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Statistical mechanics is one of the most successful areas

of physics. Yet, almost 150 years since its inception,

its foundations and basic postulates are still the subject

of debate. Here we suggest that the main postulate

of statistical mechanics, the equal a priori probability

postulate, should be abandoned as misleading and

unnecessary. We argue that it should be replaced by a

general canonical principle, whose physical content is

fundamentally different from the postulate it replaces: it

refers to individual states, rather than to ensemble or

time averages. Furthermore, whereas the original postulate

is an unprovable assumption, the principle we propose

is mathematically proven. The key element in this proof

is the quantum entanglement between the system and

its environment. Our approach separates the issue of

finding the canonical state from finding out how close a

system is to it, allowing us to go even beyond the usual

boltzmannian situation.

The great conceptual puzzle of statistical mechanics is how a
physical system, despite always being in some definite state,
and evolving deterministically, can exhibit thermodynamical

properties pertinent to statistical averages, such as the entropy1.
Here we consider an alternative approach to the foundations

of statistical mechanics, suggested to one of us by Yakir Aharonov
about twenty years ago. In this approach the usual devices of
subjective randomness, ensemble-averaging or time-averaging2,
are not required. We show that, although the universe (that
is, the system together with a sufficiently large environment)
is in a quantum pure state subject to a global constraint,
thermalization results from entanglement between the system and
the environment. This leads to a finite entropy of the system, despite
the universe itself having zero entropy. Significant results along
similar lines have been obtained by Bocchieri and Loinger3, Lloyd4

and Gemmer et al.5; see also very recent work by Goldstein et al6.
We formulate and prove a ‘general canonical principle’, which

states that the system will be thermalized (that is, in the canonical
state) for almost all pure states of the universe, and provide
rigorous quantitative bounds. In fact, we actually go beyond
ordinary thermalization: in the standard statistical setting, energy
constraints are imposed on the state of the universe, which
determine a corresponding temperature and thermal canonical
state for the system. In contrast, we allow completely arbitrary
constraints, which leads to the system being in a corresponding
generalized canonical state.

Our results are kinematic, rather than dynamical, as we do not
consider any particular evolution of the state. However, because
almost all states of the universe are such that the system is
thermalized, we anticipate that most evolutions will quickly carry
any initial state to a thermal state. Furthermore, as information
about the system will tend to leak into the environment over time,
we might expect that their entanglement, and hence entropy, will
increase. It is conceivable that this is the mechanism behind the
second law of thermodynamics.

Consider a large isolated quantum mechanical system, ‘the
universe’, that we decompose into two parts, the ‘system’ S and
the ‘environment’ E. We will assume that the dimension of the

754 nature physics VOL 2 NOVEMBER 2006 www.nature.com/naturephysics

Untitled-1   1 20/10/06, 4:43:46 pm

Nature  Publishing Group ©2006



ARTICLES

environment is much larger than that of the system. In addition,
let the state of the universe obey some global constraint R. We can
represent this quantum mechanically by restricting the allowed
states of the system and environment to a subspace HR of the total
Hilbert space:

HR ⊆ HS ⊗HE ,

where HS and HE are the Hilbert spaces of the system and
environment, with dimensions dS and dE respectively. In standard
statistical mechanics, R would typically be a restriction on the total
energy of the universe, which then determines a corresponding
temperature for the system, but here we leave R completely general.

We define ER, the equiprobable state of the universe
corresponding to the restriction R, by

ER = 1

dR

11R,

where 11R is the identity (projection) operator on HR and dR is
the dimension of HR. ER is the maximally mixed state in HR, in
which each pure state has equal probability. This corresponds to
the standard intuition of assigning equal a priori probabilities to
all states of the universe consistent with the constraints. The equal
a priori probability postulate is the assumption that the equilibrium
thermodynamics of the universe under the restriction R is entirely
described by ER.

We define ΩS, the canonical state of the system corresponding
to the restriction R, as the quantum state of the system when the
universe is in the equiprobable state ER. The canonical state of the
system, ΩS, is therefore obtained by tracing out the environment in
the equiprobable state of the universe:

ΩS = TrEER . (1)

We now take the crucial conceptual step of our approach, and
consider that the universe is in a pure state |φ〉, and not in the mixed
state ER (which represents a subjective lack of knowledge about its
state). We prove that despite this, the reduced state of the system,

ρS = TrE|φ〉〈φ|,
is very close to the canonical state ΩS in almost all cases:

ρS ≈ΩS .

That is, for almost every pure state |φ〉 ∈ HR of the universe, the
system behaves as if the universe were actually in the equiprobable
mixed state ER.

