the tools
of computational topology to 3D digital images. These
tools require a combinatorial complex that encodes the
topological structure of an object or function. We present
here a fast and robust algorithm for deriving such a
complex from grayscale images, and prove that this
complex accurately reflects the topology of the level sets
of the image function.

A grayscale digital image is a function defined on
a discrete lattice so the first issue is how to endow
this space with a topology. As Kovalevsky [1] shows,
a cubical complex is the only topologically consistent
model of a digital image. Important work has also been
done in this area by Couprie, Bertrand et. al. [2], [3], [4]
who investigate in detail the properties of 2-, 3- and
4-dimensional digital images as cubical complexes. We
treat voxels as vertices in the cubical complex; the above
authors treat voxels as cubes. These two approaches are
dual and carry the same topological information.

The cubical complex is a valid foundation for the
algorithms from computational topology that we wish to
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apply such as persistent homology [5]. However the run
times for these algorithms can scale as O(n3) where n is
the number of cells in the complex, so it is impractical to
apply them directly to large 3D images.1 The algorithms
presented in this paper construct a simplified complex
that represents the same topological information as the
cubical complex. Earlier tools for summarizing structure
in grayscale images are the watershed transform [7] and
the component tree [8]. Both these methods proceed by
studying changes in the connected components of the
level sets (isosurfaces) of a grayscale function. The com-
plex we build is a generalisation of the watershed and
component tree, called the Morse complex, that encodes
all topological changes in the level sets of a function.

The Morse complex has its origins in the work of
Cayley [9] and Maxwell [10] who described the parti-
tion of a landscape into hills or dales, and was later
more generally defined within Morse theory [11]. Morse
theory relates the critical points of a smooth real-valued
function, f , to the topology of the manifold on which
f is defined by studying the negative gradient flow of
f (the negative gradient is used because the gradient
points uphill, but physical flows move downhill). Cells
in the Morse complex are defined by regions of uniform
flow behavior as follows. Imagine water droplets flowing
over a smooth height landscape: droplets that flow to
the same minimum define 2D regions (dales or basins);
boundaries between basins are defined by ridge lines
passing through saddles; maxima are isolated points
where several basins touch. What we have just described
are the stable manifolds of the critical points. Conversely,
we can consider regions whose flow lines have the same

1. We note that there has been some success in adapting 2D persis-
tence computation to 3D problems [6].
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origin — these are the unstable manifolds. For certain
smooth functions we can also take the intersection of
stable and unstable manifolds; the resulting partition is
called the Morse-Smale complex [12].

Several issues must be resolved when translating the
above picture to a computational setting: adapting Morse
theory to non-smooth functions and manifolds; defining
critical points; approximating the gradient flow; devis-
ing efficient algorithms. An extensive review of various
approaches to solving these problems may be found
in [13]. Our approach is based on Forman’s discrete Morse
theory [14], [15]. Forman’s theory is an elegant adaption
of classical Morse theory to certain functions defined on
cell complexes. Gradient arrows are given by a one-to-
one pairing of cells with faces; unpaired cells are critical
points. The flow follows gradient arrows through cells
of each dimension; the Morse complex arises naturally
in this setting from the flow paths between critical cells.

The computational challenge is to extend the input —
a grayscale digital image which is defined only on the
vertices of a cubical complex — to a valid Morse function
defined on every cell of the complex. Our solution to
this problem provides the first algorithm that is provably
correct in the sense that the critical cells of the discrete
Morse function are exactly the number and type needed
to reflect changes in topology of the lower level cuts of
the grayscale function. Our result is stated in Theorem
11 and proven in Section 4.

The main influences on our work are discussed below.
Firstly, our use of cubical complexes and simple homo-
topy was inspired by Couprie and Bertrand’s [4] charac-
terization of 2, 3, and 4D simple voxels. Edelsbrunner
et. al., [12] introduced two-dimensional Morse-Smale
complexes as a tool in computer graphics and compu-
tational topology. Their approach, based on Banchoff’s
extension of Morse theory to piecewise-linear manifolds
and functions [16], is most effective for functions defined
on the vertices of triangulated surfaces. Adaptions of
their algorithms to three-dimensional simplicial com-
plexes ran into a number of technical difficulties in
practice [17], [18].

Recently, several authors have proposed algorithms
for building a discrete Morse function from a scalar
function defined on the vertices of a mesh. Lewiner
et. al. [19], [20], devised an algorithm to build an optimal
discrete Morse function on a mesh without an initial
scalar function. Later, his thesis [21] presented a method
for building a discrete Morse function to match a scalar
function defined on the mesh vertices. This approach
requires extra pre- and post-processing steps to avoid
inconsistencies between the critical cells of the discrete
Morse function and the original scalar function. King
et. al. [22] also develop a multi-stage algorithm to build
a discrete Morse function from a function defined on
the vertices of a simplicial complex. They prove limited
results about the correctness of critical cells identified
by their algorithms. Gyulassy et. al. [23] apply discrete

Morse theory to grayscale image data. This algorithm for
computing the discrete gradient, however, can introduce
extra critical cells which may be cancelled later (see Fig. 1
in Section 3). This makes correctness proofs difficult —
the authors of [23] make no formal statements about the
relationship between the discrete gradient and the scalar
field it is derived from. Improvements are discussed in
Gyulassy’s thesis [24]; in particular he is able to treat flat
regions without introducing spurious critical cells.

The remainder of this paper is organised as follows.
Section 2 covers the relevant background material: the
representation of grayscale images as cubical complexes,
basic definitions from homology and CW complexes,
simple homotopy theory and discrete Morse theory.
Section 3 presents our homotopic algorithm for building
a discrete Morse function from a digital image and
contains a discussion of the computational complexity of
our approach. Section 4 contains the proof of Theorem 11
that each cell of the Morse complex corresponds to a
change in topology between successive lower level sets
of the cubical complex. We then apply our algorithm to
some 2D and 3D images and use the resulting Morse
complex as the basis for persistent homology computa-
tions; results are presented in Section 5.

2 BACKGROUND
2.1 Digital Images as Cubical Complexes
This paper focusses on 3D grayscale digital images. Such
an image is a function g : D → R, where D ⊂ Z3 is
typically a rectangular subset of the discrete lattice:

D = {(i, j, k) | 0 ≤ i ≤ I, 0 ≤ j ≤ J, 0 ≤ k ≤ K}.

A point x ∈ D is called a voxel (or pixel in two di-
mensions). The algorithms presented in Section 3 apply
without adjustment to 2D digital images.

We model digital images by cubical complexes. In our
setting, the voxels (i, j, k) ∈ D are the vertices (0-cells) of
the complex. Higher-dimensional cells are the unit edges
(1-cells) between voxels whose coordinates differ by one
in a single axis, unit squares (2-cells), and unit cubes (3-
cells). We write K(D) (or simply K) for the collection of
all such p-cells built from voxels in D with p = 0, 1, 2, 3.
We often denote the dimension of a cell by a superscript:
α(p). A cell α(p) ∈ K is a face of another cell β(q) if p < q
and the vertices of α are a subset of the vertices of β. If
this is the case then we write α(p) < β(q). We can also say
that β is a coface of α. A set of cells S ⊂ K is a complex
if for any α ∈ S, all its faces are also in S.

Now consider the set of all voxels with grayscale
values less than a threshold t; this is called a lower level
cut:

Dt = {x ∈ D | g(x) ≤ t}.

