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Towards enumeration of crystalline frameworks: the 2D hyperbolic approach
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Abstract

Crystalline frameworks in 3D Euclidean space can be constructed by projecting tilings of 2D hyperbolic space onto three-periodic minimal
surfaces, giving surface reticulations. The technique involves Delaney–Dress tiling theory, group theory, differential and non-Euclidean geometry.
Preliminary results of this approach, found at http://epinet.anu.edu.au, are discussed and compared with other approaches.
Crown Copyright  2006 Published by Elsevier SAS. All rights reserved.
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1. Introduction

Crystalline structures in solid-state chemistry are a won-
drous playground for geometers and topologists. The role of
geometry in atomic and molecular ordering in the solid state
can hardly be exaggerated. Kepler’s observations of snowflakes
were intricately related to his studies of Archimedean polyhe-
dra. In a similar vein, Haüy explained the characteristic angles
between crystal faces in terms of polyhedral atomic building
blocks, thereby formulating his Law of Rational Indices. The
concepts of topology, in its infancy in the latter half of the nine-
teenth century, lay at the heart of Crum Brown’s conceptual
advances in organic and solid state chemistry. Crum Brown pro-
posed a simple graph theoretic notation for molecular topology
(that led at once to the concept of molecular isomerism [1]).
He maintained a life-long interest in knots and weavings, in-
spiring the development of knot theory (kicked off in spectac-
ular fashion by his mathematical brother-in-law, Tait). In 1883,
Crum Brown constructed an astonishingly modern framework
model describing the mutual arrangement of Na and Cl atoms
in crystalline NaCl, built from balls of colored wool and knit-
ting needles [2], perhaps the first network model of solids. The
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framework model described both the bonding topology of NaCl
(now passé) and the relative geometry of Na and Cl atoms,
thereby revealing the inherent symmetry in a crystal of NaCl.
Von Laue’s discovery in 1912 of the diffraction of X-rays when
traversing crystals unequivocally demonstrated the relevance of
symmetrical patterns to crystals, giving birth to the science of
crystallography. The fundamental connection between geom-
etry and crystal science—evident to Kepler, Haüy and Crum
Bown—has been present since the earliest days of crystallogra-
phy.

Thanks to instrumental developments over the past century
in X-ray, electron and synchrotron optics, solid state structural
science has undergone a spectacular growth in our understand-
ing of crystalline material structures, from modulated crystal
structures, to quasicrystalline materials. However, this data ex-
plosion has not been matched by increased awareness of mod-
ern mathematical approaches to structure. Non-Euclidean and
differential geometry, topology and discrete mathematics have
matured considerably in past decades. Yet we remain unable
to answer some simple questions relevant to chemical struc-
ture. One such question is the following: what are the topolog-
ical constraints on three-dimensional periodic networks? For
example, what variety of ring-sizes are allowed from a four-
connected network? Such questions have so far resisted simple
answers; our best hope is to attempt systematic enumeration of
crystalline frameworks (or crystal nets).
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Three-dimensional framework models—visionary in Crum
Brown’s day—have proven to be fruitful ground for struc-
tural chemists since. These models are widely used descrip-
tions of three-dimensional structure in chemistry [4]. Among
many contributors, comprehensive investigations into crys-
tal nets are those of Wells [3] and, more recently, O’Keeffe
and colleagues [4,5]. The advent of graph theoretic concepts
[6,7] and Delaney–Dress tiling theory [8–10] has allowed
chemists to move beyond empirical catalogues. Frameworks—
mathematical graphs—are intrinsically one-dimensional struc-
tures. Their spatial embeddings, defined by the geometrical
locations of framework vertices, define three-dimensional vol-
umes that tile space. These tiles are occasionally plane-faced
polyhedra, but, more commonly, they are cells with curved
saddle-shaped surfaces, resembling the saddle polyhedra that
were systematically studied by Pearce [11].

Wells also realised the importance of moving beyond plane-
faced polyhedra [3]. He introduced to chemists the concept of
infinite polyhedra, described earlier by Coxeter (who derived
the three regular infinite polyhedra with his friend Petrie while
both were schoolboys [12]). Whereas conventional (convex)
polyhedra are topological spheres and stellated polyhedra are
multiple coverings of the sphere, the sponge-like forms of infi-
nite polyhedra are hyperbolic surfaces of infinite genus. There
remains an interesting duality between crystal nets and infinite
polyhedra exploited in detail in this paper.

