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Entanglement of embedded graphs
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We discuss the identification of untangled graph embeddings for finite planar and non-
planar graphs as well as infinite crystallographic nets. Two parallel approaches are discussed:
explicit 3-space embeddings and reticulations of 2-manifolds. 2D and 3D energies are pro-
posed that allow ranking of (un)tangled embedded graphs.

§1. Introduction

Graphs, G are topological objects, composed of a collection of vertices, vi (i ∈
{1, N}) and edges, ej , associated with vertex pairs, ej(vk, vl). For simplicity, as-
sume that G is simple (i.e. for any {k, l}, the number of associated edges is at most
one). We are interested in embeddings of topological graphs in euclidean 3-space,
G, motivated by the plethora of three-dimensional chemical structures, which can be
idealised as embedded graphs. The vertices and edges of these graphs correspond
to atoms and chemical bonds in covalent crystals or organic molecules; in the case
of supra-molecular materials such as metal-organic frameworks (MOFs) or DNA as-
semblies) these coincide with molecular groups and polymeric ligands or H-bonds
respectively. We are particularly interested in the effects of the graph embedding
on the behaviour of the material, in contrast to the predominant focus of modern
materials scientists on the details of interactions between specific chemical entities
stabilising the compound. In other words, to what extent is the behaviour of mate-
rials dependent solely on topology and geometry of graphs?

These issues are relevant to our understanding of the physical properties of ma-
terials. For example, the hardness of physical glasses can be correlated with the
rigidity or degrees of freedom in the resulting bonding network, and is therefore crit-
ically dependent on the topology of the glass network.23) The viscosity of polymers
in solution is intimately associated with the entanglement of the polymer chains
within the solution.10) Here we explore aspects of ambient isotopy of graph embed-
dings. For convenience, consider all embeddings G of a graph G that share a common
ambient isotopy as equivalent isotopes. Distinct isotopes – which are not ambient
isotopic – differ in the relative entanglement of graph edges. Definition of entangle-
ment requires elucidation of an unentangled ’ground state’ isotope, G0, of a graph.
We propose a definition for G0 for generic G, including infinite graphs, later in this
paper. For now, we assume G is 3-connected and planar (and simple), so that it is
a polyhedral graph.11) In this case, G0 necessarily embeds in the sphere (S2) without
edge crossings. This is also sufficient to characterise G0, since Whitney’s theorem
ensures that the 2-cell embedding of G into S2 – the isotope G0 – is unique.25)
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§2. Graph entanglement compared with knotting

If G=G0, it can be embedded in S2, so it cannot contain knots and/or links.
Therefore, if the isotope G contains a subgraph that form knots and/or links, G is
entangled. Knots (and links) are non-trivial embeddings of one (or more) cycles
within G, so the underlying sub-graph responsible for this class of entanglement is
graph cycles homeomorphic to S1.

Note however, that the absence of knots and/or links is not sufficient to force G to
be untangled. Consider for example, the untangled embedding of G = K4 illustrated
in Fig. 1(a). The embedding of K4 shown in Fig. 1(b) is evidently tangled, since it
cannot be drawn in the plane, yet it is also free of knots and/or links. We call this
mode of entanglement a ravel .4) This example demonstrates the distinction between
”knotted” and tangled graphs. ∗)

(a) (b)

Fig. 1. (a): The untangled isotope of the tetrahedral graph, K4 (reticulating a sphere). (b) A
tangled isotope of K4 that contains neither knots nor links.

In contrast to knots and links, that are formed by graph minors homeomorphic
to S1, the graph fragments that induces entanglements of the type shown in Fig. 1
are stars of edges common to a single vertex of the graph. By definition, all ravels are
associated with the star of edges sharing a single vertex.4) ’Star’ subgraphs therefore
offer a second motif that can induce tangled embeddings of graphs. Interestingly,
the first examples of a molecule whose bonding network contains a ravel as a proper
subgraph has been recently reported.19)

§3. Simple entanglements of polyhedral graphs: toroidal embeddings

What are the simplest examples of tangled polyhedral graphs? Since untangled
polyhedral graphs have 2-cell embeddings in the (genus zero) sphere, S2, simple
tangled embeddings embed in the (genus one) torus rather than S2. (We assume
that the torus itself is embedded in 3-space in the standard manner, rather than a
more exotic twisted or knotted embedding). We conjecture that all isotopes (G1) of