In fact, we will mostly consider level cuts on the cubical
complex, where a cell α is included if all its vertices x ∈ α
are below the threshold:

Kt = {α ∈ K | g(x) ≤ t, ∀x ∈ α}. (1)
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We note that the connectivity of level cuts of the cub-
ical complex is equivalent to considering Dt with the
standard 6-neighbourhood of 3D digital topology: voxel
(i, j, k) is connected to a voxel on a face diagonal, say
(i + 1, j + 1, k), if and only if at least one of the voxels
(i+ 1, j, k) and (i, j + 1, k) are present.

The main goal of our work is to describe how the
topology of the lower level cuts changes as the threshold
is varied. For t less than the minimal grayscale value, Kt
is empty; as t increases cells are added so that for any
t1 < t2, Kt1 is a subcomplex of Kt2 . Eventually, when
t is larger than the maximal grayscale value, we obtain
the entire domain of the image: Kt = K. Such a sequence
of nested complexes is called a filtration. We quantify the
changes in topology over this sequence of subcomplexes
by computing the persistent homology of the filtration.
Definitions of homology and persistence are reviewed in
the following section.

2.2 CW Complexes and Homology
Homology theory uses algebraic groups to encode the
topological structure of a complex. The complex can be
simplicial (i.e. a triangulation), cubical (as above), a more
general geometric object known as a CW complex, or
even an abstract chain complex. Cells in a CW complex
are no longer restricted to triangles or cubes, but are
homeomorphic to Euclidean balls. We make a formal
definition of CW complex below, and define homology
on CW complexes, as this is the most general setting we
require. The reader is referred to [25] or Section 1 of [15]
for more detailed information on CW-complexes, and to
[25], [26] for further background on homology theory.

A finite CW complex, X , is constructed inductively
starting with X0, a finite set of 0-cells (i.e. vertices), then
attaching some number of 1-cells (edges) to the vertices
in X0 to obtain the 1-skeleton X1, then attaching 2-cells
to X1, and so on up to some maximal dimension n:

∅ ⊂ X0 ⊂ X1 ⊂ . . . ⊂ Xn = X.

The attaching map, φ, for a p-cell α(p), is a continuous
function from the boundary ∂α(p) (which is a (p − 1)-
sphere) into the (p − 1)-skeleton Xp−1, i.e., φ : Sp−1 →
Xp−1.

The p-skeletons and attaching maps define the geom-
etry of the cell complex, and we now build an algebraic
structure on top of this by defining p-chains as formal
sums of p-cells. The first step is to choose a coefficient
group. This is typically the integers, but we will work
with Z2 (integers with addition modulo 2) as this means
we do not need to keep track of the orientations of each
cell. Let X be a CW-complex, a p-chain of X with Z2-
coefficients is a function from the p-cells of X to Z2 that
vanishes on all but finitely many p-cells. We can add two
p-chains by adding their values. This defines a group (the
chain group) that we denote by Cp(X,Z2).

Homology theory tells us that there exist boundary
maps ∂p : Cp(X,Z2)→ Cp−1(X,Z2) so that ∂p−1 ◦∂p = 0.

We can then define a chain complex

0→ Cn(X,Z2) ∂n→ Cn−1(X,Z2)
∂n−1→ . . .

∂1→ C0(X,Z2)→ 0.

We define the p-th cycle group Zp(X) = Ker ∂p, and the
p-th boundary group Bp(X) = Im ∂p+1. Homology groups
are the quotients

Hp(X, ∂) =
Ker ∂p

Im ∂p+1
=
Zp(X)
Bp(X)

.

The elements of Hp(X, ∂) are equivalence classes of
p-cycles such that two cycles are equivalent if their
difference is the boundary of a (p+ 1)-chain.

The basic topological structure of a space is quantified
by the number of independent cycles in each homology
group. Specifically, the rank of the p-th homology group
Hp(X, ∂) is called the p-th Betti number. Simply stated, for
a 3D object the zeroth Betti number counts the number
of connected components, the first Betti number counts
the number of “handles”, and the second Betti number
counts the number of enclosed “voids”.

We can examine the topology of a filtration by calcu-
lating the Betti numbers at each stage of the filtration,
but this does not distinguish between cycles that exist
in a filtration for a short amount of time, and cycles
that persist in the filtration. To do this we make use of
persistent homology, [5], [27].

Let (Xl)Ll=0 be a filtration of CW-complexes. Consider
the addition of a single p-cell α to the subcomplex Xi.
The boundary of α must already be in Xi, so α either
creates a new p-cycle or fills in a (p − 1)-cycle. The
idea behind persistent homology is that these events are
paired and define the lifetime of a topological feature.
Specifically, suppose that z is a p-cycle created by adding
the cell α at stage i of the filtration and that z′ is a p-cycle
that is homologous to z with z′ = ∂β, where β is a (p+1)-
cell added at stage j of the filtration. The persistence of
z, and of its homology class [z], is equal to i − j − 1.
We call α the creator and β the destroyer of [z]. We also
call a creator a positive cell, and a destroyer a negative
cell. If a cycle class does not have a destroyer, then its
persistence is infinite. The k-persistent p-th homology group
of (Xl)Ll=0 consists of p-cycles in Xl that are equivalent
if their difference bounds in Xl+k:

H l,k
p = Zp(Xl)/(Bp(Xl+k) ∩ Zp(Xl)). (2)

For some filtrations, we can define a function F on the
cells such that F is non-decreasing with the filtration
order. We can then look at persistence based on the
values of F . This is known as time-based persistence [5].

2.3 Simple Homotopy and Discrete Morse Theory
Discrete Morse theory is a combinatorial analogue of
Morse Theory developed by Forman [14], [15]. Some
concepts in discrete Morse theory have their origins in
Whitehead’s simple homotopy theory [28], so we intro-
duce simple homotopy theory first. We also use simple
homotopy theory to prove the validity of our algorithms
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in Section 4. The definitions we give below are for cubical
complexes, but the concepts can be extended to general
CW complexes [14].

For a cubical complex K with cell β(p), we say that β
has a free face α(p−1) if α is a face of β, and α has no
other cofaces. We call (α, β) a free pair. If we remove a
free pair from K, we obtain a subcomplex of K that is
called an elementary collapse of K. We say that a cubical
complex K collapses to a subcomplex K′ if there is a
finite sequence of elementary collapses from K to K′.
If a cubical complex collapses to a point it is collapsible.
The inverse of a collapse is an expansion. We say that two
cubical complexes are simple homotopy equivalent if there
is a sequence of collapses and expansions from one com-
plex to the other. An elementary collapse determines a
strong deformation retraction. It therefore follows that if
two cubical complexes are simple homotopy equivalent,
then they are homotopy equivalent.

We now introduce discrete Morse functions. A func-
tion, f : K → R is a discrete Morse function if for every
α(p) ∈ K, f takes a value less than or equal to f(α) on at
most one coface of α, and takes a value greater than or
equal to f(α) on at most one face of α. In other words,

#{β(p+1) > α | f(β) ≤ f(α)} ≤ 1, (3)

and
#{γ(p−1) < α | f(γ) ≥ f(α)} ≤ 1, (4)

where # denotes the number of elements in the set. A
cell, α(p) is critical if all cofaces take strictly greater values
and all faces are strictly lower.

A cell α can fail to be critical in two possible ways.
There can exist γ < α such that f(γ) ≥ f(α), or there
can exist β > α such that f(β) ≤ f(α). Lemma 2.5 of
[14] shows that these two possibilities are exclusive, they
cannot be true simultaneously for a given cell α. Thus
each non-critical cell α may be paired either with a non-
critical cell that is a coface of α, or with a non-critical
cell that is a face of α.

