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Abstract9

A medial surface (MS) analysis of the rhombohedral in�nite periodic minimal surface family
rPD is presented. The rPD family of bicontinuous surfaces has been suggested as a pathway11
for transitions between its two cubic members, the P and the D surface, in mesophases in
liquid-crystalline self-assembly. The MS is a representation of a labyrinth as a centered 2D13
skeleton. By providing a de�nition of a pointwise channel diameter, the MS allows for an analysis
of stretching frustration and homogeneity of such surfaces. For the rPD surface, variations of this15
channel diameter are locally minimal for the D surface, and a horizontal in�ection point for the P
surface. This may have implications for the phase stability of the corresponding liquid-crystalline17
mesophases. The MS can be further reduced to a 1D line graph. This graph contains curved
edges and cannot be deduced from symmetry considerations alone.19
c© 2004 Elsevier B.V. All rights reserved.
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Bicontinuous in�nite periodic minimal surfaces (IPMS) are surfaces that divide space23
into two intertwined labyrinths, and that are minimal surfaces everywhere. Among the
best-known examples are (1) the P(rimitive) surface that is the balanced interface25
between two interlocked simple cubic lattices that have the same orientation, but are
o�set by half a body diagonal, and (2) the D(iamond) surface that is the balanced27
interface between two intertwined Diamond lattices. Both are of cubic symmetry.
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Fig. 1. Illustration of the medial axis for a planar situation: The domain C (dark gray) is the complement of
an assembly of overlapping disks (light gray). The boundary 9C of the domain is discretized into vertices
V (black points) connected by edges. The interface normal vectors are pointing into C. The �rst step is the
computation of the Voronoi diagram of the set of vertices V (dashed lines). For every point p∈ 9C there is
a corresponding point q on the MS which is the intersection of the straight line in normal direction through
p with the Voronoi cell of p. The white line is the exact medial axis for which an analytic form is known
in the case of disk assemblies [8].

Bicontinuous morphologies based on IPMS describe well the spatial structure of1
many condensed molecular systems, including lyotropic liquid crystals [1,2], zeolites
[2], synthetic surfactant systems [3] and biological membranes [4] including the lung3
alveolar surface [5]. All examples known to date, except the last one, adopt cubic
symmetries.5
Although most bicontinuous structures reported in the literature are of cubic symme-

try there are compelling reasons to study non-cubic IPMS. First, they might serve as7
possible dynamic transition structures between stable cubic phases, has been suggested
in recent experimental work [6]. Second, the prevalence of cubic IPMS in physical9
systems demands exploration. That issue is best addressed by studying surface families
that are in general not cubic, but comprise singular members with cubic symmetry,11
such as the rPD.
The link between surface geometry and physics can be made using surface energy13

functionals. The relevant functional for self-assembly of amphiphiles is often based on
the so-called Helfrich free-energy functional that gives the intrinsic free energy in terms15
of the interfacial curvature characteristics [7]. This reduces amphiphile assemblies to
�ctional surfaces of zero thickness. Yet, in many cases non-local interactions and chan-17
nel diameter variations (due to chain stretching contributions of individual amphiphile
molecules) need to be taken into account. Our analysis shows one route to including19
these global e�ects in measures of relative stability of various morphologies (Fig. 1).

1. De�nition and computation of the medial surface21

The medial surface transform is a complete description of a surface in terms of a
geometrically centered skeleton [9]: any object (here one of the two channels of an23
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IPMS) is represented by a, in some sense minimal, union of balls centered on a 2D1
skeleton that is symmetrically located inside the object.
Here we de�ne and summarize the main properties of the MS construction and3

describe an algorithm for MS computations of triangulated surfaces derived from math-
ematical models. A more detailed discussion can be found in our previous article [10].5
We de�ne a domain C to be an open, connected subset of 3d euclidean space (E3)

whose boundary, S = 9C, is an oriented and C2-smooth manifold. In this article, C is7
one of the two subvolumes bounded by an IPMS and S is the IPMS itself. A smooth
normal �eld N is de�ned on S, and we assume the normals to be of unit length and9
pointing into the domain C.
The MS is the set of points in C with two or more nearest points on the domain11

boundary S. Equivalently, it is the locus of centers of maximal spheres in C, i.e.,
those spheres contained in C which are not contained in any other sphere in C and,13
consequently, graze S [9].
Loosely speaking, the MS de�nes the center of the domain C. For the case of15