∗) This possibility has been recognised already by graph theorists. For example, the isotope of
K4 in Fig. 1(b) contains a graph-minor equivalent to Kinoshita’s θ−graph embedding.16) Kawauchi
introduced ’minimally knotted’ embedded graphs, defined as embedded planar graphs that do not
lie in S2, but all of whose proper subgraphs do.15) These are a subset of ravels, that we call ’fragile’
ravels.4)
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G that embed in the torus contain knots and/or links. Certainly, 2-cell embeddings
of ravels, or embedded graphs containing ravels as minors, are only possible on
manifolds whose genera exceed one. We assume that other tangled embeddings,
which are knot-free, but tangled due to (as yet unclasssified) tangled graph motifs
other than knots, links or ravels, also embed in orientable manifolds whose genera
exceed one. It follows from this conjecture that all toroidal embeddings of polyhedral
graphs are chiral.2) (Note that this result is specific to polyhedral graphs; examples
of achiral toroidal embeddings of planar 2-connected and planar multigraphs exist.)

Ranking of the toroidal embeddings G1 of a polyhedral graph can be done in
various ways. One route, that makes explicit use of the embedding in euclidean
3-space (E3) is to extend the concept of a ’tight knot’ embedding1) as follows. A
tight embedding of an isotope is one that minimises the ratio of total length of edges
L in the embedding G1 divided by a steric diameter of the edges, D. No overlap or
crossing of edges is allowed during the tightening procedure, conserving the ambient
isotopy of the isotope throughout the process. A numerical algorithm that estimates
the minimiser of this ratio has been implemented for graphs.7) We then rank toroidal
embeddings ordered by the 3D energy function:

E3d(G1) =
L

D
.

Another ranking emerges from the 2-cell embedding in the torus, and makes no
explicit reference to the 3-space embedding. Rather, we form a barycentric placement
of the 2-periodic net of edges that arises from the 2-cell embedding in the torus
lifted to the universal cover (E2).6) Barycentric placement guarantees that the sum
Σl2i over all edge length li, is minimised.6) That calculation can be done readily
using the GAVROG package, available on-line,9) giving embedding coordinates of
all graph vertices within a single ’unit cell’ of the 2-periodic pattern in E2, formed
in the universal cover. Those coordinates are crystallographic coordinates, which
correspond to euclidean cartesian coordinates when the unit cell is a euclidean square,
with orthogonal lattice vectors (1, 0) and (0, 1). Barycentric placement is however
conserved by all affine transformations of the square unit cell to a rhombus with
lattice vectors (q, r) and (s, t), where q, r, s, t ∈ Z. The values of q, r, s, t determine
the homotopy types of all cycles of G1 in the torus.

An explicit tangled polyhedral isotope G1, is formed as follows. First, find all 2-
cell embeddings of the graph G in the torus, forming toroidal graphs G1. Next, form
planar graphs from G1 by pulling back these toroidal graphs to their universal covers,
giving 2-periodic nets g2d in E2. Relax each g2d to form a barycentric embedding,
giving crystallographic coordinates (x, y) for each vertex and then form an explicit
2-periodic embedding of the net in E2 by choosing lattice vectors (q, r) and (s, t)
(with |qt− rs| = 1) with respect to the crystallographic basis.

Explicit (cartesian) vertex coordinates can then be determined from the formula
[

x
y

]

new

=
[

q r
s t

] [
x
y

]
.

One degree of freedom remains that does not affect the homotopy type of the
embedding: a scaling factor that preserves unit cell area, α ∈ R+, giving vertex
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coordinates: (x′, y′) = (αx,α−1y), from which edge lengths (li) are calculated with
the usual euclidean metric. The value of α is chosen to give an absolute minimum
of Σl2i .

The 3-space embedding of G1 forms by pulling back the resulting graph to an
embedding in the torus, then regluing the unit cell according to its pair of lattice
vectors. Embed the torus in E3 in the standard manner, and lastly, dissolve the
torus, leaving the graph embedded in 3-space. In summary, the data [g2d, q, r, s, t]
maps (many-to-one) to an embedding G1.