As noted by Forman (Section 3 of [15]), it is not easy to
construct discrete Morse functions on a given complex;
it is usually simpler to work with a discrete vector field.
A discrete vector field, V , is a collection of pairs {α(p) <
β(p+1)} of cells in K such that each cell is in at most one
pair of V . A discrete Morse function defines a discrete
vector field by pairing α(p) < β(p+1) whenever f(β) ≤
f(α). The critical cells are precisely those that do not
appear in any pair. Discrete vector fields that arise from
Morse functions are called gradient vector fields.

It is natural to consider the flow associated with a
vector field and in the discrete setting the analogy of
a flow-line is a V -path. A V -path is a sequence of cells:

α
(p)
0 , β

(p+1)
0 , α

(p)
1 , β

(p+1)
1 , α

(p)
2 , . . . , β

(p+1)
r−1 , α(p)

r .

where (αi, βi) ∈ V , βi > αi+1, and αi 6= αi+1 for all i =
0, . . . , r− 1. A V -path is a non-trival closed V -path if αr =
α0 for r ≥ 1. Forman shows that a discrete vector field
is the gradient vector field of a discrete Morse function

if and only if there are no non-trivial closed V -paths
(Theorem 9.3 of [14]).

The connection between discrete Morse theory and
simple homotopy arises from the pairs in the gradient
vector field. For a cubical complex K with discrete Morse
function f , and any real number c, define the level
subcomplex K(c) by including all cells with f(α) ≤ c and
all their faces:

K(c) = ∪f(α)≤c ∪γ≤α γ.

Notice that a sequence of subcomplexes K(ci) for in-
creasing values of ci defines a filtration. The following
result (Theorem 3.3 of [14]) relates this filtration to simple
homotopy theory.

Lemma 1: If there are no critical simplices α with
f(α) ∈ (a, b], then K(b) collapses to K(a).
The sequence of elementary collapses are defined by
pairs (α(p), β(p+1)) from the gradient vector field.

Alternatively, if level subcomplexes K(a) and K(b)
differ by a single critical p-cell, σ(p), then we can define
an attaching map on the boundary of σ (see Theorem
3.4 of [14]). Thus, a discrete Morse function on a cubical
complex induces a CW-complex (Corollary 3.5 of [14]).

Lemma 2: Let K be a cubical complex with discrete
Morse function f . Then K is homotopy equivalent to a
CW-complex X with exactly one cell of dimension p for
each critical cell in K of dimension p.

We now define a discrete analogue of what is some-
times known as the “Thom-Smale-Witten” complex [29].
The result is an abstract chain complex that Forman calls
the Morse complex, and that we call the Morse chain
complex.

Let Cp(K,Z2) be the group of p-chains with Z2 coeffi-
cients (see Sec. 2.2). LetMp ⊆ Cp(K,Z2) be the subgroup
generated by the critical p-cells. We define a boundary
map ∂p :Mp →Mp−1 as follows. For any critical p-cell
β set

∂β =
∑

α∈Mp−1

cα,βα. (5)

The coefficients cα,β encapsulate the induced orientat-
ions and number of V -paths between the maximal (i.e.
co-dimension-1) faces of β and the critical (p − 1)-cell
α, and are defined as follows. Let Γ(β, α) be the set of
all V -paths from maximal faces of β to α. Because we
compute homology with Z2 coefficients, orientations are
ignored and

cα,β =

{
1 if #Γ(β, α) is odd,
0 if #Γ(β, α) is even.

(6)

With the boundary operator so defined, we have the
following result (see Section 8 of [14], or Section 7 of
[15]).

Theorem 3: Let Mp be the chain group of critical p-
cells. The Morse chain complex

0→Mn
∂n→Mn−1

∂n−1→ . . .
∂0→M0 → 0 (7)
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calculates the homology of K. That is, if we define

Hp(M, ∂) =
Ker ∂p

Im ∂p+1

then for each p,

Hp(M, ∂) ∼= Hp(K,Z2).

This theorem implies that the persistent homology of the
digital image can be computed from the Morse chain
complex.

3 THE ALGORITHMS

Our approach to characterizing the topology of the level
cuts of a grayscale function proceeds in two stages.
First we construct a discrete vector field on the cubical
cell complex using simple-homotopy expansions; we use
this vector field to build the Morse chain complex by
following V -paths.

3.1 Constructing the Discrete Vector Field
Recall from Eq. (1) that a filtration of the cubical complex
K is the sequence of subcomplexes Kt such that Kt
contains the cells in K that have no vertex with a
grayscale value greater than t. The subcomplexes thus
correspond to the lower level cuts of the digital image.
The goal of our algorithm is to construct a discrete
Morse function on the cubical complex whose critical
cells exactly match the changes in topology between
successive elements of this filtration. We achieve this by
using simple homotopy expansions to grow from one
subcomplex to the next, and introduce critical cells only
when a simple homotopy pairing cannot be found.

It is convenient for our method to require that the
value of g on each voxel is distinct, so that the voxels in
D can be ordered as:

g(x0) < g(x1) < · · · < g(xN ).

To ensure unique values, g may need to be perturbed
with a tie-breaking scheme. One way of doing this is
to add a linear ramp to g as follows. The image has a
finite number of voxels, so there exists some η > 0 such
that for any two voxels x and y, either g(x) = g(y) or
|g(x) − g(y)| > η. Define a perturbed grayscale function
g′ by

g′(i, j, k) = g(i, j, k) + η
(i+ Ij + IJk)

3IJK
(8)

where I, J,K are the dimensions of the image domain.
The effect of this perturbation can be removed later by
persistence cancelling to level η.

When the g-values are unique, we know that the sub-
complex Kti differs from its predecessor in the filtration
Kti−1 by the single voxel xi = g−1(ti) and the 1-, 2- and
3-cells for which xi is the highest valued voxel. This set
of cells in the neighbourhood of xi is called the lower
star. To be explicit the lower star, L(x) is:

L(x) = {α ∈ K | x ∈ α and g(x) = max
y∈α

g(y)}.

The lower stars of all voxels x ∈ D form a disjoint
partition of K.

We now present an algorithm, ProcessLowerStars, that
finds a sequence for adding the cells from L(xi) to
Kti−1 to grow it into Kti , for each voxel xi. To avoid
spurious critical cells, our algorithm aims to leave a
minimal number of cells unpaired. This is achieved by
utilising simple homotopic expansions where possible.
Since pairing occurs only between cells in the same lower
star, each lower star can be treated independently, in
parallel if need be. Pseudocode for ProcessLowerStars is
given in Alg. 1.

ProcessLowerStars is based on two priority queues of
cells, PQone and PQzero, that are described in greater
detail below. The algorithm also requires a function that
returns the cells in the lower star of a voxel, L(x), and
another function, num unpaired faces(α), which returns
the number of faces of α that are in L(x) and have not
yet been inserted in either C or V (the lists of critical cells
and discrete vector field pairs). When there is a single
available unpaired face for the cell α, we call this face
pair(α). The priority queues require an ordering, G(α), of
the cells in each lower star. Any ordering based primarily
on the maximal g value of the vertices of the cell and
in which a cell is ranked after its faces will suffice.
Indeed, the results in Section 4 show that for 2D and 3D
complexes the number and type of critical cells found by
ProcessLowerStars are independent of this ordering — a
property of our algorithm that arises from the homotopic
growth of each lower star. The ordering we implement
is based on lexicographic ordering of sequences defined
by listing the g-values from the vertices of a cell in
decreasing order. Specifically, given a cell, α ∈ L(x), with
vertices {x, y1, . . . , yk}, define

G(α) = (g(x), g(yi1), . . . , g(yik))
where g(x) > g(yi1) > · · · > g(yik).