Consider, for example, Crum Brown’s network model of
NaCl: nodes disposed in a simple cubic arrangement in 3D
Euclidean space (E3) with edges connecting nearest neigh-
bour nodes to form a regular network with symmetrically
equivalent edges and degree-six vertices (6-valent, 6-connected,
6-coordinated). This primitive cubic network is called pcu by
O’Keeffe [13]. How this structure is described is dependent
on the viewer. To Crum Brown, it appeared more or less as
shown in Fig. 1. To graph theorists and some crystallogra-
phers, [6,14–16], it is an infinite graph, readily described by
its quotient graph (the graph formed by identifying all equiva-

Fig. 1. A stick model of the pcu (primitive cubic) crystal net.

Fig. 2. Quotient graph of the simple cubic crystal net.

Fig. 3. The pcu net carried by cubic natural tiles.

lent edges and vertices displaced by translations of the lattice),
shown in Fig. 2. Labelling the displacements along directed
edges in terms of a translation vector (i, j, k) identifies the pe-
riodic net up to isomorphism.

Alternatively, the pcu crystal net consists of the edges of a
tiling of 3D Euclidean space by face-sharing cubes, illustrated
in Fig. 3. This description decomposes the volume into natural
tiles, of maximal point group symmetry [10] and the pcu net is
carried by the edges of the tiling. We note that many alternative
cellular decompositions are possible for any given crystal net.
This approach can be combined with Delaney–Dress tiling the-
ory to give a systematic constructive algorithm for crystal nets
and their duals (defined with respect to the natural tiling de-
composition) up to any desired degree of complexity. A canon-
ical signature and geometric realisation of these crystal nets is
achieved using the Systre software package [17], part of the
larger GAVROG package of Delgado Friedrichs [18]. The topo-
logical part of the procedure determines the smallest primitive
cell for the crystal net and its combinatorial symmetries then
furnish a unique label which we call the Systre key. The algo-
rithm is based on computing a barycentric placement for the
net where each vertex lies at the center of mass of its neigh-
bours. The geometric realisation is made by finding a metric
that realises the combinatorial affine symmetries as Euclidean
isometries.

A third perspective—the topic of this paper—adopts yet an-
other interpretation of the pcu crystal net. Here the pcu net is
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(a)
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Fig. 4. (a) The pcu net is carried by edges of a single regular infinite {4,6}
polyhedron, a sponge-like cell of infinite genus. (b) The polyhedron is relaxed
to obtain a smoothly-curved three-periodic minimal surface (the P surface).
Adjacent faces are coloured alternately grey/black to highlight distinct faces.

‘carried by’ a pair of interpenetrating sponge-like tiles. Each
tile consists of an infinite number of fused cubes, forming a
three-dimensional array illustrated in Fig. 4. This tile is one of
Coxeter’s regular infinite polyhedra, with symmetrically iden-
tical vertices, edges and faces [12]. Just two of these tiles are
needed to tessellate the whole of space; these 3D tiles are sepa-
rated by a three-periodic hyperbolic surface. The surface shared
by each infinite tile has six square faces incident to each vertex
and so within this surface perspective, the pcu net has Schläfli
symbol {4,6}. A generic {n, z} tiling can be realised as a reg-
ular tessellation of the sphere, Euclidean plane or hyperbolic
plane, depending on whether the product (n − 2)(z − 2) is less
than, equal to, or greater than four, respectively. The regular
{4,6} net—with symmetrically identical {4} faces, edges and
vertices—is therefore a tiling of the hyperbolic plane, revealing
the 2D hyperbolic nature of this perspective of the pcu net.

It is mathematically most convenient to relax the plane-faced
infinite polyhedron and anneal out the edge creases, so that
the all faces have zero mean curvature everywhere, making the
smoothed infinite polyhedron a minimal surface, also illustrated

in Fig. 4. Minimal surfaces, characterised by vanishing mean
curvature and variable Gaussian curvature, are the simplest gen-
eralisation of plane-faces to curved ones. They are everywhere
saddle-shaped, with equal and opposite principal curvatures,
i.e., saddles of equal convexity along one tangential direction
on the surface and concavity in the orthogonal direction.

Our view of the pcu net is therefore not based on the Euclid-
ean geometry of planar squares, or cubes, but on the hyperbolic
geometry of a three-periodic minimal surface described in the
following sections. The crystal net is a surface reticulation,
where the surface is the domain wall of an infinite bicontinuous
3D tiling of space. Our enumeration of crystal nets proceeds via
an enumeration of hyperbolic tilings that are compatible with a
given minimal surface.