Toroidal embeddings are then ranked by a (2D) energy function:

E2d(G1) = Σil
2
i ,

where li denotes one of the edge lengths.
These alternative 2D and 3D approaches to ranking of tangled polyhedral iso-

topes are best illustrated by an example. Let G be the graph given by edges of a
cube, Q, containing 8 vertices of degree-3. Four non-homeomorphic 2-periodic planar
nets gQ

2d can be pulled back to the torus to give toroidal cube embeddings, Q1. One
of those is the net of edges formed by the tessellation of E2 by hexagons, with Schläfli
symbol {6, 3}. Barycentric relaxation of this net gives a 2-periodic pattern, for which
a square-shaped unit cell of unit area, bounded by lattice vectors (1, 0) and (0, 1) and
containing a single copy of each cube vertex can be drawn (Fig. 2(a)). If alternative
lattice vectors (1, 2) and (1, 0) are chosen as a basis for the fundamental group of
a torus, the universal cover wraps up to form the isotope in the torus illustrated
in Fig. 2(b), that embeds in 3-space to give the Q1 shown in Fig. 2(c), referred to
elsewhere as a type-B toroidal cube.3), 12) The presence of a (2, 4) link in Q1 imposes
non-planarity on the embedding, proving the entanglement of this isotope.12) The
energy, E2d, of this isotope Q1 assumes a minimal value of 2.203) (when α = 1.52).
(It turns out that this example is not an optimal one. An alternative [g2d, q, r, s, t]
exists, which pulls back to an identical G1 with a smaller value of E2d, 2.20).

(a) (b) (c) (d)

Fig. 2. (a) A 2-periodic graph that is a universal cover of the graph of cube edges reticulating a
torus, gQ

2d. A unit cell (dashed rectangle) containing 8 distinct vertices of degree 3 is shown. A
skew unit cell made of (1, 0) and (1, 2) lattice vectors of the simpler cell is marked by the dotted
rhombus. (b) If the (1, 0) and (1, 2) lattice vectors are adopted as generators of the fundamental
group of a torus, and the patch is glued to form a torus, a toroidal reticulation is formed. (c)
The embedding in 3-space of this reticulation is a B-type tangled cube graph, Q1. (d) This
isotope can be annealed in 3D space to form a tight configuration, that minimises the ratio of
edge length to diameter.

The isotope Q1 can be tightened in euclidean 3-space to minimise the magnitude
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of E3d. The 3D tightening process results in the embedding shown in Fig. 2(d), for
which E3d = 24.63.

Table I. Simpler tangled toroidal cube isotopes, Q1, formed reticulations of 2-periodic graphs (gQ
2d)

in the torus, mapping particular lattice vectors (forming the dotted rhombi in the gQ
2d images)

onto the pair of generators of the torus’ fundamental group. The resulting isotopes are annealed
in 3-space to form ’tight’ configurations illustrated in the rightmost column. (To aid visualisa-
tion, edge diameter have been reduced from their optimal tight values.) Relative 2D and 3D
energies (E2d and E3d) are listed; their values are calculated from formulae given in the main
text.

gQ
2d Q1 E2d tight 3-space embedding E3d

1.33 16.97

1.76 21.04

2.20 24.63

2.31 25.21

2.82 23.77

These complementary two- and three-dimensional approaches give a ranking of
the least tangled isotopes G1 of the graph Q tabulated in Table I. The two- and
three-dimensional approaches give similar, though not identical, rankings; a result
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which suggests that both energy functions are useful. The exact calculations (and
relative simplicity) of the two-dimensional approach are helpful though they make
no reference to 3-space embeddings. In contrast, the tightening algorithm affords
(canonical?) 3-space embeddings, despite the numerical uncertainty surrounding the
tightening algorithm required for these calculations.

§4. Entanglements of non-planar finite graphs: untangled embeddings

So far, the embedded graphs have been limited to polyhedral examples. Since
these graphs are topologically planar, their untangled state is particularly simple,
corresponding to the (unique) isotope whose minimal embedding is in the (genus-
zero) sphere. By extension of this 2D embedding principle, we demand that untan-
gled embeddings of nonplanar graphs are isotopes whose 2-cell embeddings reticu-
late (oriented) 2-manifolds of minimal genus. Thus, for example, the K6 graph –
which cannot be embedded in S2, can be embedded in the (genus-one) torus in four
ways.18) The resulting universal covers are four distinct 2-periodic graphs, g2d, how-
ever all of these embed in the torus to form equivalent isotopes in E3. We therefore
choose this as the untangled isotope of K6. This definition of the untangled state
is at first glance less than satisfactory, given that the toroidal embeddings contain
a link (Fig. 3). However, it is known that any embedding of K6 results in at least
a single link.5) Our untangled isotope can therefore never be embedded with less
entanglement. Here too we distinguish between entanglement and knottedness: just
as tangled isotopes need not be knotted, knotted (or linked) isotopes need not be
tangled.