The first cell considered in each step of the main
loop in ProcessLowerStars is the 0-cell x itself. If L(x)
is empty, x is a local minimum and is critical (line 2).
Otherwise, x is paired with its lowest incident edge
(line 6). The algorithm then constructs the lower star
via cell pairs that are simple homotopy expansions.
When this expansion is no longer possible, a critical
cell is created and the expansions then proceed from
this new cell. A cell, α is a candidate for homotopic
expansion when num unpaired faces(α) is exactly one; it
is a candidate critical cell when all its faces have been
paired or inserted in C. The priority queues PQone and
PQzero, whose elements are ordered by G, store cells
with one and zero available faces respectively. When
a cell reaches the front of PQone it is paired with its
single available face (line 15). If PQone is empty, then no
candidates for homotopic expansion exist, and the front
cell of PQzero is added to C as a critical cell.

As illustrative examples, we apply ProcessLowerStars
to a 2D and a 3D lower star depicted in Figs 1 and 2
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Algorithm 1 ProcessLowerStars(D, g)
Input: D digital image voxels.
Input: g grayscale values on voxels.
Output: C critical cells.
Output: V discrete vector field V [α(p)] = β(p+1).

1: for x ∈ D do
2: if L(x) = {x} then {x is a local minimum}
3: add x to C
4: else
5: δ := the 1-cell in L(x) such that G(δ) is minimal
6: V [x] := δ
7: add all other 1-cells from L(x) to PQzero.
8: add all cells α ∈ L(x) to PQone such that α > δ

and num unpaired faces(α) = 1
9: while PQone 6= ∅ or PQzero 6= ∅ do

10: while PQone 6= ∅ do
11: α := PQone.pop front
12: if num unpaired faces(α) = 0 then
13: add α to PQzero
14: else
15: V [pair(α)] := α
16: remove pair(α) from PQzero
17: add all cells β ∈ L(x) to PQone such

that (β > α or β > pair(α)) and
num unpaired faces(β) = 1

18: end if
19: end while
20: if PQzero 6= ∅ then
21: γ := PQzero.pop front
22: add γ to C
23: add all cells α ∈ L(x) to PQone such that

α > γ and num unpaired faces(α) = 1
24: end if
25: end while
26: end if
27: end for

respectively.
The algorithm terminates because there are a finite

number of cells, and each cell is inserted in PQone at
most once. We show in Prop. 4 that Alg. 1 visits every
cell of the lower star and either pairs it or classifies it as
critical.

Proposition 4: Each cell in L(x) will be paired and
included in V or inserted into C by ProcessLowerStars.

Proof: Every cell in Alg. 1 that is added to PQzero or
PQone will eventually be either paired as part of a simple
homotopy expansion or inserted into C. So if α(p) is a cell
in L(x) that is omitted from V and C, then α will never
have been added to PQzero or PQone. If α is never added
to PQone, it must be the case that num unpaired faces(α)
is greater that one. This implies that there is a face of
α, δ(p−1) ∈ L(x) that is also omitted from V and C. By
induction on p, there will be a 1-cell in L(x) that is never
added to V or C. But all 1-cells are added to PQzero,
giving us a contradiction.

In the final part of this section we show that the

order cells are inserted into V and C by ProcessLowerStars
effectively defines a discrete Morse function.

Proposition 5: Let g be a grayscale function defined on
a set of voxels, D. Let K be the cubical complex derived
from D. Assume that g takes distinct values on each
voxel of D, by adding a tilt if necessary as in Eq. (8). Then
the order in which ProcessLowerStars inserts cells into V
and C defines a discrete Morse function, as constructed
below.

Proof: Let x be a voxel, and let L(x) be its lower star.
If L(x) has k > 1 cells, let δ be the edge that is minimal
with respect to the G(α) ordering (as in Alg. 1), and if
k > 2, let α1, α2, . . . , αk−2 be the remaining cells in L(x).
We record the order that cells from L(x) are inserted into
V or C using the convention that if V (α) = β then β will
immediately precede α. This algorithm ordering is

δ, x, αj1 , αj2 , . . . , αjk−2 for ji ∈ 1, . . . , k − 2.

Let ε = minx 6=y{|g(x) − g(y)|}. Note that the maximum
number of cells in the lower star of a voxel in a 3D
lattice is 27, so we can define a discrete Morse function
as follows:

m(δ) = g(x)− ε/30
m(x) = g(x)

m(αji) = g(x) + iε/30.

The definition for m extends to all voxels x ∈ D,
and all cells α ∈ K. To prove that m is a discrete
Morse function we verify the properties (3) and (4) of
Section 2.3. Consider non-critical cells (α(p), β(p+1)) ∈ V :
then α, β ∈ L(x) for some x ∈ D, and m(β) < m(α) from
the definition of m. All other faces of β must have been
inserted into V or C at an earlier point in the algorithm,
so α is the single face of β with greater m-value. A
critical cell, γ ∈ C, has all its faces inserted earlier in
the algorithm and all its cofaces are added later, so the
conditions for a critical cell of a discrete Morse function
are also satisfied by m.

3.2 Building the Morse Complex

We now describe how to build the Morse chain complex
from the discrete vector field defined by V and C. The
information we require is the incidence relations implied
by the boundary operator defined in Section 2.3, Eq. 5.
This is found simply by following V -paths from the faces
of each critical cell γ(p) ∈ C, and determining which
critical (p− 1)-cells the V -paths terminate at.

The algorithm for building the Morse chain complex
is shown in Alg. 2. ExtractMorseComplex follows V -paths
using a breadth-first search algorithm, implemented
with a simple queue data structure Qbfs (lines 10–20).
The breadth-first search is necessary since V -paths can
branch when followed in the forward direction. V -paths
can also merge, so, unlike typical search algorithms, we
allow multiple traversals of each cell. In addition, this
means that the multiplicity of incidence relations can be
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Fig. 1. Processing the lower star of vertex 6 (a subset of a 2D digital image). Pixels are labelled by their value g(x) and
other cells by the word defined by G(α). Using this labelling the lower star contains the cells 6, 61, 62, 63, 6431 and
6532 listed in lexicographic order. (a)–(d) show the operation of our homotopic algorithm ProcessLowerStars, while
(e)–(i) show the action of a non-homotopic algorithm. Steps (a) and (e) show the lower link of vertex 6; these are the
cells of K5 that are faces of cells in L(6). Alg. 1 proceeds as follows: (b) Vertex 6 is paired with the edge 61; (c) edge
63 pairs with face 6431 (face 6532 is not yet in PQone); (d) edge 62 pairs with face 6532. A non-homotopic algorithm
may introduce spurious critical cells (62 and 6532) if the lower star is traversed with the lexicographic ordering: (f)
Vertex 6 is paired with the edge 61; (g) edge 62 is inserted as a critical cell (dashed line); (h) edge 63 pairs with face
6431; (i) face 6532 is inserted as a critical cell (spots).

