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Abstract. Balanced infinite periodic minimal surface families that contain the cubic Gyroid (G), Diamond
(D) and Primitive (P) surfaces are studied in terms of their global packing and local curvature properties.
These properties are central to understanding the formation of mesophases in amphiphile and copolymer
molecular systems. The surfaces investigated are the tetragonal, rhombohedral and hexagonal tD, tP, tG,
rG, rPD and H surfaces. These non-cubic minimal surfaces furnish topology-preserving transformation
pathways between the three cubic surfaces. We introduce ‘packing (or global) homogeneity’, defined as
the standard deviation ∆d of the distribution of the channel diameter throughout the labyrinth, where
the channel diameter d is determined from the medial surface skeleton centered within the labyrinthine
domains. Curvature homogeneity is defined similarly as the standard deviation ∆K of the distribution of
Gaussian curvature. All data are presented for distinct length normalisations: constant surface-to-volume
ratio, constant average Gaussian curvature and constant average channel diameter. We provide first and
second moments of the distribution of channel diameter for all members of these surfaces complementing
curvature data from [A. Fogden, S. Hyde, Eur. Phys. J. B 7, 91 (1999)]. The cubic G and D surfaces
are deep local minima of ∆d along the surface families (with G more homogeneous than D), whereas the
cubic P surface is an inflection point of ∆d with adjacent, more homogeneous surface members. Both
curvature and packing homogeneity favour the tetragonal route between G and D (via tG and tD surfaces)
in preference to the rhombohedral route (via rG and rPD).

PACS. 02.40.-k Geometry, differential geometry, and topology – 61.30.St Lyotropic phases – 81.16.Dn
Self-assembly – 82.35.Jk Copolymers, phase transitions, structure

1 Introduction

The issue of transformations between hyperbolic sur-
faces is one of continuing relevance to our under-
standing of mesostructure and phase transformations in
mesostructured matter. The presence of structures based
on infinite periodic minimal surfaces (IPMS) of cubic
symmetry is certain in bicontinuous cubic mesophases;
the possible occurrence of non-cubic relatives as stable
mesophases remains speculative, though their existence
and similarities to their cubic counterparts suggest their
relevance to physical systems. Observation and discus-
sion of (pressure-induced) phase transitions between dif-
ferent cubic bicontinuous lyotropic phases in amphiphilic
self-assemblies are increasingly common [1–5]. A related,
more fundamental, issue also deserves detailed analysis.
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Despite the widespread occurrence of (particularly G and
D) cubic periodic minimal surfaces in soft material assem-
blies, from amphiphilic liquid crystals to synthetic block
copolymer materials and lipid-protein assemblies cell or-
ganelles in vivo, the reason why the majority of liquid-
crystalline self-assemblies adopt cubic symmetry remains
uncertain. We note recent reports of the cubic Gyroid
phase in simulations of purely entropy-driven assemblies of
hard pear-shaped particles [6], and reports of supramolec-
ular assemblies that form crystalline, anisotropic (non-
cubic) equilibrium phases, such as ABC block tripoly-
mers [7–9]. A deeper understanding of relative stabilities
of bicontinuous forms — including anisotropic examples
— is needed. The issue is best addressed by studying sur-
face families that are in general not cubic, but include
singular members with cubic symmetry.

In this paper we analyse one-parameter families of
IPMS with isolated members that are congruent to
the cubic Primitive (P), Diamond (D) and Gyroid (G)
surfaces. These surfaces, the tG, rG, rPD, tP, tD, H
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discussed in [10], afford continuous pathways of intermedi-
ate structures that are embedded (intersection-free) min-
imal surfaces between the cubic cases.

We focus here on global properties of these surfaces,
beyond surface-to-volume ratios, and compare those data
with local curvature properties (The latter have already
been studied extensively [10]). In particular, we analyse
the structures in terms of global (or packing) homogeneity
which provides a measure of the fluctuations of the point-
wise channel diameter. Those global fluctuations are in-
dependent of local fluctuations of the Gaussian curvature
on the surface; they remove the degeneracy between the
locally identical surfaces, such as the P, G and D. The
concept of packing homogeneity is quantified by the con-
struction of a skeleton-like surface-graph that is centered
within the labyrinthine domains called the Medial Surface
(MS) or medial axis [10–12].

The paper provides explicit geometric data for the vari-
ations in channel diameter and Gaussian curvature on a
number of IPMS. We formulate a heuristic energy func-
tional that incorporates the notion of a preferred channel
diameter (induced, for example, by a preferred molecular
chain length) with the conventional (local) bending energy
and analyse its generic implications to relative stability of
various structures. At this stage, we refrain from assign-
ing relative weights to stretching versus bending contri-
butions. In our view, the elucidation of geometric princi-
ples is more important than detailed quantitative analysis
based on models that — owing to the intricacies of the
physical system — incorporate many parameters, few of
which can be measured directly. At the very least, gaining
an understanding of the geometric principles is a necessary
precursor to such calculations.

We note at the outset that non-local measures of rel-
ative stability are necessarily dependent on dimensions,
unlike previous local energy measures — an unavoidable
complication when bending and stretching energies are
coupled.