2. Crystal nets from hyperbolic tilings

The enumeration and study of three-periodic minimal sur-
faces is a problem in differential geometry and complex analy-
sis, but it has been developed largely in response to the recog-
nition of their importance in describing complex crystal struc-
tures by Andersson and colleagues [19–22]. Hans-Georg von
Schnering has been associated with this work from its earliest
days and must be credited for his enthusiastic support of the
approach. Together with Nesper, he developed simple level sur-
face expressions involving the circular trigonometric functions
for three-periodic hyperbolic surfaces, whose topology mimics
that of the three-periodic minimal surfaces [23].

The simplest three-periodic minimal surfaces are those with
a unit cell associated with a genus-three torus (a three-holed
donut). The association is made by identifying faces of the unit
cell according to its lattice vectors to form a boundary-free com-
pact surface. Five three-periodic genus-three minimal surfaces
exist: the P , D, G, H and CLP surfaces: other genus-three
examples are lower-symmetry variants of these cases [24,25].
For each of these five surfaces, we have found a symmetry-
preserving covering map that wraps the hyperbolic plane onto
the surface, in much the same way the Euclidean plane wraps
onto a cylinder, as shown in Fig. 5.

To enumerate surface reticulations, we first enumerate hy-
perbolic tilings with symmetries that are compatible with the
unit cell translational symmetries. This ensures that (i) the
tilings are commensurate with the surface—when wrapped up,
the copies lie exactly on top of one another and (ii) the trans-
lational symmetries of the reticulation are identical to those of
the oriented surfaces (whose front and back sides of faces are
coloured differently). The latter constraint is unnecessary, but
imposes a convenient limit on the complexity of the net cata-
logue. A complete enumeration of symmetries compatible with
the orientation-preserving translations of the P , D, and G sur-
faces is given in [26]. To obtain the hyperbolic tilings we apply
Delaney–Dress tiling theory to the 2D hyperbolic plane: that
theory allows for exhaustive construction of all tilings of a given
symmetry group up to an arbitrary number of vertices (or faces)
per asymmetric domain.

To date, we have enumerated a special subset of reticula-
tions of the P , D and G surfaces: those arising from symmetry
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Fig. 5. Mapping the Euclidean {6,3} net to the cylinder: the graphite network is rolled, gluing ends of the equatorial line. The length and orientation of that line
determines the tubule radius and chirality respectively. (Tubule image courtesy of D. Tomanek.)

groups defined by reflections only (the kaleidoscopic or Coxeter
groups). We have also limited the enumeration of hyperbolic
tilings to those containing up to two symmetrically distinct ver-
tices or tiles. In the jargon of Delaney–Dress tiling theory; these
include vertex-1- and vertex-2-transitive and tile-1- and tile-2-
transitive tilings respectively. The following section discusses
the results of this enumeration in detail.

3. Epinet: Euclidean patterns from non-Euclidean tilings

Three distinct stages are used in our EPINET enumera-
tion of crystal nets: hyperbolic tilings, surface reticulations,
and canonical barycentric embedding. Preliminary results of
our EPINET crystal net enumeration are now available at
http://epinet.anu.edu.au [27].

The first step involves only the 2D intrinsic geometry of the
P , D, and G surfaces. We decorate fundamental domains of the
2D hyperbolic group with edges and vertices in a systematic
fashion, governed by the constructive algorithms of Delaney–
Dress tiling theory. That decoration produces tilings of the 2D
hyperbolic plane, H2. The tilings are labelled according to their
2D hyperbolic group (viz. their Conway orbifold symbol [28])
and the tile class according to Delaney–Dress tiling theory
(F for fundamental, G for glued, S for split [29]). For exam-
ple, the most symmetric hyperbolic kaleidoscopic group that is
commensurate with all translational symmetries of the P , D,
and G surfaces is described by the !246 orbifold. The funda-
mental tiling within that symmetry gives rise to a tiling of H2

labelled as !246_F_1 (see http://epinet.anu.edu.au/hqc265).
The edge skeletons of these tilings are hyperbolic networks that
we call h-nets.

The hyperbolic nets are wrapped onto the P , D, and G sur-
faces, giving three-periodic surface reticulations, called e-nets.
The wrapping of H2 onto the P , D and G surfaces is realised
by aligning the special symmetry sites of the tiling with re-
lated sites on the surfaces. Indeed, the H2 tilings are multiple
(infinite) covers of these surfaces and judicious choice of hy-
perbolic groups ensures that the multiple covers result in a
unique copy on the surface, described above. (This is directly

analogous to the process of projecting planar 2D crystalline
tilings onto the surface of a cylinder, forming one-periodic
cylindrical reticulations.) The e-nets therefore lie in the rele-
vant minimal surface. We can identify all intrinsic 2D features
of e-nets, including their hyperbolic symmetries and sizes of
rings on the surface, from the h-net. Note that there is a one-
to-one correspondence between the hyperbolic symmetry of
the h-net and the resulting 3D Euclidean space group sym-
metry of the e-net. The relations between the hyperbolic 2D
and Euclidean 3D groups for the reticulations are listed at
http://epinet.anu.edu.au/pgd_subgroups/list.