Fig. 3. The untangled K6 isotope. Note the presence of a link, marked by the threaded red cycles.

In general, nonplanar graphs G will have many isotopes whose 2-cell embeddings
form in the simplest possible 2-manifolds, with minimal genus. In those cases, we
must delve further to select a single untangled isotope. By analogy with the simpler
tangled examples considered above, we may choose the untangled isotope by analysis
of its 2-periodic universal cover (via E2d) or the energy of its tightest configuration
in E3, via E3d.

Within our 2D view, we select the isotope with the shortest edge length within
the universal cover derived from its reticulation of the minimal-genus orientable 2D
manifold. Note that in general, since that manifold is a multi-handled torus with
genus (γ) exceeding one, the graph that emerges within the universal cover, g2d, is an
infinite (2γ-)periodic pattern. In that case, the image of a single copy of the manifold
(in the hyperbolic plane, H2) is a 4γ-gon, whose area is constant, regardless of its
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specific shape. Barycentric relaxation of g2d, minimising Σil2i , is mathematically
well-defined,24) though explicit implementation is more delicate than for the case
where γ = 1 (when g2d is a 2-periodic pattern in E2), since integer arithmetic –
which allows exact calculation of barycentric embeddings within E2,6) – is no longer
possible, due to the non-euclidean nature of H2.

Alternatively, the untangled isotope, G0, may be defined as that which minimises
E3d among all isotopes of G that embed in the manifold of minimal genus.

In general, the two- and three-dimensional approaches may not give the same
isotope as the untangled case, just as the ranking of simpler tanged cube isotopes may
differ (cf. Table I). Further exploration of the differences between these alternatives
is needed.

§5. Untangled embeddings of non-planar infinite crystallographic
graphs

Suppose we allow G to be infinite, and crystallographic, in the sense that the
graph Gcryst can be embedded in E3 as a three-periodic crystalline pattern (a graph
theoretic definition can be found at17)). Generalisation of the numerical algorithm to
deduce tight embeddings of finite graphs to crystallographic graphs is feasible, and
relative energies of various isotopes of Gcryst within the 3D view, E3d, can be read-
ily (if numerically slowly) estimated.8) Since the graphs are infinite, the numerator
of E3d counts only edge lengths within a crystallographic unit cell of the pattern.
We propose that untangled isotopes of three-periodic crystallographic graphs are –
within this 3D view – those that globally minimise E3d among all possible isotopes.
It is very likely that those are equivalent isotopes to the embedding formed by the
barycentric embedding of Gcryst, assuming this embedding avoids coincident vertices
and/or edge crossings. For simpler three-periodic crystallographic nets, tight em-
beddings are identical to barycentric configurations, whose embedding is chosen to
realise all graph isometries as explicit geometric isometries in E3 (accessible via9)

and explored in6)). In other cases (where, for example, the graph contains more
than one distinct edge type), tight and barycentric embeddings may not coincide.
Further, collisions of edges and/or vertices can (occasionally) arise in barycentric
embeddings.6) In those cases the barycentric embedding has coincident vertices, or
distinct edges cross through each other. Despite collisions, these embeddings too can
be tightened numerically to form collision-free embeddings, allowing determination
of E3d for various isotopes. We note that such examples may lead to more than one
untangled isotope, since degeneracy of E3d for distinct isotopes is possible in those
cases.

Consider lastly the analysis of the untangled isotope of Gcryst within our 2D
approach. In that case, the minimal genus of a 2-manifold that can be reticulated
by G is unbounded. Here too, the universal cover is H2. Computation of the 2D
energy function, E2d, is delicate, since the number of edges in the graph g2d diverges,
as does the area A associated with a single copy of the manifold. However, since
G is crystallographic, g2d contains isometries, and we can compute E2d as follows,
provided g2d forms the edges of a tessellation of H2 with finite polygonal tiles. First,
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note that Euler’s Theorem (which relates the Euler characteristic χ to the number
of vertices V , edges E and faces F ) can be used to deduce the area per vertex, A

V , of
g2d in H2. This area is related to the (average) degree of each vertex of g2d, z and
the (average) number of vertices in each fundamental cycle of g2d, n:

χ

V
= 1− E

V
+

F

V
= 1− z

2
+

z

n
.