2 Previous homogeneity analyses

Appreciation of the importance of surface homogeneity to
self-assembly processes is not new. Anderson et al. anal-
ysed the frustration between chain stretching and film
bending in cubic type II lyotropic liquid crystals: two ap-
proximately parallel surfaces (the H = 0 interface and the
polar headgroup surface in type II systems) either have
variations in the curvature and constant distance (real
parallel surfaces), or constant mean curvature at the ex-
pense of variations in the thickness [14]. Another early
account of the competition of bilayer thickness and cur-
vature is given by Sadoc and Charvolin [15]. Helfrich and
Hyde independently ascertained that fluctuations of the
Gaussian curvature of the IPMS correspond to frustra-
tion in lyotropic systems [16,17]. Schwarz and Gompper
have published similar results including distributions of
the Gaussian curvature [18,19]. Their ensemble of can-
didate geometries, while comprising the more unusual

F-RD, I-WP, S and C(P) surfaces, is restricted to cubic
symmetries.

Duesing et al. give a measure for packing frustration
in inverse hexagonal, micellar and the cubic bicontinuous
Diamond phase. Their measure is essentially the second
moment of the distribution of distances between the inter-
face surface and the skeletal line graph [20]. We argue that
the MS distance function is a more robustly defined and
more appropriate measure. Fogden and Hyde published
second moments of the distribution of Gaussian curvatures
of the continuous one-parameter IPMS families analysed
here [10].

A useful global variable for crystalline hyperbolic in-
terfaces is the homogeneity index H = −A3/2/(

√
2πχV ),

a scale-invariant parameter relating global properties
V , A and integrated Gaussian curvature 2πχ (topol-
ogy) [11,17,21]. This index combines scale-invariance with
independence of the choice of surface motif, n; the latter
issue muddies simpler scale-invariant surface to volume ra-
tios of the form A/V 2/3 [22]. The variable was associated
with ‘homogeneity’ due to the observation that a fictional
hyperbolic partition of constant curvature (and hence con-
stant MS distance function or channel diameter) has the
value of 3/4. However, the homogeneity index does not
afford a global bound for hyperbolic interfaces: e.g. one
member of Schwarz’ Hexagonal surface (H) has large cur-
vature fluctuations and nevertheless the “ideal” value of
3/4 [10], see also below. However, we retain this name for
consistency, though it is a misnomer.

The homogeneity measures proposed in this article,
based on variations of channel diameters, have been anal-
ysed for the cubic Primitive, Diamond and Gyroid sur-
faces by Schröder et al. [12]. Preliminary data for the rPD
surface family has been published in [23].

3 Helfrich-like systems and homogeneity

Supramolecular aggregation, driven by total immiscibil-
ity of distinct moieties of the molecules, results in a two-
dimensional surface that lies between and bounds the im-
miscible domains; their interior volumes can be modelled
by foliations of parallel surfaces. In some cases, those do-
mains are thickened sheets with a preferred thickness, al-
ternatively, they may be bounded only by the cleaving
surface and their interiors consist of the sub-volume to one
side of the surface. In either situation, the domains’ shape
is determined by the local and global geometry of the
cleaving surface. The notion of local surface homogeneity,
with small curvature variations on the surface, pervades
all theories of self-assembly that are based on Helfrich
energy-functionals [24]. Both local and global homogene-
ity — governed by curvature and thickness variations —
arise naturally in materials whose constituent molecules
have a single distinct preferred shape. That shape may be
determined by simple stereo-chemical requirements, as in
small amphiphiles (“shape parameter” [21,25]), or indi-
rectly result in order to maximise chain entropy in larger
copolymer materials. The thickness is due to a well-defined
average molecular length. The curvature of the interface is
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Fig. 1. Surfactant self-assembly as an example where a pre-
ferred curvature K0 and distance function d0 arises from the
typical molecular shape: surfactant molecules may be charac-
terised by the shape parameter V/(A l) where A is the head
group area, l the average chain length and V the volume per
molecule. These amphiphilic molecules rearrange water (and
possibly oil) in such a way that they pack with their tails in
a hydrophobic (oily) phase and their headgroup towards the
water. The shape of the molecule determines the preferred cur-
vature. Two types of mesophases are distinguished, illustrated
by a cross-section (along [110]) through the P surface. Type II
where two water-channels are separated by a hydrophobic bi-
layer, and type I, where a layer of water separates two hy-
drophobic channels. These hydrophobic regions can be hydro-
carbon chains with or without additional oil. The MS can be
considered as the “chaotic zones” [28].

set by the variation in cross-sectional area of the molecule
from end-to-end, or the molecular splay. The optimal spa-
tial structure for such systems consists of surfaces with
curvatures and space tiling properties (defined rigorously
below) that match the typical molecular shape. We restrict
our discussion to the special case of interfaces with van-
ishing mean curvature H = 0. This constraint simplifies
the analysis, yet remains physically reasonable. It is rele-
vant, for example, to molecular assemblies such as an am-
phiphilic bilayer composed of identical opposed monolay-
ers, or symmetric multi-block copolymer assemblies. The
mathematical surface describing the bilayer geometry is
located in the centre of the bilayer, equidistant from the
pair of surfaces describing the hydrophobic-hydrophilic in-
terface at each monolayer. Due to the monolayer symme-
try, we assume that the bilayer mid-surface has vanishing
mean curvature (H).