In moving from a tiling to its associated net, we ignore some
of the symmetries encoded by the Delaney–Dress symbol. This
means that different hyperbolic tilings can generate the same
e-net. The surface reticulations are therefore filtered to deter-
mine those e-nets with distinct topologies, and then listed in
order according to their genus-three Delaney–Dress symbol.
We give each distinct e-net a label of the form eqcN where the
q is replaced by p,d , or g depending on the surface reticulated,
and the c stands for ‘Coxeter’ hyperbolic symmetry group. The
integer N runs from 1 to 5912, so the total number of e-nets is
3×5912, one on each of the three surfaces. Our example above,
the tiling !246_F_1 wraps onto the P surface to give the e-net
epc5701, viewable at http://epinet.anu.edu.au/epc5701.

Finally, the e-nets are symmetrised as far as possible by cal-
culating barycentric embeddings of the reticulation topologies,
using Systre, to give s-nets. Continuing with our example, the
!246_F_1 tiling wrapped onto the P surface gives the s-net
sqc12642, online at http://epinet.anu.edu.au/sqc12642. Here s

denotes the Systre process for barycentric embedding, q indi-
cates that the crystal net was derived by a reticulation of a cu-
bic (q-bic) three-periodic minimal surface (namely the P,D,G

family), c again denotes a Coxeter group, and the number
(12 642) is a sequential integer between 1 and 14 532.

It is possible for different e-nets to give the same s-net, either
through reticulations on different surfaces, or from reticulations
with different unit cells on the same surface. Thus, there are
fewer s-nets than e-nets and the ordering of s-nets is via their
systre key (a canonical form of the quotient graph obtained via

http://epinet.anu.edu.au/epc5701
http://epinet.anu.edu.au/sqc12642
http://epinet.anu.edu.au
http://epinet.anu.edu.au/hqc265
http://epinet.anu.edu.au/pgd_subgroups/list
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(a) (b)

(c) (d)

Fig. 6. (a) A Platonic tiling of H2 with six hyperbolic squares per vertex, {4,6}. The resulting h-net is drawn in the Poincaré disc model of H2, shaded to reveal
the kaleidoscopic symmetry of the tiling. (b) Surface reticulation of the {4,6} h-net onto a fragment of the P minimal surface. (c) The resulting e-net, and (d) its
barycentric embedding, the s-net labelled sqc1, identical to pcu (with unit cell edges outlined in red).

the barycentric embedding process). This sort induces a natural
hierarchy of networks by net topology and symmetry.

Our enumeration of nets will expand in the future to include
non-kaleidoscopic 2D tilings on the P , D, and G surfaces, then
further to reticulations of other three-periodic minimal surfaces.
The labels for the e- and s-nets will reflect this: the q label will
change according to the surface, and the c label will be replaced
by tags for other orbifold classes.

The relationship between e- and s-nets is somewhat subtle.
Typically the s-net is a simple deformation of the e-net that
involves no edge crossings (i.e., they are ambient isotopic), but
in some cases changes in topology and embedding occur. For
example, two edges may coalesce, described further below. The
distinction between e- and s-nets is a useful one to retain since
the e-nets formed by surface reticulations may encode double

bonds and knotted crystal nets, of increasing relevance to metal-
organic frameworks (MOFs), discussed below.

These details are best illustrated by examples. We have seen
that the pcu crystal net can be carried by a {4,6} infinite regular
polyhedron in 3D Euclidean space (E3). The same tiling can be
embedded in the hyperbolic plane as a regular h-net, forming
a kaleidoscopic pattern (with !246 orbifold), shown in Fig. 6.
That pattern can be projected into E3 by wrapping onto the P
surface, forming an e-net, with curved edges (Fig. 6). Barycen-
tric embedding of this e-net gives the s-net sqc1, whose Systre
key matches that of the pcu net.