Fig. 2. In this example, we work through one iteration of the for loop in ProcessLowerStars using a voxel with grayscale
value 8. We label voxels by their value g(x) and other cells by the word defined by G(α). The lower star contains the
cells 8, 81, 82, 83, 8432, 86, 8653, 8762 listed in lexicographic order. In (a) we show the lower link of vertex 8 as
black edges; these are the faces of cells in L(8) that belong to the complex K7. The pale edges are included to assist
visualisation. The Alg. 1 proceeds as follows:

• Vertex 8 is paired with the edge 81 (b).
• Edges 82, 83, 86 are added to the priority queue PQzero. There are no cells adjacent to 81 with a single unpaired

face so PQone is empty. Edge 82 is popped from PQzero; it is critical and marked as a dashed line (c).
• Edge 82 has two cofaces 8432 and 8762 that are added to PQone. Square 8432 is popped from PQone, it is

paired with its free face, edge 83 (d).
• Square 8653 is a coface of edge 83 and added to PQone. Square 8653 is then popped from PQone, and paired

with edge 86 (e).
• Square 8762 is popped from PQone; all its faces have now been paired, so 8762 is added to PQzero. Finally,

square 8762 is popped from PQzero; it is a critical 2-cell marked with spots (f).
The algorithm has reordered the cells of L(8) as 81, 8, 82, 8432, 83, 8653, 86, 8762 (the critical cells are boldface).

recorded. Implications for the computational complexity
are discussed in Section 3.3.

When adding cell labels to the Facelist data structure,
we use concatenation, not union or addition modulo 2, to
record the multiplicity of incidence relations. Although
we will compute homology with Z2 coefficients, we
still require all the incidence relations between cells to
build the chain complex. For example, there may be
two distinct V -paths from a critical 1-cell to a single
critical 0-cell. Taking the union of labels will cause the
homology computations to be incorrect, and counting
labels modulo 2 will cause us to lose the incidence

information entirely. Our approach is consistent with the
chain complex defined by Eqs (5) and (6).

We define a chain complex from Alg. 2 as follows.
For each p-cell β in M, define the boundary map ∂ :
Cp(X,Z2)→ Cp−1(X,Z2) as

∂β =
∑

critical α(p−1)

cα,βα (9)

where cα,β is the number of times that α appears in
Facelist(β) (modulo 2). Now the number of times that α
appears in Facelist(β) is equal to the number of V -paths
from β to α. It follows from Theorem 3 that Alg. 2 defines
a Morse chain complex that calculates the homology of
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Algorithm 2 ExtractMorseComplex(K, V , C)
Input: K, cubical complex.
Input: V , discrete vector field on K.
Input: C, critical cells of V .
Output: M, cells in the Morse chain complex.
Output: Facelist, cell adjacencies of the Morse chain

complex.
1: for p ∈ {0, 1, 2, 3} do
2: for γ(p) ∈ C do
3: create a new p-cell γ̃ ∈M
4: if p > 0 then
5: for α(p−1) < γ(p) do
6: if V [α] 6= ∅ then
7: Qbfs.push back(α)
8: end if
9: end for

10: while Qbfs 6= ∅ do
11: α := Qbfs.pop front
12: β(p) := V [α]
13: for δ(p−1) < β(p) s.t. δ 6= α do
14: if δ ∈ C then
15: add δ̃ to Facelist(γ̃)
16: else if V [δ] 6= ∅ then
17: Qbfs.push back(δ)
18: end if
19: end for
20: end while
21: end if
22: end for
23: end for

K. Because we can do this at any level of the filtration,
we obtain the following result:

Theorem 6: Given a grayscale digital image, g : D → R
and its associated cubical complex, K, let xi be the i-
th voxel in the ordering by grayscale values, Ki be the
lower level cut at the value g(xi). Suppose that we apply
ProcessLowerStars and ExtractMorseComplex to Ki and let
Mi be the resulting Morse chain complex. If we use
Eq. (9) to define the boundary map then the resulting
chain complex will calculate the Z2-homology of Ki.

The scope of this paper is to analyse 2D and 3D
images, and our theorems are proved in this setting. The
algorithms ProcessLowerStars and ExtractMorseComplex
can be formulated in more general settings than 3D
cubical complexes; for example functions defined on
the vertices of a simplicial complex, or a regular CW
complex. Forman’s discrete Morse theory applies to any
CW-complex [14]. Since the proof of Theorem 6 is a direct
application of discrete Morse theory it should be easy
to extend ExtractMorseComplex and Theorem 6 to more
general CW complexes.

3.3 Computational Complexity

Alg. 1 divides the cubical complex K into N disjoint sets
called lower stars, each associated with a single voxel.

The lower star L(x) of each voxel x is processed inde-
pendently; we call this subset of Alg. 1 ProcessLowerStar.
Consider a lower star L(x) comprising n cells. As stated
earlier, ProcessLowerStar inserts each α ∈ L(x) into PQone
exactly once; all cells are popped from PQone one at
a time. Therefore the body of the inner while loop is
executed exactly n times. All operations are constant
time except the priority queue operations which are
logarithmic in the queue size. Since the sizes of PQone
and PQzero are bounded by n, then the running time
of ProcessLowerStar is O(n log n). Since n for a cubical
complex is independent of the image size, O(n log n)
can be considered O(1). Therefore the complexity of the
entire ProcessLowerStars algorithm is O(N).

Alg. 2 traverses all V -paths that originate at faces of
critical cells, performing simple constant time operations
at each cell on these paths. Since the number of critical
cells scales with the image size, the body of the for loop
commencing on line 3 will be executed O(N) times. The
for loop commencing on line 5 merely checks each face
of γ and so executes in constant time. The while loop
commencing on line 10 performs a breadth first search
of all the V -paths originating from the faces of γ. Since
each line in the body of the loop is O(1), and since the
for loop on line 13 runs over the constant number of
faces of the cell β, the body of the while loop is O(1).
Therefore Alg. 2 is O(M), where M is the total number
of times the body of the while loop is executed. Now,
if the V -paths were disjoint, the search would visit each
cell in K at most once, so M < 8N and Alg. 2 would be
O(N). However, V -paths involving (α(p), β(p+1)) pairs
(i.e. a (p, p + 1) V -path) exhibit branching if p > 0 and
merging if p < d − 1, where d is the image dimension.
To be explicit, in three dimensions, (0, 1) V -paths can
merge, (1, 2) V -paths can both merge and branch, while
(2, 3) V -paths can only branch.

Branching does not affect of the complexity of Alg. 2
since it will simply perform a linear-time breadth-first
traversal of the branched V -path structure (a directed
tree) and each cell will only be visited once. On the other
hand, V -path merging means that a section of V -path
can be traced backwards to more than one originating
critical cell. Alg. 2 visits this section of path multiple
times: once for each originating critical cell.

One can construct discrete Morse functions on 2D
cubical complexes that contain a single critical 0-cell,
but a very large number of (i.e. O(N)) critical 1- and
2-cells. If all V -paths converge to a single V -path some
distance from the critical 0-cell, then the multiplicity
of this section of path is O(N). If this path section is
sufficiently torturous then its length can also be O(N), so
we have O(N) cells being visited O(N) times, yielding
a complexity of O(N2). In 2D, one can recover O(N)
complexity by modifying Alg. 2 to traverse (0, 1) V -paths
in the reverse direction.

In 3D, (1, 2) V -paths can branch and merge, poten-
tially resulting in many-to-many adjacency relationships
between critical 1-cells and critical 2-cells. The patho-
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logical 2D example can be modified to produce a 3D
Morse function containing O(N) critical 1-cells, each of
which connects to O(N) critical 2-cells. This produces
the counter-intuitive result that the Morse chain complex
of an image with N voxels can contain O(N2) V -paths
between critical 1- and 2-cells. It is clearly impossible
to construct such a complex in time better than O(N2).
Since the number of critical 1- and 2-cells is bounded by
N , the number of visits to any cell during the breadth
first search is also bounded by N and so the complexity
of Alg. 2 is O(N2).