surfaces bounding a labyrinth—as for the IPMS discussed here—the MS is a two-
dimensional skeleton that is geometrically centered within the channels. In general, the17
MS consists of a collection of surface patches meeting along one-dimensional curves.
In particular cases, the patches may extend to in�nity, or degenerate to one-dimensional19
curves or even points.
For any point p∈ S on the boundary S of the domain C there is exactly one corre-21

sponding point q := ms(p) on the MS of C; the converse is not true. The point p is
located at the shortest distance from q compared with all other points on S. The map23
ms from a point p∈ S to the corresponding MS point q= ms(p) can be written as

ms : S → E3; p �→ ms(p) := p+ d(p)N (p) ; (1)

where N is the normal �eld of S and d : S → R+ is called the distance (or radius)25
function.
Analytic computations of the MS are rarely possible, even for domains derived from27

mathematically parametrized surfaces. For triangulated surface representations, identi-
�cation of the MS as a subset of the Voronoi diagram of the sample points provides29
a numerical approach to MS computations. This has been suggested by a number of
authors, e.g. in Ref. [11], and an adaption to parametrized surfaces is described in our31
previous article [10].
Voronoi-based MS algorithms neatly combine two ideas that are loosely summarized33

as follows: given a point p on S (say part of an imaginary triangulation of S), the
�rst observation is that the corresponding MS point is locally maximally distant from35
the surface patch containing p. Therefore, the corresponding MS point is meant to lie
in normal direction, as stated as well in Eq. (1). Second, since it is equidistant from37
at least two surface points, it approximately lies on one of the faces of the Voronoi
diagram of the vertices V of the triangulation of S. This is because the Voronoi diagram39
of the set of vertices V gives exactly the locus of points equidistant from two out of
the vertices in V .41
Therefore, the following algorithm computes an approximation to the MS that con-

verges to the exact MS if the sampling density goes to in�nity [11]. Given is a set43
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of vertices V where each vertex p∈V is a point exactly on S (no out-of-surface1
noise). (1) Determine the Voronoi diagram of the point set V in E3. (2) For each
point p∈V intersect the straight line in normal direction, p + rN (p) with r ∈R+,3
with the Voronoi cell of the point p. The triangulation itself can be taken to be the
same as on the original surface.5
The MS can be further reduced to a line graph. The guiding idea is that this path

through the tunnel system is maximally distant from the original surface and retains7
its topology. As the MS is centered within the channel system, the line graph should
lie in the MS. Within the MS the graph is meant to be at maximal distance from the9
IPMS: therefore we de�ne the graph to be the set of critical paths with respect to d(p)
on the surface that connect critical points of d to each other—much in the spirit of11
determining ridge lines in a 2D topography. These paths can either be determined on
the MS, or on the IPMS and then mapped onto MS. Here we present data using the13
latter approach. This graph contains some edges that need to be discarded based on a
topological criterion (for details see Ref. [10]).15

2. MS structure of the rPD surface family

The rPD surface family is a one-parameter family of surfaces that remains triply-17
periodic, bicontinuous, embedded and minimal for all values of the free parameter
r0 ∈ [0;∞]. For the speci�c values r0 = 1=

√
2 and r0 =

√
2 the rPD corresponds to the19

P and D surface, respectively. Thus it provides a pathway of continuous and embedded
space partitions between these two cubic IPMS, with each intermediate itself an IPMS. 121
All minimal surfaces in E3 can be parametrized by a Weierstrass representation, i.e.,

a parametrization of the surface as path integrals mapping the complex plane into E3.23
The numerical calculations presented later are all based on surface data generated from
this exact approach; see Refs. [12,13] for details.25
Alternatively, the rPD is the minimal surface spanning two parallel, horizontal equi-

lateral triangles a distance c∗ apart that are rotated by 60◦ around the vertical line; by27
simple rotations in E3 an IPMS can be generated from that catenoidal surface element;
the parameter c∗ can be expressed in terms of r0. The point-wise de�ned distance29
function d(p), see Eq. (1), de�nes a channel diameter that varies over the surface.
As introduced in Ref. [10] the �uctuations of that distance over the surface provide a31
measure for homogeneity of the structure. In the case of type II mesophases they can
be linked to chain stretching contributions to the free energy (as compared to bending33
terms) (Fig. 2).
We de�ne a hypothetical perfectly homogeneous surface as one whose curvatures and35

distance function remain constant at all points on the surface. Such a homogeneous
structure cannot be immersed in E3; for hyperbolic surfaces variations of both the37
Gaussian curvature and the distance function cannot be avoided. For IPMS a measure