Note that the topology of h-net antecedents of pcu need not
be confined to {4,6}: other combinations of circuits are present
in the pcu net that can form the basis of an h-net that projects to
the pcu net. In other words, the projection from H2 to E3, from
a source h-net to the target s-net, is many-to-one: other h-nets
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Fig. 7. Wrapping of (4.8.8.4.8.8) tilings of H2 to form the pcu net with six hyperbolic squares per vertex, {4,6}. (a), (c) Alternative locations of the h-net in H2, both
with orbifold symmetry !4444. (b), (d) Wrapping of the h-nets onto the P and D surfaces respectively, to give tetragonal and orthorhombic surface reticulations
(e-nets). Both e-nets give the pcu crystal net after barycentric embedding.

and e-nets also relax to the sqc1 net (these are listed as Source
Tilings at http://epinet.anu.edu.au/sqc1). For example, the h-net
with 2D Schläfli symbol (4.8.8.4.8.8) can be wrapped onto the
P and D surfaces to also give pcu, as shown in Fig. 7.

In all cases, the topology of the h-net is conserved under
projection from H2 to E3 to form the e-net, with all cycles
of the h-net preserved as surface rings (null-homotopic cy-
cles) of the reticulation. The surface wrapping of H2 onto the
three-periodic minimal surfaces induces extra ‘collar’-rings in
the e-net, of non-trivial surface homotopy. Subsequent relax-
ation from the e-net to the s-net may result in multigraphs, with
more than a single edge joining two vertices. This occurs, for
example, when a pair of edges surrounds a channel of the sur-
face, giving a two-edge collar-ring. We merge these multiple
edges into a single edge in the s-net, identifying these exam-
ples in EPINET as non-vertex degree preserving examples (e.g.,
Fig. 8).

3.1. 2D vs. 3D crystallographic nature of epinets

Results of the crystal net enumeration are difficult to sum-
marise on paper, hence the EPINET site, that collects h- and e-
nets under the 2D Tilings entries on EPINET, and s-nets under
the 3D Networks entries. The s-nets are illustrated as 3D VRML
images, with arbitrary metric (i.e., all cells are unit cubes). They
are also represented by a more conventional crystallographic
(CrystalMaker) drawing that utilises the Systre refinement of
the cell parameters. Those parameters, plus vertex sites and
edges, are tabulated on the site. Due to limitations of the Crys-
talMaker software [30], we cannot guarantee the fidelity of
these drawings in all cases, particularly where long bonds are
present (described below). We hope to rectify this in the near
future, via an extension of the software capabilities.

In many cases, s-nets found by our algorithm embed in
E3 to form strikingly Euclidean patterns, despite their non-

http://epinet.anu.edu.au/sqc1


746 S.T. Hyde et al. / Solid State Sciences 8 (2006) 740–752

(a) (b)

(c)

Fig. 8. The (4,12) tiling of H2 wraps onto the P surface to form the pcu net. (a) The (4,12) tiling of H2 with orbifold symmetry !2222. (b) Wrapping the tiling
onto the P surface. (c) The resulting e-net whose barycentric embedding is also the pcu crystal net. Edges in a collar-ring of size two are marked by arrows. This
collar collapses to a single edge in the barycentric embedding.

Euclidean origins. These examples remind us that we see
frameworks through the lens of our prior experience. For ex-
ample, though the sqc12217 pattern in Fig. 9 emerges from a
degree-5 (6.3.3.3.6) h-net, the resulting s-net is most readily
identified as an array of Platonic octahedra, joined by single
edges.

Perhaps the simplest cases to analyse are the crystal nets
that arise from triangulations of the hyperbolic plane, viz. {3, z}
networks (where z exceeds 6). Just as the regular {3,6} net-
work represents close-packing of circular discs in the Euclidean
plane, regular {3, z} h-nets represent close-packed 2D hyper-
bolic discs. The current enumeration gives 9 distinct s-nets, of
which 3 are made of arrays of Euclidean equilateral triangles.
The examples are listed in Table 1.

We have confined our results to date to kaleidoscopic orb-
ifolds only, so that all h-nets contain 2D asymmetric domains
bounded exclusively by mirror lines in H2. Since our enumera-
tion is constrained to patterns whose hyperbolic groups respect
all translations of the underlying surface (whose sides facing
‘inner’ and ‘outer’ volumes are colored distinctly), unit cells
of the e-nets conform to those of the oriented surfaces (i.e.,
excluding translations that reverse the sides of the surface).
Fig. 10 displays the distribution of space groups of all e-nets
formed by projections of h-nets with one or two types of tile,
and (their 2D duals) one or two types of vertex. All crystal
classes except triclinic and hexagonal are found in the e-nets.
Triclinic cases are not formed due to the restriction to kaleido-
scopic groups: we expect examples to appear in enumerations
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Fig. 9. The cubic crystal net sqc12217, a 5-coordinated sphere packing
(5/3/c10 [31]), labelled by O’Keeffe as crs-a or dia-h [13].