This qualitative result can be stated as a ‘general canonical
principle’ that will subsequently be refined to a quantitative
theorem: Given a sufficiently small subsystem of the universe,
almost every pure state of the universe is such that the subsystem
is approximately in the canonical state ΩS.

Recalling that the canonical state of the system ΩS is, by
definition, the state of the system when the universe is in the
equiprobable state ER, we can interpret this principle as a ‘principle
of apparently equal a priori probability’: For almost every pure
state of the universe, the state of a sufficiently small subsystem is
approximately the same as if the universe were in the equiprobable
state ER. In other words, almost every pure state of the universe is
locally (that is, on the system) indistinguishable from ER.

We emphasize that the above are generalized principles, in the
sense that the restriction R imposed on the states of the universe
is completely arbitrary (and is not necessarily the usual constraint
on energy or other conserved quantities). Similarly, the canonical
state ΩS is not necessarily the usual thermal canonical state, but is

S

R

SΩ

EΩ

E

dE
eff

Figure 1 The equiprobable state of the universe ER corresponding to the
restriction R. This diagram represents ER in a schematic state space of the system
and environment, with the configurations of E and S on the horizontal and vertical
axes respectively. The central shaded region represents the allowed states of the
universe, and the functions plotted along the axes represent the number of
configurations in ER consistent with a given configuration of E or S. These marginals
provide an illustration of the reduced statesΩE andΩS , and show why
d eff
E = (TrΩ 2

E )
−1 is generally a better measure of the effective environment

dimension than the support of ΩE . Note however, that when all of the non-zero
eigenvalues of ΩE are of equal weight, d eff

E simply corresponds to the dimension of
ΩE ’s support. Also, when there is no constraint on the accessible states of the
universe, (that is, HR = HS ⊗HE ), then d eff

E = dE .

defined relative to the arbitrary restriction R by equation (1). This
generalization incorporates the grand canonical case as well as the
standard canonical case, and may lead to many other interesting
insights. For example, it may be useful in situations where the usual
weak-interaction approximation does not hold.

To connect the general canonical principle to standard
statistical mechanics, all we have to do is to consider the restriction
R to be that the total energy of the universe is close to E, which then
sets the temperature scale T . The total hamiltonian of the universe
HU is given by

HU = HS +HE +Hint,

where HS and HE are the hamiltonians of the system and
environment respectively, and Hint is the interaction hamiltonian
between the system and the environment. In the standard situation,
in which Hint is small and the density of states of the environment
increases approximately exponentially with energy, Ω (E)

S can be
computed using standard techniques7, and shown to be

Ω (E)

S ∝ exp

(
− HS

kBT

)
,

where kB is Boltzmann’s constant.
This allows us to state the ‘thermal canonical principle’ that

establishes the validity (at least kinematically) of the viewpoint
expressed in the introduction: Given that the total energy of the
universe is approximately E, interactions between the system and
the rest of the universe are weak, and that the density of states of the
environment increases approximately exponentially with energy,
almost every pure state of the universe is such that the state of the
system alone is approximately equal to the thermal canonical state
e−HS /kB T , with temperature T (corresponding to the energy E).
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We want to stress, however, that our contribution in this paper
is to show that ρS ≈ ΩS, and has nothing to do with showing that
ΩS ∝ e−HS /kB T , which is a standard problem in statistical mechanics.
In other words, we are interested in the distance between ρS and
the canonical state, not in finding the canonical state itself. Our
approach allows us to separate these two problems.

Finally, we note that the general canonical principle also
applies in the case where the interaction between the system and
environment is not small. In such situations, the canonical state of
the system is no longer e−HS /kB T , as the behaviour of the system will
depend very strongly on Hint. Nevertheless, the general principle
remains valid for the corresponding generalized canonical state ΩS.

We now formulate a precise mathematical theorem
corresponding to the general canonical principle stated
above. The distance between the actual state ρS of the
system and the canonical state ΩS is the trace distance8

D(ρS,ΩS) = (1/2)Tr
√

(ρS −ΩS)†(ρS −ΩS). This distance is equal
to the maximal difference between the two states in the probability
of obtaining any measurement outcome. The distance D(ρS,ΩS)
therefore quantifies how hard it is to tell ρS and ΩS apart by
quantum measurements.

Throughout this paper we denote by 〈·〉 the average over states
|φ〉 ∈ HR according to the standard (unitarily invariant) measure.
For example, it is easy to see that ΩS = 〈ρS〉. The same measure is
used to compute volumes of sets of states.