We emphasize that the worst cases mentioned above
are of mainly theoretical interest and do not affect the
utility of this method for large images. While the run
time of Alg. 2 is O(N2) for a contrived example, none
of the images or objects that we have studied exhibit
scaling behaviour worse than O(N).

4 PROOF OF CORRECTNESS

We want to show that there is a one-to-one correspon-
dence between critical cells identified by ProcessLower-
Stars and changes in the topology of the lower level cuts
of the cubical complex. Our proof is broken into two
stages. Lemmas 8, 9 and 10 in this section are directly
concerned with the behavior of our algorithm on a single
lower star; in the Appendix we show how this local
analysis is related to the global changes in topology of
the lower level cuts. That result (Lemma 12) follows from
a standard tool of homology theory (the Mayer-Vietoris
sequence) and states that when the closed lower star Li
of voxel xi is added to the filtration Ki−1, the changes in
homology that occur are determined by the homology of
the intersection Ki−1∩Li. This intersection is commonly
referred to as the lower link or attachment.

We now prove that the elements of Hp(Ki−1 ∩Li) are
in one-to-one correspondence with the critical p-cells in
Li identified by ProcessLowerStars. We start by taking the
intersection of the lower star with a suitably small sphere
of radius r centered at the voxel xi and call this subset
of S2 the reduced lower star, Ri = Li ∩ S2(xi, r).

Lemma 7: The reduced lower star, Ri, is homotopy
equivalent to Ki−1∩Li, and they therefore have the same
homology groups.

Proof: The homotopy equivalence is made by grow-
ing the sphere used to define Ri until it hits Ki−1 ∩ Li.

The cell structure of Li induces a cell structure on Ri
so that the map

ϕ : Li \ xi → Ri (10)

is a bijection of cells. Recall that the full star of a voxel
contains eight cubes, twelve square faces and six edges,
so Ri is a subcomplex of the octahedron (which is a
simplicial complex of eight triangles, twelve edges and
six vertices). The map ϕ transforms ProcessLowerStar into
an algorithm that acts on Ri in exactly the same manner;
we call this modified algorithm ProcessReducedStar. The

only difference is the initial pairing of the lowest edge
from Li with the central voxel xi. In ProcessReducedStar,
the lowest edge of Li becomes a critical 0-cell in Ri that
seeds the growth of a connected component. Cells in
Ri are ordered by the same function G derived from
the grayscale values of the voxels. Every (p − 1, p)-pair
defined by ProcessReducedStar corresponds to a (p, p+1)-
pair in ProcessLowerStar, and every critical (p − 1)-cell
from ProcessReducedStar (except for the initial critical 0-
cell discussed above) is a critical p-cell for ProcessLower-
Star.

Algorithm 3 ProcessReducedStar(R,G)
Input: R the reduced lower star.
Input: G lexicographic ordering on R.
Output: M discrete morse function ordering on R.

1: δ := the 0-cell in R such that G(δ) is minimal
2: M := {δ} /* δ is critical
3: add all other 0-cells of R to PQzero
4: add all cells α ∈ R to PQone such that α > δ and

num unpaired faces(α) = 1
5: while PQone 6= ∅ or PQzero 6= ∅ do
6: while PQone 6= ∅ do
7: α := PQone.pop front
8: if num unpaired faces(α) = 0 then
9: add α to PQzero

10: else
11: M .append(α,pair(α)) /* (pair(α), α) is a pair
12: remove pair(α) from PQzero
13: add all cells β ∈ R to PQone such that (β > α

or β >pair(α)) and num unpaired faces(β) =
1

14: end if
15: end while
16: if PQzero 6= ∅ then
17: γ := pop front(PQzero)
18: M .append(γ) /* γ is critical
19: add all cells α ∈ R to PQone such that α > γ

and num unpaired faces(α) = 1
20: end if
21: end while

We now analyze the algorithm ProcessReducedStar and
show that the critical p-cells it defines are in one-to-one
correspondence with elements of the homology group
Hp(Ri). We are interested in how cells are added to
M : either singly when the cell is critical, or as a pair
(α,pair(α)). Let B0 = {δ}, Bj = { cells in M after j
addition steps of the algorithm }. Then Bj is a subcom-
plex of Ri, because B0 is, and at each stage, if we add a
pair (α,pair(α)) then all the faces of α were in M except
for pair(α), which we add now. Alternatively if we add a
critical cell, it has come from PQzero, so all its faces were
in M by definition. Let n be the total number of addition
steps in a call of ProcessReducedStar so that Bn = Ri.

First note that if Bj+1 differs from Bj by a pair, then Bj
is an elementary collapse of Bj+1, and so they have the
same homotopy type and therefore the same homology
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and Betti numbers. Thus, the homology can change only
when adding a critical cell. Adding a single critical cell
of dimension p to the (simplicial) complex Bj can either
increase the p-th Betti number by one (it creates a p-
cycle), or decrease the (p− 1)-th Betti number by one (it
fills in a (p−1)-cycle). In the first case we say the critical
cell is positive, in the second it is negative [30]. Note that
a negative critical p-cell created in Bj+1 must pair with
and cancel a positive critical (p− 1)-cell in Bj .

The following lemmas show that the number of critical
p-cells created by ProcessReducedStar is exactly the p-th
Betti number of Ri. That is, each critical cell identified
corresponds to a topological feature in Ri, and so each
critical cell is positive.

Lemma 8: The number of critical 0-cells is equal to
the number of connected components of Ri implying
that there are no negative critical 1-cells in the filtration
B0, . . . , Bn.

Proof: We argued above that the homology of Bj+1

can differ from that of Bj only when they differ by a
critical cell. Therefore the number of critical 0-cells is a
least the number of connected components of Ri.

Suppose now that a single connected component A ⊂
Ri has two critical 0-cells, p and q, with g(p) < g(q).
Let j be the index of the step in which the critical cell
q is added. This means p ∈ Bj−1 and there are no cells
adjacent to Bj−1 with a single unpaired face, i.e. PQone is
empty. Now since p, q ∈ A and A is connected, there is a
path of vertices and edges in A, p < e1 > x1 < e2 > x2 <
. . . ek > xk = q. But the existence of this path implies
there is an edge el with one vertex, xl−1 ∈ Bj−1 ∩A and
the other vertex xl 6∈ Bj−1, implying that el should be
in PQone, so we have a contradiction. Therefore there is
exactly one critical 0-cell for each connected component
of Ri.

Lemma 9: Each critical 1-cell corresponds to a non-
bounding cycle in Ri implying that there are no negative
critical 2-cells in the filtration B0, . . . , Bn.

Proof: First assume that Ri has a non-bounding 1-
cycle. In the filtration B0, . . . , Bn, where Bn = Ri, there
must be a step Bj to Bj+1 where Bj has the same
homotopy as B0 — a single point — and Bj+1 has a
non-bounding 1-cycle. The only possible way to achieve
this is through the addition of a critical 1-cell.