The intricacies of systems whose interfaces are hyper-
bolic arise because an ideal, locally and globally homo-
geneous, surface does not exist in our space, leading to
inherent frustration. Hyperbolic geometry tells us that a
surface with constant negative Gaussian curvature cannot
be smoothly embedded in three-dimensional Euclidean
space [26,27].

Figure 1 illustrates the relationship between surface
curvatures and tiling properties and the average molec-
ular shape for a lipid/surfactant self-assembly process.
We emphasise that this is only one example for a system
with preferred curvature/thickness, and that the analysis
of this paper is not restricted to that particular system.

We characterise the space tiling properties of a surface
as follows. Introduce the distance function d: S → R+ for

all points on the surface S. For a point p ∈ S the dis-
tance d(p) is defined as the radius of the largest sphere
that fits within one labyrinth and touches p; the sphere is
centred at p+d(p)N(p), where N(p) is the surface normal
at point p. This distance function measures the ‘thickness’
of the volume element (or the point-wise channel radius).
The meaning of d(p) is clear from consideration of the
transport of a surface point along its normal direction,
i.e. p′ = p + r N(p) with increasing positive r. For suffi-
ciently small r, p remains the closest surface point to p′.
However, as r increases beyond d(p), p ceases to be the
closest surface point to p′, see Figure 3. In this sense, d(p)
measures the depth (or length) of the infinitely narrow
space tile associated with the infinitesimal surface patch at
point p, i.e. the local thickness of the labyrinth at point p.
A further discussion of this definition is given in Section 5
and Figure 3.

With these definitions we introduce a simple energy
functional

H(S) =
∫

S

[
α (K(p) − K0)2 + β (d(p) − d0)2

]
dS (1)

where K0 is the preferred Gaussian curvature and d0 the
preferred distance. α and β are positive constants. This
functional has two independent elastic moduli: α and β.
The former is related to the usual saddle spay modulus
governing curvature energies in the Canham-Helfrich func-
tional, as described in equation (5) below. The latter mod-
ulus is related to molecular compressibility, induced by
the energetics of trans-gauche isomerism in shorter-chain
molecules or chain refolding in macromolecules.

Equation (1) is insufficient to induce molecular self-
assembly into defined shapes, as it neglects surface ten-
sion. We mimic this effect by constraining the total sur-
face area to adopt a certain value (e.g. the sum of the head
group sizes in lipid self-assembly). Note that equation (1)
includes integrals whose contribution to the total energy
scales with the total area (αK2

0 and βd2
0).

It is important to note that the energy functional in
equation (1) penalises deviations from the preferred Gaus-
sian curvature K0 and preferred distance d0 rather than
from the average Gaussian curvature 〈K〉 and average dis-
tance 〈d〉. The two are in general different, 〈K〉 '= K0 and
〈d〉 '= d0. Deviations from the preferred (x0) and average
(〈x〉) values of a variable x are related by the equation

〈(x − x0)2〉 = 〈(x − 〈x〉)2〉 + (〈x〉 − x0)
2. (2)

We introduce area averages of the relevant geometric vari-
ables, viz. 〈x〉 = (1/A)

∫
S xdS, where A denotes the sur-

face area A =
∫

S dS of the cleaving surface. We deal
here exclusively with crystalline surfaces and adopt the
convention that S refers to an asymmetric patch of the
surface, containing n patches in toto. The asymmetric
patch is chosen with respect to the space group of the
oriented surface, i.e. the group that specifies all symme-
tries of a single labyrinth only (excluding symmetries that
exchange labyrinths). An asymmetric patch is that por-
tion of the surface contained within an asymmetric vol-
ume of the (oriented) space group. The choice of patch is
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arbitrary, however all measures are independent of that
specific choice. We emphasise also that all measures anal-
ysed in this article are intensive in a thermodynamic sense,
i.e. they do not depend on the size of the surface patch
on which they are analysed, provided it is representative
and the length scale is fixed. We are also free to choose an
enlarged ‘asymmetric’ patch formed within an asymmet-
ric volume of a lower-symmetry embedding of the surface
(e.g. the asymmetric domain of the rhombohedral setting
of the cubic G surface) without affecting the measures.
The curvature measures can be deduced within a con-
tracted asymmetric patch, associated with the asymmetric
volume of the non-oriented space group of the surface (in-
cluding symmetry elements that exchange the two sides
of the surface). Given that the pair of labyrinths need not
be symmetrically related in a generic IPMS, measures in-
volving the distance function are better calculated with
respect to the asymmetric patch of the oriented surface.
That allows equation (1) to be rewritten:

H = n A
[
α〈(K − 〈K〉)2〉 + α(〈K〉 − K0)2

+β〈(d − 〈d〉)2〉 + β(〈d〉 − d0)2
]
. (3)

Note that n is a variable, unconstrained by the system.
In particular, this implies that fixing the total area (n A)
alone is not sufficient to set the length scale of the system,
even if only a single model geometry was considered (see
also Sect. 6).