This leads us to the main theorem of this paper: The volume
of states V [{|φ〉 ∈ HR|D(ρS(φ),ΩS) ≥ η}] for which the system is
further than η from the canonical state ΩS is related to the total
volume of allowed states V [{|φ〉 ∈HR}] by

V [{|φ〉 ∈HR|D(ρS(φ),ΩS) ≥ η}]
V [{|φ〉 ∈HR}] ≤ η′,

where, for arbitrary ε > 0,

η = ε+ 1

2

√
dS

deff
E

, (2)

η′ = 4 exp
(−CdRε2

)
.

In these expressions, C is a positive constant (C = (2/9)π−3), dS

and dR are the dimensions of HS and HR respectively, and deff
E is a

measure of the effective size of the environment, given by

deff
E = 1

Tr Ω 2
E

≥ dR

dS

,

where ΩE =TrS ER =〈ρE〉. The intuitive meaning of deff
E is explained

in Fig. 1.
Both η and η′ will be small quantities, and thus almost all states

will be close to the canonical state, whenever deff
E � dS (that is,

the effective dimension of the environment is much larger than
that of the system) and dRε2 � 1 � ε. This latter condition can be
ensured when dR � 1 (that is, the total accessible space is large), by
choosing ε = d−1/3

R .
This theorem gives rigorous meaning to our statements about

thermalization being achieved for ‘almost all’ states: we have an
exponentially small bound on the relative volume of the exceptional
set, that is, on the fraction of states that are far from the canonical
state. Interestingly, the exponent scales with the dimension of the
constraint space HR, whereas the deviation from the canonical
state is characterized by the ratio between the system size and the
effective size of the environment, which makes intuitive sense.

Note that in the special case in which there is no restriction on
the allowed states (that is, HR = HS ⊗HE), our theorem implies
that the reduced state of the system will almost always lie close to
the maximally mixed state (ΩS = 11S/dS). This case can be viewed

f (  ) = 〈f 〉φ

Figure 2 Bounding deviations from the average using Levy’s lemma. Levy’s
lemma14 is a result in high-dimensional geometry, which states that for almost all
points φ on a hypersphere of dimension d (where d� 1) and area V [{φ}], and all
functions f that do not vary too rapidly (|∇ f | ≤ 1), f(φ ) is approximately equal to its
mean value 〈f 〉. The diagram shows the case d= 2, in which the hypersphere
corresponds to the surface of a normal sphere. The shaded region corresponds to
the maximum area V [{φ|f(φ )−〈f 〉 ≥ ε}] in which f is ε greater than average.
Although this area is relatively large for d= 2, when d becomes large, the relative
size of this region compared with the entire hypersphere becomes exponentially
small. Specifically, Levy’s lemma states that V [{φ|f(φ )−〈f 〉 ≥ ε}]/V [{φ}] ≤
4 exp(−(1/9π3 )(d+1)ε2 ).

as an infinite-temperature limit of the standard canonical situation,
and has previously been studied by a number of authors9–13.

A major component in the proof of the theorem is a
mathematical result known as Levy’s lemma14 (presented in Fig. 2),
which plays a similar role to the law of large numbers and governs
the properties of typical points on high-dimensional hyperspheres.
Owing to normalization, pure quantum states can be represented
by points on the surface of a hypersphere, making Levy’s lemma
a very powerful tool with which to evaluate functions of typical
quantum states. It has already been used in quantum information
theory to study entanglement and other correlation properties of
typical states in large bipartite systems15.

We now apply Levy’s lemma (as given in Fig. 2) to the (2dR −1)-
dimensional hypersphere of quantum states |φ〉 ∈ HR and the
function f (φ)= D(ρS,ΩS). Rearranging the resulting equation, we
obtain our main theorem by proving that

〈D(ρS,ΩS)〉 ≤ 1

2

√
dS

deff
E

. (3)

This proof proceeds in two stages. First, bounding the distance
D(ρS, ΩS) from above by the more convenient quantity
(1/2)

√
dS

√
Tr(ρS −ΩS)2 using standard techniques, leads to

〈D(ρS,ΩS)〉 ≤ 1

2

√
dS

(〈
Trρ2

S

〉−Tr〈ρS〉2
)
.

Second, we use the key mathematical insight that〈
Trρ2

S

〉 ≤ Tr〈ρS〉2 +Tr〈ρE〉2 .

The proof of this second inequality proceeds by a representation
theoretic argument to evaluate the left-hand side, and uses similar
techniques to those in ref. 9, involved in random quantum channel
coding16 and random entanglement distillation (see ref. 17).
Combining these two inequalities and substituting Tr〈ρE〉2 =1/deff

E ,
we obtain equation (3). Full details of this proof, and the others in
this paper, can be found in ref. 18.

