Prosper

A slide class for LATEX

Trond Varslot varslot@math.ntnu.no

Norwegian University of Science and Technology

This talk ...

will

- introduce prosper
- show some of the possibilities with prosper
- give examples which can be useful later

will not

- teach you LATEX
- teach you how to write a good talk
- require any mathematical knowledge

■ a LATEX class for writing transparencies

- a LaTeX class for writing transparencies
- written on top of the *seminar* class

- a LaTeX class for writing transparencies
- written on top of the *seminar* class
- uses the *PSTricks* class to generate graphics

- a LaTeX class for writing transparencies
- written on top of the *seminar* class
- uses the *PSTricks* class to generate graphics
- aims at offering an environment for easily creating slides for both presentations with an overhead projector and a video projector

- a LaTeX class for writing transparencies
- written on top of the *seminar* class
- uses the *PSTricks* class to generate graphics
- aims at offering an environment for easily creating slides for both presentations with an overhead projector and a video projector
- slides prepared for a presentation with a computer and a video projector may integrate animation effects and incremental display

■ using LaTeX makes sense when you want to reuse some material of an article written in LaTeX for your slides

- using LaTeX makes sense when you want to reuse some material of an article written in LaTeX for your slides
- benefits from the quality of LATEX formatting at no extra work

- using LaTeX makes sense when you want to reuse some material of an article written in LaTeX for your slides
- benefits from the quality of LaTeX formatting at no extra work
- possibility to easily write slides with or without animation effects

- using LaTeX makes sense when you want to reuse some material of an article written in LaTeX for your slides
- benefits from the quality of LaTeX formatting at no extra work
- possibility to easily write slides with or without animation effects
- choose visual appearance among many predefined styles (or write your own)

- using LATEX makes sense when you want to reuse some material of an article written in LATEX for your slides
- benefits from the quality of LATEX formatting at no extra work
- possibility to easily write slides with or without animation effects
- choose visual appearance among many predefined styles (or write your own)
- free to prepare and to present slides on any platform where LATEX and a PDF viewer are available

A minimal prosper document

```
\documentclass{prosper}
\author{Trond Varslot}
\title{Prosper}
\date{December 2002}
\subtitle{A slide class for \LaTeX}
\institution{Norwegian University of Science and Technology}
\email{varslot@math.ntnu.no}
\begin{document}
\maketitle
\begin{slide}{Title}
... content ...
\end{slide}
\end{document}
```

A minimal result

Title

Prosper

A slide class for LATEX

Trond Varslot

varslot@math.ntnu.no

Norwegian University of Science and Technology

... content ...

osper – p. 1/??

NTNU template

ONTNU

Prosper

A slide class for LATEX

Trond Varslot

Norwegian University of Science and Technology

Prosper – p. 1/??

\documentclass[
 nocolorBG,
 slideColor,
 ntnu
]{prosper}


```
\documentclass[
  noFooter,
  colorBG,
  slideColor,
  ntnu
]{prosper}
```

A simple slide

```
\begin{slide}[Dissolve]{\label{anatomyslide}The anatomy of a slide}
\begin{itemize}
  \item
    We may use different transitions between slides:
    \texttt{Split, Blinds, Box, Wipe, Dissolve, Glitter, Replace}
  \item
    References to slide number \ref{anatomyslide} is done in the standard
    {\LaTeX} way.
  \item
    Content must fit on one slide.
  \end{itemize}
\end{slide}
```

The anatomy of a slide

- We may use different transitions between slides: Split, Blinds, Box, Wipe, Dissolve, Glitter, Replace
- References to slide number 9 is done in the standard LATEX way.
- Content must fit on one slide.

A slide may be displayed incrementally using overlays.

We need to determine how may steps we want to use.