Motivated by equation (3), we define the fluctuations
of Gaussian curvature, ∆K and of the distance function,
∆d as the standard deviation of the respective distribu-
tions

∆K =
√
〈(K − 〈K〉)2〉 ∆d =

√
〈(d − 〈d〉)2〉. (4)

Analyse first the local curvature contributions to the en-
ergy functional of equation (3). With the help of equa-
tion (2) this is readily transformed into a more tractable
form. Introduce the asymmetric surface patch, S, with
averaged Gaussian curvature 〈K〉 and area A. The Euler-
Poincaré characteristic χ(S) of the asymmetric patch fol-
lows from the global Gauss-Bonnet theorem,

∫
S KdS =

−2πχ(S). Introducing the saddle splay modulus, kc =
2αK0, leads to the curvature contribution to the energy
functional:

HC = n A

[
kc

2K0
〈K2〉 + 2πkc

χ

A
+

kcK0

2

]
. (5)

Note that the last two terms in the brackets are topolog-
ical invariants and material constants respectively, inde-
pendent of the length scale adopted by the surface as long
as n does not change.

Consider next the contributions of the global geome-
try to the energy functional of equation (3) via the thick-
ness terms. The adoption of an elastic functional about
a preferred layer thickness, d0 is a useful starting point,
of varying physical relevance, depending on the molecu-
lar make-up of the assembly. Bicontinuous geometries for
block copolymers are well-known [29–31]. In contrast to

lyotropic systems, copolymeric molecules tile space with-
out extra components, so that the domains occupied by
the polymeric chains tessellate space. The free energy of
copolymeric assemblies can be modelled in terms of en-
tropy of self-avoiding Gaussian chains. That model in-
duces an effective thickness for each copolymer block [32]1.
For copolymeric materials then, packing homogeneity,
achieved by minimising the magnitude of ∆d encodes
crudely the propensity for chains to have a preferred
end-to-end distance. The interpretation of distance vari-
ations (∆d) as a chain stretching contribution in molec-
ular binary or ternary lipid (or surfactant) self-assembly
is immediately relevant to bicontinuous type I lyotropic
amphiphile-water mixtures, containing a pair of hydropho-
bic labyrinthine domains, whose hydrocarbon chain ends
lie buried within the domains, see Figure 1. For these as-
semblies, the chain stretching energy is related to ∆d if
the water film separating the two labyrinths is of constant
thickness.

Some energetic contribution of global geometrical fea-
tures related to the domain thickness d is certain, even in
cases (such as type II lipid self-assembly) where we are un-
able to offer an explicit model. Local contributions to the
energy, based on curvature expansions, are strictly valid
in the limit of vanishing bilayer thickness compared to bi-
layer curvature2. For example, the ratio of chain lengths
to channel radii in lyotropic bicontinuous mesophases typ-
ically fall between 1:1 and 2:1. For example, the unit-cell
length of the type II Im3m phase in DDAB-cyclohexane-
water is 116 Å, with approximately 600 atoms per unit-cell
and a chain length of 10–13 Å. The ratio of the minimum
diameter (116/4 Å) of the P surface to the chain length
is roughly 1:2 [34]. Such ratios indicate that global shape
contributes to a significant degree to the relative stablity
of various geometries.

4 Continuous families of IPMS

We study one-parameter families of IPMS that are sym-
metry degradations of the cubic Primitive, Diamond and
Gyroid surfaces, retaining either three- or four-fold sym-
metries. Parametrisations of these surfaces are presented
in [10], some additional detail and a complete list of all
symmetry sites in [35], and a discussion of the channel
graph structure and visualisations in [36]. The free param-
eters of the surfaces, r0 or φ0, arise from the Weierstrasss
parametrisation formulae for minimal surfaces, that asso-
ciate an embedding of the minimal surface in 3D Euclidean
space with the (unit) normal vectors of the surface, via
the Gauss map, whose domain is the complex plane. (The
Gauss map is essentially determined by the surface nor-
mals at the ‘flat points’ of minimal surfaces, where the

1 That paper incorrectly claims that the most homogeneous
morphology is based on the D surface. Here we correct that
assertion.

2 Note that, given the possibility of surface transformations
preserving minimality (such as rG, rPD, tP, etc.), incorpora-
tion of higher order terms is necessary even in this limit for
consistency with thermodynamic stability [33].
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Fig. 2. Schematic layout of the three cubic IPMS and the
pathways of their 3- and 4-fold generalisations and relatives.
The terminals (open circles) of the families are labeled 3 and
4 representing saddle towers of this symmetry (* denotes the
adjoint), or h and c to indicate helicoid and catenoid. Arrows
indicates the direction in which the free parameters chosen to
parametrise the surfaces increase (adapted from Fig. 3 in [10];
in that figure the order of the P, h and the rG endpoint along
the line representing the rPD family, and similarly for the tD,
was incorrect).

surfaces Gaussian curvature vanishes.) The flat points are
located in the complex plane at ω0 = r0 exp(iφ0). Note
that the two parameters r0 and φ0 are not independent,
hence resulting in one-parameter families. Figure 2 shows
a schematic layout of the surface families in terms of their
single complex parameters r0 and φ0. Although this exact
parametrisation procedure is mathematically convoluted,
and calls on some understanding of differential geome-
try and complex analysis, it affords significant advantages
over other more approximate methods to deduce IPMS
geometry. For example, the span of realisable unit cell de-
formations for the IPMS families emerges at once from
this approach.