Note that although the bound (3) being small already suffices
to argue that most states have almost canonical reduced state, the
bound due to Levy’s lemma is exponentially stronger.
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Figure 3 Example: A system of spins. As a concrete application of our theorem,
consider a set of n spin-1/2 systems in an external magnetic field B, where a
particular subset of k spins form the system S, and the remaining n− k spins form
the environment E. We consider a restriction to the energy eigenspace HR in which
np spins are in the excited state |1〉 (aligned with the field) and the remaining
n(1− p) spins are in the ground state |0〉 (opposite to the field). With this setup,
dS = 2k and dR ≈ 2nH(p) , where H(p)= −p log2 (p)− (1− p) log2 (1− p) is the
Shannon entropy of a single spin. Using our theorem, we obtain D(ρS ,ΩS )≈ 0 for
almost all states whenever nH(p)� 2k. Projecting onto the typical subspace in
which the system contains approximately kp excitations allows us to replace k by
kH(p) with very little additional error. This yields D(ρS ,ΩS )≈ 0 for almost all states
whenever n� 2k (that is, whenever the system is fractionally larger than
the environment).

In many cases, it is possible to improve the bounds obtained
from the main theorem by projecting the state |φ〉 onto a typical
subspace of HR before proceeding with the analysis. This can
allow us to decrease the effective dimension of the system dS (by
eliminating components with negligible amplitude), and increase
the effective dimension of the environment deff

E (by eliminating
components of ΩE with disproportionately high amplitudes),
whilst leaving the equiprobable state ER largely unchanged.

In addition to altering dS and deff
E , this projection will introduce

an additional error term in η (equation (2)) given by 4
√

δ, where
δ is the relative volume of states in HR outside the typical
subspace. However, for an appropriately chosen typical subspace,
the reduction in

√
dS/deff

E will often more than compensate for
this additional source of error. This is particularly evident for the
example of a collection of spin-1/2 particles given in Fig. 3.

Let us look back at what we have done. Concerning the problem
of thermalization of a system interacting with an environment in
statistical mechanics, there are several standard approaches. One
way of looking at it is to say that the only thing we know about
the state of the universe is a global constraint such as its total
energy. Thus, the way to proceed is to take a bayesian point of view
and consider all states consistent with this global constraint to be
equally probable. The average over all these states indeed leads to
the state of any small subsystem being canonical. But the question
then arises: what is the meaning of this average, when we deal
with just one state? Also, these probabilities are subjective, and this
raises the problem of how to argue for an objective meaning of the
entropy. A formal way out is that suggested by Gibbs, to consider
an ensemble of systems, but of course this does not solve the puzzle,
because there is usually only one actual system. Alternatively, it was
suggested that the state of the universe, as it evolves in time, can
reach any of the states that are consistent with the global constraint.
Thus, if we look at time averages, they are the same as the average

that results from considering each state of the universe to be equally
probable. To make sense of this image, assumptions of ergodicity
are needed to ensure that the universe explores all the available
space equally, and of course this does not solve the problem of what
the state of the subsystem is at a given time.

What we showed here is that these averages are not necessary.
Rather, (almost) any individual state of the universe is such that
any sufficiently small subsystem behaves as if the universe was in
the equiprobable average state. This is due to massive entanglement
between the subsystem and the rest of the universe, which is a
generic feature of the vast majority of states. To obtain this result,
we have introduced measures of the effective size of the system,
dS, and its environment (that is, the rest of the universe), deff

E , and
showed that the average distance between the individual reduced
states and the canonical state is directly related to dS/deff

E . Levy’s
lemma is then invoked to conclude that all but an exponentially
small fraction of all states are close to the canonical state.

The main message of our paper is that averages are not needed
to justify the canonical state of a system in contact with the rest of
the universe—almost any individual state of the universe is enough
to lead to the canonical state. In effect, we propose to replace
the postulate of equal a priori probabilities by the principle of
apparently equal a priori probabilities, which states that as far as
the system is concerned almost every state of the universe seems
similar to the average.

We stress once more that we are concerned only with the
distance between the state of the system and the canonical state,
and not with the precise mathematical form of this canonical state.
Indeed, it is an advantage of our method that these two issues are
completely separated. For example, our result is independent of
the canonical state having boltzmannian form, of degeneracies of
energy levels, of interaction strength, or of energy (of the system,
the environment or the universe) at all.

In future work, we hope to go beyond the kinematic viewpoint
presented here to address the dynamics of thermalization. In
particular, we will investigate under what conditions the state of
the universe will evolve into (and spend almost all of its later time
in) the large region of its Hilbert space in which its subsystems
are thermalized. Some results in this direction have already been
obtained19–22, and we hope that the new results and techniques
introduced in this paper will lead to further exciting advances in
this area.
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