Conversely, suppose that the algorithm has reached
step Bj and that the next step is to add the critical 1-
cell, γ. Both vertices of γ are in Bj ; in fact both vertices
of γ are in the same connected component, B′ of Bj since
otherwise there would be a connected component of Ri
with more than one critical 0-cell. Therefore there must
be a 1-cycle that passes through γ. Choose zγ to be a
shortest possible 1-cycle passing through γ. By construc-
tion zγ is non-bounding for B′∪γ because neither cofaces
of γ are in B′. Let A be the connected component of the
lower link that contains B′∪γ. We want to show that zγ
is non-bounding for A, and we will do this by assuming
otherwise and obtaining a contradiction. So assume zγ
is the boundary of a 2-chain, w ⊂ A. Adjust zγ and w if

necessary so that z′γ is homologous to zγ in B′∪{γ} and
w′ ⊂ A \B′. Note that exactly one coface α > γ is in w′.
If w′ = α we immediately have a contradiction, since α
then has a single free (unpaired) face, γ, with respect to
B′. So w′ has at least two 2-cells, α, β, and they may be
chosen to share a face in A \ {B′ ∪ γ}. Now consider the
graph Γ whose vertices are the 2-cells in w′ and edges
match those 1-cells δ ∈ A \ {B′ ∪ γ} such that δ is the
common face of a pair of 2-cells in w′. Γ is connected
because z′γ is a shortest possible cycle through γ. If there
is a loop in Γ, then the corresponding 2-cells surround a
0-cell in A \ {B′ ∪ γ}, but this 0-cell must be connected
to B′ by some path which implies the existence of a free
pair for B′ (as in the proof of Lemma 8). Therefore Γ
must be a tree, and since Γ has at least two vertices, it
must have an edge with a dangling vertex σ 6= α. Then
σ is a 2-cell with all its faces except one in B′, and this
contradicts our assumption that there were no free pairs
for B′.

Lemma 10: A critical 2-cell occurs only when Ri is the
entire octahedron.

Proof: Suppose we have reached the complex Bj in
the filtration, and that the next step is the addition of
a critical 2-cell, γ. By Lemma 2, γ cannot be a negative
critical 2-cell, so Bj ∪ γ must contain a 2-cycle. But the
only possible 2-cycle in S2 is the whole of S2.

Now suppose Ri is the full octahedron. Let γ be any
2-cell in Ri and consider the subcomplex A = Ri \γ. The
action of our algorithm on A is such that it will create
a single critical 0-cell for the initial vertex, and no other
critical cells. Then γ is a cell with all its faces in A and
so it will become a critical 2-cell.

Lemmas 8, 9 and 10 show that the number of critical p-
cells identified by ProcessReducedStar is exactly the rank
of Hp(Ri), and Lemma 7 tells us that this is the same as
the rank of Hp(Ki−1 ∩ Li). The result in the appendix,
Lemma 12, shows how elements of Hp(Ki−1 ∩ Li) cor-
respond to changes in the homology of successive lower
level cuts, Ki−1 and Ki. We bring together all these
results in the following theorem.

Theorem 11: Given a grayscale digital image, g : D →
R and its associated cubical complex, K, let xi be the
i-th voxel in the ordering by grayscale values, Ki be the
lower level cut at the value g(xi), and Li be the lower
star of xi. Then, for each critical p-cell γ(p) ∈ Li identified
by ProcessLowerStars either

1) γ creates a new p-cycle in Hp(Ki) or
2) γ fills in a (p− 1)-cycle from Hp−1(Ki−1).

We finish this section with a discussion of the wider
applicability of our results. The proofs of Lemmas 8,
9 and 10 do not make specific use of the octahedral
structure of the lower link, so our Theorem 11 imme-
diately generalizes to any 3D regular cell complex with
a function defined on its vertices. Regular cell complexes
include simplicial complexes, and CW complexes where
the attaching maps are homeomorphisms (not just con-
tinuous maps). It is also easy to adapt Lemmas 8, 9
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and 10 to 1D and 2D regular cell complexes. Higher-
dimensional cell complexes present a greater challenge.
Couprie and Bertrand [3], [4] prove some related results
about 4D cubical complexes and we think it is likely that
Theorem 11 will hold in four dimensions also. Proving
this, however, will require different techniques to those
we have used in this paper. Couprie and Bertrand [3], [4]
also show that their results fail to hold in five dimensions
and higher due to potential obstructions in finding free
pairs for the simple homotopy collapse. Our ProcessLow-
erStars algorithm is likely to create extra critical cells in
these situations and Theorem 11 may no longer hold in
five dimensions and higher.

5 APPLICATIONS

We have successfully applied the algorithms from Sec-
tion 3 to both 2D and 3D grayscale images. In this
section we present two examples — a 2D section of
sandstone, and a 3D image of a metal foam — for which
the persistent Betti numbers are computed. Both of these
images were obtained using the X-ray microcomputed
tomography facility at the Australian National Univer-
sity [31].

The first step in each case is to construct the discrete
Morse function from the grayscale image and then build
the Morse chain complex, M. We also determine a fil-
tration of the Morse complex by assigning the grayscale
value of the critical cell to its corresponding cell in M.
If two critical cells have the same grayscale value, we
order them by their dimension or in arbitrary order if
they have the same dimension. We then have a total
ordering of cells in M as required for persistent Betti
number computations. We use Zomorodian’s Pair-Cells
algorithm from page 22 of [32] to compute the persistent
Betti numbers.

Our implementation of these algorithms is in Python
and the code ran on a Dell Precision 390 PC (2400 MHz
Core 2 Duo CPU with 2GB RAM). The implementation
in Python is a prototype; we expect the algorithm would
be faster if optimised and implemented in a different
language. The timings we present are therefore for com-
parison only.

5.1 Example: 2-Dimensional Image
We apply the algorithms ProcessLowerStars and Extract-
MorseComplex to the 2D image of a section of rock shown
in Fig. 3(a). The dimensions of the data are 200 × 200
pixels so the cubical complex has 159201 cells (200× 200
0-cells, 200× 199× 2 1-cells, 199× 199 2-cells). The range
of the image is limited to 256 different possible grayscale
values so we apply the tie-breaking scheme given in
Eq. (8) before ordering the voxels (black pixels are low,
white pixels are high). The Morse complex, Fig. 3(b), has
2827 cells in total (1.8% of the cubical complex) — a
dramatic simplification of the combinatorial structure. It
took 16 seconds for the algorithm to generate the Morse
complex.

We obtain topological information about the image by
computing the persistent Betti numbers with persistence
measured as the difference in grayscale function val-
ues of the creator and destroyer critical cells. Plots of
persistent Betti numbers are shown in Fig. 4. We were
able to verify that the original cubical complex had the
same Betti numbers. It took 6 seconds to calculate the
persistent Betti numbers of the Morse complex, and 882
seconds to calculate the persistent Betti numbers of the
cubical complex.

We can see from Fig. 4 that there are three 0-cycles
with persistence greater than or equal to 96, and just one
with persistence greater than or equal to 112. Because
we pair cells, it is possible to identify these cycles. The
most persistent of these cycles (apart from the 0-cycle of
infinite persitence) is illustrated in Fig. 3(c).

Fig. 4 also shows that there are two 1-cycles with per-
sistence greater or equal to 64, and none with persistence
greater than or equal to 80. One of the highly persistent
1-cycles is illustrated in Fig. 3(d).

5.2 Example: 3-Dimensional Foam
We now study a 3D image of a metal foam; a visualiza-
tion of the data is shown in Figures 5. The dimensions
of the data are 64x64x64 voxels, and the cubical complex
has 1,540,351 cells. The Morse complex has 4093 cells
(0.27% of the cubical complex); it took 425 seconds for
our algorithms to generate this complex.

The persistent Betti numbers describe the topology of
the porespace of the foam; plots of the λ-persistent Betti
numbers are displayed in Fig. 6, with persistence again
measured as the difference in grayscale values of the
creator and destroyer critical cells. For intensities less
than 1800 we see a sharp spike in all the Betti numbers;
this is due to random, small-scale modulations in the
porespace of the foam, as can be seen from the trans-
parent to pink transition in Fig. 5. When the intensity
threshold is around 2000 we see that Betti-0 equals one,
signalling that the porespace is connected. At the same
threshold, Betti-1 equals 24 and Betti-2 is zero, so the
porespace is an “open-celled foam”. The highly persitent
Betti-1 values between intensity thresholds of 2000 and
5000 are due to closed paths in the porespace that in turn
signal the presence of “handles” in the material that the
foam is made from.