Generic members of the tetragonal tG IPMS family,
parametrised by the value of φ0, retain the 4-fold rota-
tional symmetry of the cubic Gyroid, but not the 3-fold
symmetry [10]. For φ0 = −π/4, the tG surface coincides
with the cubic Gyroid; φ0 = 0 corresponds to a mem-
ber of the tD surface family. For φ0 = −π/2 it becomes
the 4-fold “saddle tower” [37] where the lattice period a
goes to infinity. The tD and tP surface families [38] re-
tain the 4-fold symmetry of the cubic D and P surfaces,
respectively. They are adjoints of each other with free pa-
rameter r0. In the limit r0 → 0 the tP approaches the
catenoid; for r0 → 1 the tP surface approaches the one-
periodic 4-fold saddle tower. The cubic P surface is re-
alised for r0 = (2 −

√
3)1/2 ≈ 0.51764 . Similarly, the tD

surface approaches the one-periodic helicoid as r0 → 0
and the adjoint of the 4-fold saddle tower at r0 → 1. For
r0 = (2 −

√
3)1/2 ≈ 0.51764 corresponds to the cubic D

surface. For φ0 = 0, the endpoint of the tG family is re-
alised with r0 = 0.43188.

The rhombohedral (rG) IPMS examples retain the
three-fold rotational symmetries and lose four-fold sym-

metries of the cubic Gyroid; members of the one-
parameter family are parametrised by φ0 [39,11]. The rG
surfaces with φ0 = 0 also belongs to the rPD surface fam-
ily; the rG surface with φ0 = −π/6 is the so-called HG or
Lidinoid surface [40]; φ0 = −π/3 gives the cubic Gyroid
and as φ0 → −π/2 the rG surfaces approach the three-fold
saddle tower [37]. Rhombohedral distortions of the P and
D surfaces yield, somehow surprisingly, a single surface
family rPD with free parameter r0. When r0 = 0.49472,
the rPD surface is coincident with the φ0 = 0 endpoint of
the rG surface; r0 = 1/

√
2 gives the cubic P, r0 =

√
2 the

cubic D. As r0 → 0 the surfaces apporach the helicoid, for
r → ∞ they approach the catenoid.

Finally, Schwarz’ Hexagonal (H) surfaces are a one-
parameter family of IPMS, with free parameter r0. Unlike
the other IPMS families that exhibit isolated higher sym-
metry members, the symmetry of all members of the H
family remains unchanged on deformation; the member
with r0 = 0.49701 corresponds to the maximum stretch
c/a = 0.8840 (in both symmetry settings that include
and exclude the inversion symmetry of the surface, viz.
P6m2 and P63/mmc respectively). As r0 → 1, the H sur-
faces approach the three-fold saddle-tower, found also as
an endpoint of the rG surface family.

These complex symmetry and surface relations be-
tween IPMS families allow a number of pathways between
the P, D, and Gyroid cubic surfaces, such that all in-
termediate structures are themselves IPMS without self-
intersections. In particular, there are two paths connecting
the cubic D and G, one of rhombohedral symmetry (D→
rPD → P → D → rPD → rG → G) and one of tetragonal
symmetry (D → tD → tG → G).

The ensemble of these surface families includes,
apart from the tCLP surface, all IPMS of the regular
class [41,42] that represent pathways between the cubic P,
D and G surfaces. Here we restrict ourselves to the above
mentioned IPMS families. Note, however, that if one re-
laxes the requirement that the transition structures are
minimal surfaces, other pathways can be found. In par-
ticular, some nodal surfaces (implicit surface parametri-
sations as level-sets of sums over Fourier modes [43–45])
provide pathways between IPMS, via intermediates that
are close to IPMS.

5 Medial surfaces and space partitions

The medial surface (MS) represents a bounded domain in
three-dimensional Euclidean space E3 as a surface skele-
ton centered within that domain [10,11]. Unlike simpler
transforms, such as skeletal graphs, the MS retains all in-
formation about the topology and geometry of the do-
main, when combined with an additional scalar quantity,
the distance function mentioned above [46].

We apply the usual definition of the MS to the case of
a periodic domain C in three-dimensional Euclidean space
E3 that is bounded by an IPMS S [12]. The domain C is
the subset of E3 on one of the two sides of S. We assume
that the normal field N on S is normalised, i.e. |N(p)| = 1
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N(p’)p’

p

q

MS

S

Fig. 3. 2D illustration of the medial surface construction for
a domain C (white) which is the complement of a symmetric
set of ellipses. The two dashed circles are maximal disks, with
centres on the MS. Also shown is the asymmetric unit of the
structure (dotted triangle) from which the entire structure is
obtained by application of symmetry operations.

for all p ∈ S, and that it points into C. The differentiabil-
ity of S implies that N is smooth.