- We need to determine how may steps we want to use.
- The content on each step may be specified using fromSlide, untilSlide and onlySlide commands

- We need to determine how may steps we want to use.
- The content on each step may be specified using fromSlide, untilSlide and onlySlide commands
- Stared versions exist

- We need to determine how may steps we want to use.
- The content on each step may be specified using fromSlide, untilSlide and onlySlide commands
- Stared versions of the commands exist
- Remember that at each step the relevant LaTeXcode must be complete

Overlay example

```
\overlays{3}{
 \begin{slide}{Title}
    Some \onlySlide{2}{more}\onlySlide*{3}{good} content
    \begin{itemize}
      \item First item
      \fromSlide*{2}{\item Second item}
      \fromSlide*{3}{\item Third item}
    \end{itemize}
    Text here aswell.
  \end{slide}
```

Title

Some content goes here

First item

Text here aswell.

Title

Some more content goes here

- First item
- Second item

Text here aswell.

Title

Some good content goes here

- First item
- Second item
- Third item

Text here aswell.

Incremental display of equations

```
\begin{align*}
  \fromSlide{5}{{\lim_{N\uparrow\infty}}}
1
  \fromSlide{2}{{+\frac{1}{4}}}
  \fromSlide{3}{{+\frac{1}{9}}}
  \fromSlide{4}{{\hdots +\frac{1}{N^2}}}
  \fromSlide{5}{{=\sum_{k=1}^{\infty}\frac{1}{n^2}}}
  \fromSlide{6}{{=\frac{\pi^2}{6}}}
\end{align*}
```

Normal version:

1

Stared version:

1

Normal version:

$$1 + \frac{1}{4}$$

$$1 + \frac{1}{4}$$

Normal version:

$$1 + \frac{1}{4} + \frac{1}{9}$$

$$1 + \frac{1}{4} + \frac{1}{9}$$

Normal version:

$$1 + \frac{1}{4} + \frac{1}{9} \dots + \frac{1}{N^2}$$

$$1 + \frac{1}{4} + \frac{1}{9} \dots + \frac{1}{N^2}$$

Normal version:

$$\lim_{N \uparrow \infty} 1 + \frac{1}{4} + \frac{1}{9} \dots + \frac{1}{N^2} = \sum_{k=1}^{\infty} \frac{1}{k^2}$$

$$\lim_{N \uparrow \infty} 1 + \frac{1}{4} + \frac{1}{9} \dots + \frac{1}{N^2} = \sum_{k=1}^{\infty} \frac{1}{k^2}$$

Normal version:

$$\lim_{N \uparrow \infty} 1 + \frac{1}{4} + \frac{1}{9} \dots + \frac{1}{N^2} = \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$$

$$\lim_{N \uparrow \infty} 1 + \frac{1}{4} + \frac{1}{9} \dots + \frac{1}{N^2} = \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$$

Nodes, lines and arrows

\end{slide}

The package pst-node contain lots of useful things: Define a node: \rnode{label}{text} Define a connection: \ncarc{label1}{label2} Example: \begin{slide}{Example} \begin{align*} \end{align*} One may point out the \rnode{C}{first} number and the \rnode{D}{last} number by two simple commands \ncarc[linecolor=red,linestyle=solid,arrows=->]{C}{A} \ncarc[linecolor=green,linestyle=dashed,arrows=<->]{D}{B}

 $1 \neq 2$ One may point out the first number and the last number by two simple commands

Acoustic wave propagation

Forward propagation of *acoustic pressure* in soft tissue may be modelled by the equation

$$\frac{\partial p}{\partial z} = \frac{c}{2} \int_0^t \nabla_{\perp}^2 p d\tau + \epsilon \frac{\beta_n \sqrt{\kappa}}{c^2} p \frac{\partial p}{\partial t} + \epsilon \frac{1}{2c} \frac{\partial}{\partial t} L(p)$$

Diffraction

c: speed of sound

Acoustic wave propagation

Forward propagation of *acoustic pressure* in soft tissue may be modelled by the equation

$$\frac{\partial p}{\partial z} = \frac{c}{2} \int_0^t \nabla_{\perp}^2 p d\tau + \epsilon \frac{\beta_n \sqrt{\kappa}}{c^2} p \frac{\partial p}{\partial t} + \epsilon \frac{1}{2c} \frac{\partial}{\partial t} L(p)$$