APPENDIX

Here we prove that changes in the homology of suc-
cessive lower level cuts are determined by the structure
of the intersection of the lower star with the existing
complex. The result applies more generally than this
specific context, so we state the mimimal conditions
necessary in the lemma, but preserve the notation of
Section 4.

Notation: Recall that an element of an homology group
is an equivalence class of p-cycles, and is denoted [zp] ∈
Hp(K) where zp is some representative of the class.
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(a) (b) (c) (d)

Fig. 3. (a) A 200× 200 pixel image of a section of sandstone. The white rectangles mark the regions shown in (c) and
(d). (b) Locations of the critical cells of the discrete Morse function derived from (a) by applying ProcessLowerStars.
Pixels are blue if they represent critical 0-cells, green for critical 1-cells, and red for critical 2-cells. If a pixel has more
than one type of critical cell at its coordinate then the colors are added. (c) A subset from the upper left of (a). Two
critical cells are marked: a blue pixel (lower left) that corresponds to the critical 0-cell that creates a 0-cycle and a green
pixel (center) that marks the critical 1-cell that destroys this 0-cycle. The dark pixels belong to the lower level cut at the
value of the critical 1-cell. When the green pixel is added to the dark pixels, the connected component corresponding
to the 0-cycle joins with the connected component on the right of the image, “destroying” the 0-cycle on the left. (d) A
subset from the lower right of (a). Two critical cells are marked: a green pixel (left) that creates a 1-cycle, and a red
pixel (center) that marks the critical 2-cell which destroys the 1-cycle. The dark pixels belong to the lower level cut at
the value of the critical 1-cell. When the green pixel is added to the dark pixels a hole is created in the lower level cut.
This hole is filled in when the level cut threshold reaches the value of the red pixel.

Fig. 4. The λ-Persistent Betti 0 (top) and Betti 1 (bottom)
numbers of lower level cuts of the sandstone image as a
function of threshold and for a sequence of λ-values.

Lemma 12: Given three spaces, Ki, Ki−1 and Li such
that Ki = Ki−1 ∪ Li where Li is a closed contractible
space, consider the map of homology groups πp :
Hp(Ki−1) → Hp(Ki) induced by the inclusion of Ki−1

into Ki. Then for each element of Hp−1(Ki−1 ∩ Li) we

Fig. 5. Visualization (using Drishti [33]) of a 3D foam
and the location of minima (blue dots) as identified using
ProcessLowerStars. Some level cuts of the grayscale
image are rendered as follows. The darkest voxels (inten-
sity values 0–1000) are transparent and show the noisy
low-persistence structures discussed in the text; slightly
lighter voxels (1000–3500) are colored pinkish brown; the
brightest voxels are yellow. A rotating view of this data
may be viewed in the online supplementary material.

find either

1) a p-cycle [zp] ∈ Hp(Ki) with [zp] 6∈ Imπp; or
2) a (p− 1)-cycle [zp−1] ∈ Kerπp−1.
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Fig. 6. The λ-persistent Betti 0 (top) Betti 1 (middle) and
Betti 2 (bottom) numbers for the 3D foam for a sequence
of λ values.

That is, any change in homology between Ki−1, and Ki
is signalled by the presence of a non-bounding cycle in
Ki−1 ∩ Li.

Proof: We begin with the Mayer-Vietoris sequence of
homology groups:

· · · jp−→ Hp(Ki−1)⊕Hp(Li)
sp−→ Hp(Ki)

vp−→

Hp−1(Ki−1 ∩ Li)
jp−1−→ Hp−1(Ki−1)⊕Hp−1(Li)

sp−1−→ · · ·
(11)

The homomorphisms are defined as follows:

jp([u]) = ([u],−[u])
sp([w], [w′]) = [w + w′]

vp([z]) = [∂z′],

where in the last equation z is a cycle in Ki and we
can write z = z′ + z′′ where z′ and z′′ are chains (not
necessarily cycles) in Ki−1 and Li respectively. These
homomorphisms are well defined (see, for example,
Theorem 33.1 of [26]). The crucial property of the Mayer-
Vietoris sequence is that it is exact — the image of each

homomorphism is equal to the kernel of the following
one: Im jp = Ker sp, Im sp = Ker vp, and Im vp = Ker jp−1.

Now, Li is contractible so its homology groups are the
same as those of a single point and the above sequence
becomes

· · · jp−→ Hp(Ki−1)
πp−→ Hp(Ki)

vp−→

Hp−1(Ki−1 ∩ Li)
jp−1−→ Hp−1(Ki−1) · · · (12)

for p ≥ 1 and the following for p = 0:

· · ·H0(Ki−1 ∩ Li)
j0−→ H0(Ki−1)⊕ Z s0−→ H0(Ki) −→ 0.

(13)
Notice that jp and sp are now simply inclusion-induced
homomorphisms (except when p=0) so sp = πp and
we have that Imπp = Ker vp and Kerπp = Im jp. This
tells us that the changes in homology that occur when
Li is added are determined by the homology of the
intersection Ki−1 ∩ Li. The remainder of our proof pro-
ceeds by showing that each element of Hp−1(Ki−1 ∩ Li)
corresponds either to the creation of a new p-cycle in
Hp(Ki) or the filling in of a (p− 1)-cycle of Hp−1(Ki−1).

For p ≥ 1, consider a non-trivial (p − 1)-cycle [z] ∈
Hp−1(Ki−1∩Li); z is either the boundary of a p-chain in
Ki−1, or it is not. In the case that it is a boundary, z ∈
Ker jp−1 and so z ∈ Im vp by exactness. Therefore there is
some [w] ∈ Hp(Ki) with vp([w]) = [z] 6= 0, so [w] 6∈ Ker vp.
Exactness again implies that [w] 6∈ Imπp. This means that
there is no cycle from Hp(Ki−1) that maps onto [w] — or
in other words [w] is a new homology class in Hp(Ki).

On the other hand, for p > 1, suppose that [z] ∈
Hp−1(Ki−1 ∩ Li) is not the boundary of any p-chain in
Ki−1. Then jp−1([z]) is a non-trival homology class of
Hp−1(Ki−1), but since Im jp−1 = Kerπp−1 we must have
[z] homologous to zero in Hp−1(Ki). Thus, adding Li
destroys a (p− 1)-cycle.

Finally, if p = 1, and [z] ∈ Hp−1(Ki−1 ∩ Li) is not the
boundary of any 1-chain in Ki−1 we must consider the
end of the Mayer-Vietoris sequence given in Eq. (13).
There are three possibilities to consider:

1) H0(Ki−1 ∩ Li) has k > 1 connected components.
Then let z = z1 − z2 be a zero cycle that is not the
boundary of any 1-chain from Ki−1). Since Li is
connected, z ∼ 0 ∈ H0(Li) and therefore z ∼ 0 ∈
H0(Ki), and we have destroyed a 0-cycle.

2) H0(Ki−1∩Li) = [z] for a single vertex z ∈ Ki−1∩Li.
Then adding Li does not change the number of
connected components so H0(Ki) = H0(Ki−1).

3) Ki−1 ∩ Li = ∅, so Li creates a new connected
component, i.e., a new homology class for H0(Ki).
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