The MS of domain C is the locus of centers of all maxi-
mal spheres in C, defined to be spheres which are fully con-
tained in C and not fully contained in any other sphere in
C. These maximal spheres touch S in two or more points,
as well as limit points of the domain. It follows from this
definition that every point p on S is mapped uniquely onto
a corresponding point q = ms(p) on the MS. Namely, the
touching points of the maximal spheres are mapped onto
their centres. Therefore, the medial surface transform is
given by the equation

ms : S → C, p *→ ms(p) := p + d(p)N(p), (6)

where N is the normal field of S and d: S → R+ is called
the distance or radius function. Note that the reverse map
is not unique. Figure 3 illustrates the MS construction.

An algorithm to compute the MS of IPMS, based on
earlier work by Amenta et al. [47,48] and others [49–53],
has been described in [12]. Its input is a triangulated sur-
face (such as in [35]) sampling an asymmetric unit patch
of the IPMS, together with surface normals at each tri-
angular surface facet. The algorithm is Voronoi-based; it
computes the 3D Voronoi diagram of the sample points on
S. Then, for each sample point p it assigns the intersection
of the ray p + [0,∞] N(p) with the Voronoi cell Vc(p) of
point p as the MS point ms(p).

The MS construction yields a partition of space into
prismatic volume elements that are thin but long, extend-
ing normal to the IPMS. This space partition is particu-
larly suited for analyses of local (intrinsic) and global (ex-
trinsic) homogeneity. Figure 4 illustrates the construction
for the 2D case: the surface S = ∂C (or its asymmetric
patch if symmetries are present) is subdivided into small
area elements Si. A volume element Vi, associated with
each Si, is defined as the space between Si and its im-

α
d

1q

q
2

p 2

1p

MS

Si

Vi

N(p1)

S
!!"

asymmetric unit volume

#
#
#
#
#
#$

Fig. 4. Illustration of the space partition used to define ho-
mogeneity. The cells corresponding to the asymmetric unit are
alternately colored in light and dark gray. The angle α is in-
dicative of the local curvature K.

age ms(Si) on the MS. We assume that the area elements
are so small that the variations of the MS distance func-
tion d and of the Gaussian curvature K over the points of
an individual Si are negligible. Then the volume elements
are characterised by the surface area Ai of Si, the length
d = 〈d(p)〉 =

∫
Si

d(p)/Ai and the volume vi of Vi. Note
that the volume, Vi, associated with a surface patch, Si,
comprises only one of the two IPMS subvolumes. Through-
out this article, V denotes the volume on one side of the
IPMS only.

For computational purposes we use the facets of the
triangulation of S as area elements. The volume elements
are simple polytopes bounded by the triangle {p1, p2, p3}
on S, its image {q1, q2, q3} where qi = ms(pi) and the
fourgons {pi, pj, qj , qi} with {i, j} = {1, 2}, {2, 3}, {3, 1}.
The average distance function is computed over the three
vertices, d =

∑3
i=1 d(pi)/3.

The MS construction is sensitive to small changes of
the surface normal field N . In particular, the volume tiles
Vi are finitely long, with their length given by d(p), even if
the area tiles Si are infinitesimally small; see the appendix
of [12] for further discussion. This sensitivity is common
to all surface measures that depend on the surface nor-
mal. For example, both the Gaussian and mean curvature
are sensitive to such variations; these curvatures are of di-
rect physical relevance to many systems, via the Helfrich
functional.

A detailed description of the MS geometry of the cubic
P, D and G surfaces is given in [12], and of the surface
families discussed here in [36].

6 Length scale normalisation

IPMS are by their nature scale-free, i.e. rescaling of the
coordinates {x′, y′, z′} = {Γx, Γy, Γ z} for any finite factor
Γ does not affect their vanishing mean curvature. How-
ever, the distance function, the Gaussian curvature and
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higher moments of their distributions, are sensitive to the
length-scale. Hence, comparison of these parameters for
different surfaces is dependent on the length scale chosen
for each surface. Here we focus on purely geometric con-
cepts (hence avoiding the formulation of an energy func-
tional that fully determines the length scale). Accordingly,
we analyse all surfaces for three distinct length-scale nor-
malisations: (i) the average distance function 〈d〉; (ii) the
surface-to-volume ratio V/A; or (iii) the average Gaussian
curvature 〈K〉 are constant.