Table 1
Barycentric embeddings in E3 (s-nets) derived from hyperbolic triangulations,
{3, z} wrapped onto the P , D, or G minimal surfaces

2D Schläfli Surface s-net Space group No. nodes Equal edges

{3,8} P sqc5309 I4/mmm 2 Yes
G sqc10878 I41/acd 2 No
D sqc5051 P 42/nnm 2 No
P sqc5115 I432 1 No
G sqc10983 I4132 1 No
D sqc10956 Fd3̄m 1 Yes

{3,9} P sqc2580 I432 1 No
G sqc8558 I4132 1 No
D sqc8843 Fd3̄m 1 Yes

The EPINET label, space groups, and number of nodes per asymmetric unit are
listed. Those s-nets with all edges of equal length—forming nets with equilat-
eral Euclidean triangles—are also flagged.

of crystal nets from hyperbolic patterns with non-kaleidoscopic
symmetries. Hexagonal examples are excluded due to the re-
striction to the PDG surface family. Hexagonal e-nets will
emerge from reticulation of the (hexagonal) H three-periodic
minimal surface [32].

Barycentric embeddings of the e-nets give the s-nets, whose
space groups are usually super-groups of the corresponding
e-nets. The resulting distribution of symmetries is shown in
Fig. 11. Comparison of Fig. 10 and Fig. 11 confirms that em-
bedding with barycentric coordinates lifts the symmetry.

It is of some interest to compare the vertex transitivity of
the s-nets with those of the h-nets. The distribution is shown
in Fig. 12. Approximately half of the s-nets (46%) are vertex-
1 or vertex-2-transitive, the remaining examples embed in less
symmetric fashion in E3, with a maximum of eight vertices per
asymmetric volume. This distribution is similar to that of the
vertex transitivity of the h-nets, as tile-transitive h-nets have a
range of vertex transitivity, up to vertex-8-transitive examples.

3.2. Topology and ambient isotopy of epinets

The topological variety of the examples enumerated to date
is broader than may be expected at first encounter with this
surface reticulation technique. While low-density frameworks,
such as zeolites, were the original motivation for invoking hy-
perbolic tessellations, we now find that high density frame-
works also emerge from this process.

Table 2 reveals the distribution of s-nets with the same vertex
degree (valency) at all vertices. The majority of these univalent
examples are degree-four crystal nets, already studied in some
detail by crystal chemists [7,33]. The uninodal nets that con-
tain a single vertex per asymmetric volume are listed separately.
A particularly beautiful example of a uninodal degree-5 crystal
net is sqc1566 shown in Fig. 13.

Crystal nets of mixed degree have been explored infre-
quently to date. O’Keeffe lists a number in his RCSR database
[13]. Table 3 lists the numbers of nets with two vertex degrees
(up to a maximum degree of 12): here (3,4) and (4,6)-degree
nets predominate. The nets included in Tables 2 and 3 comprise
80% of the enumerated s-nets in toto. The remaining 2832 ex-
amples contain a number of nets with mixed degrees, including
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Fig. 10. Distribution of space groups of the e-nets formed by reticulations of the P , D and G three-periodic minimal surfaces. The data includes reticulations with
up to two distinct tiles (and their 2D duals) with kaleidoscopic hyperbolic groups containing all side-preserving translational symmetries of the surfaces. A number
of distinct embeddings of topologically identical nets are typically formed by this procedure. The space groups are those of the e-nets with geodesics on the surfaces.
A total of 3 × 5912 = 17 736 crystal nets are included in the histogram.

Fig. 11. Distribution of space groups of distinct barycentric embeddings of the nets collated in Fig. 10. The previous e-nets are filtered and reduced using the Systre
program [17,18] to obtain 14 532 distinct crystal nets (s-nets).

Fig. 12. Distribution of s-nets according to the number of distinct nodes per asymmetric volume of the relevant 3D space group.
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Table 2
Numbers of univalent s-nets enumerated to date and listed in the EPINET data-
base [27]

Degree No. uninodal nets No. univalent nets

3 18 (56) 155 (82)
4 46 (193) 1170 (488)
5 48 (185) 188 (187)
6 51 (159) 248 (204)
7 10 (75) 10 (77)
8 28 (40) 50 (43)
9 3 (14) 5 (14)

10 8 (15) 10 (15)
12 4 (3) 8 (7)
14 3 (1) 3 (1)
18 0 (0) 1 (0)
20 0 (0) 1 (0)

The second column collects all uninodal nets (with a single node per asymmet-
ric volume), the third column lists all nets with all vertices of the same degree.
Smaller bracketed entries list numbers of corresponding nets in the RCSR data-
base [13].

two-valent examples with one vertex degree greater than 12,
760 examples of degrees (3,4,6); 724 of degrees (3,4,8) and
258 of degrees (4,6,8).