Non-linear effects

 β_n : tissue nonlinearity factor

 κ : compressibillity

c: speed of sound

 ϵ : scaling constant

Acoustic wave propagation

Forward propagation of *acoustic pressure* in soft tissue may be modelled by the equation

$$\frac{\partial p}{\partial z} = \frac{c}{2} \int_0^t \nabla_{\perp}^2 p d\tau + \epsilon \frac{\beta_n \sqrt{\kappa}}{c^2} p \frac{\partial p}{\partial t} + \epsilon \frac{1}{2c} \frac{\partial}{\partial t} L(p)$$

Energy loss

 $L(\cdot)$: convolution operator

c: speed of sound

 ϵ : scaling constant

Acoustic wave propagation

Forward propagation of *acoustic pressure* in soft tissue may be modelled by the equation

$$\frac{\partial p}{\partial z} = \frac{c}{2} \int_0^t \nabla_{\perp}^2 p d\tau + \epsilon \frac{\beta_n \sqrt{\kappa}}{c^2} p \frac{\partial p}{\partial t} + \epsilon \frac{1}{2c} \frac{\partial}{\partial t} L(p)$$

The approximation

$$\nabla^2 \approx \nabla_\perp^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

is only good for weakly focused sound beams.

Timed slides

You may automatically advance to the next slide using \hypersetup{pdfpageduration=n} where n is the number of seconds before going to the next slide. You go to the next slide. This requires you to instruct AcroRead to allow automatic advancement.

Edit - Preferences - Full Screen

Tick 'Advance Every', and set it to a fairly large number (1000).

■ Item 1

- Item 1
- Item 2

- Item 1
- Item 2

■ Item 9

- Item 1
- Item 2
 - Item 4
- Item 9

- Item 1
- Item 2
 - Item 4
 - Item 5
- Item 9

- Item 1
- Item 2
- Item 3
 - Item 4
 - Item 5
- Item 9

- Item 1
- Item 2
- Item 3
 - Item 4
 - Item 5
- Item 9
- Item 7

- Item 1
- Item 2
- Item 3
 - Item 4
 - Item 5
 - Item 6
- Item 9

- Item 1
- Item 2
- Item 3
 - Item 4
 - Item 5
 - Item 6
 - Item 7
- Item 9

Hyperref

The package hyperref is usefull for other things aswell

Making a hyperlink to an external page: NTNU

```
\href{http://www.ntnu.no}{NTNU}
```

Running an external command:xclock

```
\href{run:/store/bin/xclock} {xclock}
```

Making a reference to other places in your document: next slide using a combination of

```
\hyperlink{MULTIMEDIA} {next slide}
\hypertarget{MULTIMEDIA} {Using}
```

Multimedia

This may also be used to open sound and video clips in external programs:

```
\href{run:bethov.wav}{sound}
\href{run:phantom_circles.mpg}{video}
```

Default programs are used. Unix users need to have this defined in a .mailcap:

```
audio/wav;sox %s
video/mpg;mpeg_play %s
video/mpeg;mpeg_play %s
video/avi;mplayer %s
```

Video inside Acroread

(Run externaly) As far as I know, this only works on Windows and Macintosh versions of Acroread. You also need Quicktime or MS Video installed.

Compilation

Lots of this is accomplished using PSTricks.

```
latex file.tex --> dvips -o file.ps fil --> ps2pdf fil.ps
```

Other converters from ps to pdf also work.

Prosper is designed for A4 paper. Make sure to instruct dvips to create an A4 size document. On Unix:

```
GS_OPTIONS="-sPAPERSIZE=a4"
```

Make sure you use Type1 fonts.

```
dvips -Pcmz -Pamz -o fil.ps fil
```

usually fixes this. You need Type1 fonts installed.

Finally ...

- Use the CVS-version of prosper.(SourceForge homepage)
- Be aware of the *background bug* in AcroRead 5
- Choose a style before writing the presentation
- Yes, the LaTeX source for this presentation will be available at my homepage.