Therefore
χ

V
= 1 +

z(2− n)
2n

.

From the global Gauss-Bonnet theorem, 2πχ = KA, where K is the Gaussian cur-
vature, namely −1 in H2, so that

A

V
= 2π

[
z(n− 2)

2n
− 1

]
.

The edge length per vertex in the hyperbolic graph embedding g2d depends on
the geometry of the embedding. If we assume that the g2d graph has Schläfli symbol
{n, z}, and embeds with maximum symmetry (as a ’regular’ embedding, with sym-
metrically identical vertices, edges and faces), its asymmetric domain corresponds
to a single domain of a &2nz orbifold. In that case, hyperbolic trigonometry implies
that the edge length li in g2d is equal to 2 arccos h

[
cot(π

n) cot(π
z )

]
, so that

E2d :=
Σil2i
A

=
z(arccos h

[
cot(π

n) cot(π
z )

]
)2

2π
[

z(n−2)
2n − 1

] .

Given the barycentric nature of the regular {n, z} tiling in any 2D space, we
conjecture that this formula offers a lower bound of E2d for three-periodic crystal-
lographic graphs, Gcryst. Since z is equal to the degree of Gcryst, only the value of n
remains to be determined from the 2-manifold embedding.

Two examples illustrate these 3D and 2D approaches for crystallographic graphs.
Consider first the net of edges of a tessellation of E3 by cubes, known to crystal
chemists as pcu,21) illustrated in Fig. 4(a). This embedding is barycentric and is
equivalent to the tight embedding, from which we deduce a 3D energy E3d ≈ 3.0005
for the untangled cube isotope, G0. Since this embedding is barycentric, it qualifies
as the untangled isotope of pcu according to the 3D definitions proposed above.

The equivalent isotope emerges by reticulating the infinite-handled 2-manifold
(Fig. 4(b)), which can be smoothed in E3 to form the triply-periodic minimal surface
known as the P-surface13), 22) (Fig. 4(c)). The universal cover of the reticulation of
this manifold by the pcu net is the regular {4, 6} tiling of H2 (Fig. 4(d)), which has
symmetry &246. From the formula above, it follows that when Gcryst = pcu, and it
is embedded in the P-surface with this symmetry, E2d = 6(arccos h(

√
3))2

π ≈ 2.509.
A second example of a crystallographic graph is the degree-3 graph known as

srs,21) one of whose isotopes is illustrated in Fig. 5(a). This isotope is realised in
a barycentric embedding; it therefore qualifies as the untangled isotope, G0 of srs.
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(a) (b) (c) (d)

Fig. 4. (a) The untangled isotope of the pcu crystallographic net. (b) A facetted infinite-genus
manifold whose edges are those of pcu. (c) A smoothed version of (b), corresponding to the
three-periodic P-surface. (d)The universal cover of the {4, 6} graph (g2d) drawn within the
Poincaré model of the hyperbolic plane.

The barycentric embedding with cubic symmetry is already tight, and gives a value
of E3d ≈ 11.883.

The 2D description of this isotope of srs is more complex than for pcu. Since
the smallest cycles in the srs graph are decagons, n in g2d must exceed 9. Assume,
for now that g2d is a regular {10, 3} tiling of H2. Applying the formula above gives

E2d =
15(arccos h

»q
5+2

√
5

3

–
)2

2π ≈ 3.309. However, a regular {10, 3} graph cannot be
formed on a 2-manifold embedded in E3 (since a manifold with &23(10) symmetry is
incommensurate with euclidean space). To date, the best reticulation we have found
is a regular degree-three tree with edge length arccos h(3) and symmetry &2223, that
maps onto the gyroid triply-periodic minimal surface without distortion to form (a
pair of) untangled srs net(s), as illustrated in Fig. 514)4. Since the area per &2223
fundamental domain is π

3 and each domain contains a half-edge, E2d = 3(arccos h(3))2

π ≈
2.967.

(a) (b) (c))

Fig. 5. (a) The untangled isotope of the srs net. (b) Reticulation on the gyroid minimal surface
by a pair of these isotopes. (c) Universal cover (in H2) of the reticulation in (b).
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