Network coordination sequences (also called shell maps) are
integer sequences that capture some topological features of the
net. Each term in the sequence, csn, describes the number of
vertices accessible from a fixed vertex by a shortest walk along
n edges. Our s-net data includes coordination sequences up to
the tenth term, cs10. This sequence (or the cumulative total of
the first ten terms, td10) is a useful measure of the topologi-
cal density of the net—an index that correlates closely with the
geometric framework density. It is known that coordination se-
quences do not offer a unique fingerprint of 3D crystal nets.
For example, the zeolite frameworks RHO and LT A share the
same coordination sequence [4]. Cursory inspection of coor-
dination sequences (up to the first ten terms) indicates further
difficulties in using coordination sequences as designators of
net type. For example, among the very dense nets, we have
found pairs of nets whose higher order terms in the sequences
coincide, even for nets with distinct connectivities. An example
is given in Table 4.

We have calculated coordination sequences for h-nets in ad-
dition to those of the 3D Euclidean s-nets. The collation of this
data will be used to probe further the intricacies of coordination
sequences. The growth rate of coordination sequences of h- and
s-nets are exponential and quadratic respectively, reflecting the
respective growth laws of discs with increasing radius in H2 and
E3 respectively. Crystal nets may be viewed as heavily pruned
and fused trees and the effect of these processes on the coeffi-
cients of quadratic growth are still poorly understood.

A particularly attractive feature of our approach is that cate-
nated or threaded e-nets also emerge from the construction. In
technical parlance, the surface reticulation procedure allows us
to control the ambient isotopy of e-nets, in addition to some
control over network topology via the h-net topology. A limited
number of examples have been listed so far, based on sim-
ple free tilings of the hyperbolic plane [34]. In contrast to the
Euclidean plane, free tiles, bounded by infinite-sided polygons,

are commonplace in H2. The resulting h-nets are packings of
disjoint hyperbolic trees, including examples that are commen-
surate with the PDG minimal surfaces. These examples project
to E3 to form multi-component catenated networks [35,36].
More complex decorated trees can also be used allowing partial
threading of the disjoint networks [37]. These examples sug-
gest a far richer field of study, namely that of knotted networks,
analogous to the closely-related knots and links of conventional
knot theory. For example, edge-bridges can be inserted to con-
nect the disjoint trees in H2, forming single-component h-nets.
The bridging edges may be arranged so that even strong rings
in the resulting e-net are threaded. The possibility of generat-
ing knotted examples is one that we are now exploring in detail
[38].

4. Relevance of epinets to crystal chemistry

Our enumeration of nets to date imposes only 2D hyper-
bolic geometric constraints via (i) restriction to kaleidoscopic
tilings of H2 with 1 and 2 types of tile (or vertex) and (ii) wrap-
ping onto the P,D, and G surfaces. The aim of this research
is to form a suite of crystal nets without prior regard for pos-
sible relevance to chemical frameworks, primarily to enhance
our understanding of the range of crystal nets available in E3.
The expectation is that this approach will eventually provide a
complementary sample of the vast universe of 3D crystal nets
to those generated by other approaches. Nevertheless, it is of in-
terest to compare the examples derived so far with frameworks
considered to be relevant to crystal chemistry. Given the con-
tinuous mutations in chemists interests in crystalline materials
this is a somewhat moveable feast, but O’Keeffe and colleagues
have identified crystal nets that are common to a wide variety of
inorganic atomic crystals, interpenetrating networks, and MOFs
(metal-organic frameworks) [39,40].

O’Keeffe’s archetypes are highly symmetric nets, particu-
larly regular and semi-regular nets [10]. Four of the five reg-
ular nets of O’Keeffe [10] are formed in our current suite of
epinets: primitive cubic, pcu (sqc1)1; body-centred cubic, bcu
(sqc3); diamond, dia (sqc6); NbO, nbo (sqc35). The fifth regu-
lar net is lattice complex Y∗, srs, which is generated by wrap-
ping a degree-3 tree onto the G surface [35]. In addition, we
have generated 11 of the 15 semi-regular nets: face-centred
cubic, fcu (sqc19); lattice complex vT , lvt (sqc176); sodalite,
sod (sqc970); lattice complex S, lcs (sqc5052); hxg (sqc947);
cristobalite, crs (sqc889); bcs (sqc4991); ReO3, reo (sqc87);
T h3P4, thp (sqc5052); rhr (sqc5544) and the analcime T-atom
framework, ana (sqc11218). Semi-regular examples missing
from EPINET are lattice complex Y , lcy; lattice complex V ,
lcv; acs and quartz, qtz. Among uninodal nets classified as
‘important’ (srs, nbo, dia, pcu, bcu, ths, cds) [40] only ths is
currently missing from our enumeration. Among the 165 topo-
logically distinct zeolite frameworks listed in the International
Zeolite Association database [33], our current enumeration in-
cludes 17 examples among the 1000-plus s-nets of degree four.