For any finite positive factor Γ and any surface S the
rescaling operation

{x′, y′, z′} = {Γx, Γy, Γ z} (7)

defines an affinely transformed surface S′. The Gaussian
curvature, the surface-to-volume ratio, the surface area
and the MS distance function of S′ are given by

K ′ =
1

Γ 2
K,

V ′

A′ = Γ
V

A
, A′ = Γ 2 A, d′ = Γ d. (8)

The same scaling holds for their averages 〈K ′〉 and the
standard deviation ∆K ′ =

√
〈K ′2〉 − 〈K ′〉2 (and similarly

for V ′/A′ and d′). The following scaling factors lead to
surfaces with normalised 〈K〉, 〈d〉 or V/A:

Γ =
√
〈−K〉 ⇔ 〈K ′〉 =

1
Γ 2

〈K〉 = −1 (9)

Γ = 1/(V/A) ⇔ V ′

A′ = Γ
V

A
= 1 (10)

Γ = 1/〈d〉 ⇔ 〈d′〉 = Γ 〈d〉 = 1. (11)

Note that the normalisation to constant 〈K〉 also implies,
by virtue of the global Gauss-Bonnet theorem, that the
surface area per integrated curvature A/χ is constant.
Within each individual surface family (where χ is con-
stant) that implies that A is constant. However, normal-
isation to constant A for all surfaces is not well-defined,
since the choice of surface unit (S) is arbitrary. Indeed,
for any surface S, A can be adjusted to any integer mul-
tiple (n A), either by taking n copies of the patch without
changing the length scale, or by adjusting the length scale
according to equation (8) with Γ =

√
n. In other words,

for the total interface, the area A can be normalised for
arbitrary scaling by adjusting the number of translational
unit cells or asymmetric unit patches. We refer also to the
discussion in the appendix of [54].

7 Homogeneity of rPD, rG, H, tD, tP and tG

This section presents data for extrinsic and intrinsic homo-
geneity (in the sense of Sect. 3) as well as for the average
Gaussian curvature and distance function values for the
tG, tP, tD, rG, rPD and H surface families. These data
are presented for the three distinct length-scale normalisa-
tions introduced in the previous section. In the following
we use the term global (local) homogeneity for the value of
∆d (∆K), with optimal homogeneity corresponding to a
minimum of that quantity.

Figures 5 and 6 give data for ∆K, ∆d, 〈K〉 and 〈d〉 for
all six surface families and various length scale normal-
isations. In addition, Figures 8 and 9 provide V/A and
symmetry group parameters, useful for structure identifi-
cation from symmetry data. Table 1 lists numerical values
of all relevant parameters for extrema and other relevant
surface members.

All numerical data for 〈d〉 and ∆d is computed for tri-
angulated patches of the asymmetric surface patches and
MS points from the MS algorithm described in Section 5.
The asymmetric patches (of the space groups of the ori-
ented surfaces) were sampled with similar density of ap-
proximately 2500 points for the H, rPD, tD and tP surface,
corresponding to 5000 points for tG and rG. In addition,
some of the rPD members were sampled at approximately
twice that density in the vicinity of the cubic P. All cur-
vature, surface area, volume and lattice parameter data
stems from analytic expressions derived from the Weier-
strass parametrisation containing elliptic integrals [11,35].
These were evaluated using standard numeric integration.

A first observation is that the behaviour of the ho-
mogeneity measures is qualitatively similar for all three
length scale normalisations considered, at least in the
properly three-periodic regime (sufficiently far from the
aperiodic or 1- or 2-periodic limits). In particular, the min-
ima of ∆K, ∆d, 〈d〉 and 〈K〉 occur, within the resolution
of our data, at the same values of the free parameters,
independent of the normalisation3.

The local (curvature) homogeneity data confirms pre-
vious results: the most symmetric embeddings (i.e. cubic)
of the rPD, tG, rG, tD, tP generic families display opti-
mal local homogeneity. For all normalisations the (cubic)
D, P and G surfaces are local minima of ∆K, relative to
rhombohedral and tetragonal distortions that retain the
minimal surface feature. For normalised 〈K〉, their abso-
lute values (∆K/〈K〉2) are equal, due to the (Bonnet)
isometry between these surfaces [10]. In contrast, surface
scaling to give normalised 〈d〉 or V/A lifts this degeneracy,
leaving the G as the most locally homogeneous, followed
by the D and then the P. We note that the sequence P →
D → G, observed in previous analyses [19], is due to this
effect.

Our analysis reveals that packing homogeneity,
quantified by ∆d, is locally minimal for the cubic D and
G surfaces with respect to rhombohedral (rPD, rG) and
tetragonal (tG, tD) IPMS deformations, regardless of nor-
malisation. Therefore, these two cubic IPMS minimise dis-
tance fluctuations as well as curvature variations with re-
spect to rhombohedral or tetragonal relatives. Hence, both
global and local homogeneity can be simultaneously opti-
mised by formation of these two cubic surfaces.

3 Note that for the minimum of ∆d of the H surface, this
statement is only correct within the resolution of our data. A
slight shift of the extremum is unavoidable: the unnormalised
function ∆d(r0) has a minimum at rmin. The normalising func-
tions Γ1(r0) = A/V and Γ2(r0) = sqrt〈−K〉 are strictly mono-
tonic decreasing at rmin and not identical. Hence, the minima
of ∆d(r0)×Γ1 and ∆d(r0)×Γ2 cannot be at exactly the same
value.
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Table 1. Values of the various properties at significant points of the surface families. The space groups given are for the oriented
surfaces. χ is the Euler-Poincaré characteristic of the asymmetric unitpatch in those spacegroups, and A its surface area. a and
c are the lattice parameters. See Figures 5 to 9 for the full functional dependence of these properties on the free parameter of
the TPMS family. Note that the volume V is the volume on one side of the surface, i.e. of one of the two labyrinths only.