1 The Bonnet relation between the P and D surfaces suggests another such surface family that is obtained
by simply varying the Bonnet angle and that is by de�nition isometric. That surface family is not embedded,
i.e., not free of self-intersections. The rPD is free of self-intersections, but the members are not isometric.
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Fig. 2. MS structure of the rPD family for di�erent values of the free parameter r0. The images show the
MS for the following values of r0 (top left to bottom right): 0.45, 0.65, 1=

√
2 (P), 0.85, 1.05, 2.25. The

member corresponding to the D surface, r0 =
√
2, is not shown. Shown are portions of the MS (dark gray)

and the line graph (light lines) to which the MS is reduced. Also shown is the characteristic rPD minimal
surface piece stretched over two triangles at distance c∗ and twisted by 60◦, as well as two three-fold axes
(vertical straight lines) and a 2-fold axis (horizontal straight line). The �rst image shows clearly that no
graph with only straight edges could be embedded in the MS neighboring pairs of six-connected nodes lie
in mirror planes (the foreground clipping plane) and cannot be connected by a straight line contained in
the MS. The nodes of the graph are at symmetry sites of the R �3m space group only for r0¡ 1=

√
2. For

r0¿ 1=
√
2 (and r0 �= √

2), they are in general position.

for the chain stretching homogeneity is then given by the �uctuations of d(p) around1
the mean value 〈d〉=(1=A) ∫ d(p) dp where the integral is over a representative surface
patch and A is its area. Here we analyze these �uctuations in terms of their mean square3
�uctuations (�d)2 = 〈(d− 〈d〉)2〉.
Fig. 3 shows the �uctuations �d as a function of r0. The length scale of the surface5

remains a free parameter, allowing for di�erent normalizations. We present the �uctua-
tions scaled by two possible constants: �rst relative to the mean distance function value7
〈d〉 (relevant if the system exhibits a preferred diameter, as in a dense molecular pack-
ing), and second normalized such that the ratio of surface to volume remains constant9
(relevant to a transition between two lyotropic phases at �xed solvent volume).
The key observation is that the D surface corresponds to a minimum of the �uctu-11

ations �d, whereas the P surface seems to be a horizontal in�ection point of �d. If
variations of d are penalized the D surface should be more stable than the P surface.13
The second observation concerns the structural properties of the labyrinth line graph.

Channel graphs have frequently been used as secondary and topological descriptors of15
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Fig. 3. Fluctuations of the distance function value d for the rPD family as a function of r0.

IPMS [14–16]. As explained above, the MS can be readily reduced to a line graph.1
Applying that construction to the rPD reveals two somewhat interesting facts: (1)
our de�nition of a geometrically centered line graph gives the expected change in3
connectivity (i.e., 4-connected for the D and 6-connected for the P surface) whereas a
purely symmetry-based de�nition does not; (2) the geometrically centered line graph5
does contain edges that are not straight (see Fig. 2).

3. Conclusions and future work7

We have shown that a MS analysis of extrinsic properties of the surface, rather than
intrinsic curvature properties, is crucial to an understanding of the underlying graph9
structure of the transition from the P to the D surface.
We have also shown that �uctuations of a point-wise de�ned channel diameter are11

minimal for the member corresponding to the D surface, whereas they seem to be a
horizontal in�ection point at the P surface member.13
The next step is a more comprehensive analysis of other IPMS families that will elu-

cidate whether high-symmetry members of these families are always favored in terms15
of their homogeneity. The issue of an optimal transformation pathway between the P
and D IPMS and, more generally, the P-Gyroid-D IPMS family, remains open. For17
example, deformations within the rhombohedral Gyroid (rG) family allow for a con-
tinuous transition path among IPMS, with all intermediates IPMS, from the (cubic)19
Gyroid via the D to the P surface. Explicit mathematical descriptions have been pre-
sented for two possible transformation routes, involving tetragonal and rhombohedral21
intermediates [17]. It is certain that lower symmetry routes also can be found, involving
orthorhombic, monoclinic and indeed triclinic derivatives of the P and D families. The23
existence of these IPMS is assured [13], though detailed parametrizations have, to our
knowledge, not been done. It is likely that lower symmetry paths are disfavored, given25
the decreasing curvature homogeneity with decreasing symmetry, though the possibility
of comparably favorable tetragonal, rhombohedral and (for example) orthorhombic27
intermediates cannot be ruled dismissed a priori. These possibilities will be the focus
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of our attention in the near future. In addition, the relative importance of intrinsic and1
extrinsic homogeneity measures to model relative stability of real material assemblies
must be carefully assessed.3
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