1 The s-net with label sqcN can be accessed on the web at http://epinet.anu.
edu.au/sqcN.

http://epinet.anu.edu.au/sqcN
http://epinet.anu.edu.au/sqcN
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Fig. 13. The rhombohedral crystal net sqc1566, a novel example of a uninodal net. It results from wrapping a (12.4.6.12.4) h-net onto the P or D surface. We
illustrate the D surface wrapping here. The triangles seen in the s-net are collar rings in the surface reticulation.
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Table 3
Number of s-nets of mixed degree with two distinct vertex degrees enumerated to date in EPINET [27]

Mixed degree 4 5 6 7 8 9 10 11 12

3 2359 (27) 530 (11) 723 (10) 274 (1) 478 (1) 65 (0) 191 (0) 6 (0) 194 (0)
4 635 (9) 1473 (25) 252 (0) 1088 (2) 66 (0) 166 (0) 2 (0) 240 (2)
5 362 (2) 66 (1) 155 (0) 14 (0) 52 (0) 0 (0) 47 (0)
6 76 (0) 162 (1) 18 (0) 67 (0) 0 (0) 38 (3)
7 14 (0) 0 (0) 7 (0) 0 (0) 4 (0)
8 1 (0) 14 (0) 0 (0) 12 (0)

Smaller bracketed entries list numbers of corresponding nets in the RCSR database [13].

Table 4
Coordination sequences for distinct vertices of binodal nets sqc211 and sqc347

s-net 2D Schläfli cs1 cs2 cs3 cs4 cs5 cs6 cs7 cs8 cs9 cs10

sqc211 (44.62.44.62) 12 64 168 320 520 768 1064 1408 1800 2240
(4.6.4) 3 22 100 228 404 628 900 1220 1588 2004

sqc347 (412) 12 64 168 320 520 768 1064 1408 1800 2240
(44) 4 24 98 227 404 628 900 1220 1588 2004

Note that the degree-12 vertices have identical coordination sequence and that the degree-3, and -4 vertices correspond after shell 4.

Other nets of relevance to crystal chemistry enumerated so far
include CdS (sqc5, cds), fluorite (sqc169, flu), γ -Si (sqc2181,
gsi), ice II (sqc5580, ict) and ice VI (sqc527, edi), cooperite
(sqc183, pts), lattice complex S∗ (sqc5579, lcs) and pyrochlore
(sqc10956, pyc).

Our goal is not merely to replicate structures already found
by more conventional means, however. We find two cases of
uninodal degree-3 nets, nine degree-4 examples and 29 degree-
5 examples that are not already known from the RCSR data-
base [13] or sphere-packing enumerations [31]. Some of these
cases contain non-adjacent vertices (i.e., those not joined by
an edge) that are closer than adjacent ones. While these cases
are irrelevant as models for atomic frameworks, they are wor-
thy candidates for more complex frameworks, such as MOFs,
where these steric constraints no longer hold. Other cases are
generated from h-nets that project to E3 to give long edges
in their e- and s-nets, connecting to vertices in a non-adjacent
unit cell. (The EPINET entry for these examples explicitly flags
this feature as Long Vectors.) These examples—also likely to
be of interest for complex molecular frameworks—are difficult
to generate by conventional Euclidean crystallographic tech-
niques as they commonly display complex threading of rings
by edges.

5. Future directions

It has taken many years to set the stage for this enumeration;
we expect the results to emerge rapidly from here. The imme-
diate future is clear: we intend to enumerate non-kaleidoscopic
decorations of the PDG family of surfaces. We also plan to
explore reticulations of the H , CLP genus-three minimal sur-
faces as well as the I-WP (genus-four) surface. Exhaustive enu-
meration of free tilings of H2 is also on the agenda, motivated
by the possibility of enumerating catenated and self-knotted
crystal nets. The latter area is a particularly intriguing one. It
is driven largely by crystal chemists [41], yet offers many chal-
lenges to the practising geometer!
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