V/A = const. = 1, r = A/V

significance H r2(∆d)2 r〈d〉 (∆K)2

r4
〈K〉
r2 r a r2 A c/a

r0 Hexagonal H, P6m2, χ = 1/3

0.40534 H = 3/4 0.7500 0.0581 1.1874 0.1642 0.4444 5.3192 4.7123 0.8677

1/2 max. c/a 0.7458 0.0436 1.2330 0.0916 0.4495 5.2666 4.6595 0.8840

0.53607 adj. of HG 0.7462 0.0395 1.247 0.0774 0.4490 5.2737 4.6645 0.8813

0.62059 min. curv. fluc. 0.7481 0.0362 1.2687 0.0648 0.4467 5.3281 4.6890 0.8591

0.735 min. dist. fluc. 0.7480 0.0302 1.2373 0.0820 0.4469 5.4603 4.6868 0.7978

φ0 rG, R32, χ = 2/3

−π/3 cubic G 0.7667 0.0037 1.2974 0.0396 0.4253 8.7439 9.8483 0.6124

−π/6 HG 0.7550 0.0291 1.2459 0.0739 0.4385 8.0426 9.5519 0.7633

r0 rPD, R3m, χ = 1/3

0.49472 rG endpoint 0.7488 0.0368 1.2241 0.0870 0.4458 7.8825 4.6978 0.7975

0.53 max. dist. fluct. 0.7372 0.0412 1.2559 0.0750 0.4600 7.5957 4.5530 0.8638

1/
√

2 cubic P 0.7163 0.0335 1.3046 0.0519 0.4872 6.6329 4.2989 1.2247

1 max of ∆K/〈K〉2 0.7355 0.0277 1.2876 0.0562 0.4622 5.8715 4.5316 1.8612√
2 cubic D 0.7498 0.0092 1.2983 0.0432 0.4446 5.4274 4.7104 2.4495

2.02134 max c/a 0.7461 0.0260 1.2309 0.0883 0.4491 5.2700 4.6630 2.6488

r0 tD, I41/amd, χ = 1/4

0.43188 rG φ0 = 0 0.7607 0.0188 1.2546 0.0591 0.4320 5.9028 3.6360 1.1315

0.51764 cubic D see rPD with r0 =
√

2 5.4275 3.5329 1.4142

φ0 tG , I4122, χ = 1/2

0 endpoint on tD see tD with r0 = 0.43188 5.9028 7.2720 1.1315

−π/4 cubic G see rG with φ0 = −π/3 6.1831 7.3870 1

r0 tP , P4/mmm, χ = 1/4

0.51764 cubic P see rPD with r0 =
√

2 4.6902 3.2242 1

In contrast, frustration between local and global ho-
mogeneity constraints arise for the P family. Although the
cubic P surface minimises local curvature inhomogeneities,
as well as distance fluctuations within the tP family, it is
not a minimum, but an inflection point of ∆d, along the
rPD family. Indeed, the P surface can be transformed into
the D surface via rPD surfaces such that all intermediate
members are more packing homogeneous than the P. That
observation holds within the precision of our data, ±0.01
in (∆d)2.

Local and global homogeneity measures for Schwarz’
H(exagonal) IPMS family also exhibit distinct behaviours.
The values of the free parameter for H surface mem-
bers that optimise local and global homogeneity mea-
sures are not the same. Figure 7 shows a close-up of the
quantities Γ 2∆K and ∆d/Γ normalised to constant V/A,
i.e. Γ = A/V . The minimum of Γ 2∆K is at r0 = 0.62059,
whereas the minimum of ∆d/Γ is at r0 = 0.735 for all
normalisations Γ of equations (9–11). This discrepancy
leads to a frustration in a system with energy functional
given by equation (1). The dimensionless and intensive
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Fig. 7. Homogeneity data for Schwarz’ hexagonal surface (H).
The values of the free parameter A for which the fluctuations
of the curvature and the fluctuations of distance function are
minimal and for which H = 3/4, are different. The behaviour
for normalisations to constant 〈d〉 and 〈K〉 is qualitatively sim-
ilar, and omitted for the sake of clarity.
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Table 2. Continuation of Table 1.

〈K〉 = const. = 1, r =
√

〈−K〉 〈d〉 = const. = 1, r = 1/〈d〉
r r2(∆d)2 r〈d〉 (∆K)2

r4 r V/A r a r2 A r2(∆d)2 (∆K)2

r4
〈K〉
r2 r V/A r a r2 A

r0 Hexagonal H

0.40534 0.0258 0.7916 0.8314 0.6667 3.5461 2.0944 0.0412 0.3264 0.6266 0.8422 4.4798 3.3425

1/2 0.0196 0.8267 0.6862 0.4535 3.5309 2.0944 0.0287 0.2118 0.6834 0.8110 4.2713 3.0648

0.53607 0.0177 0.8358 see HG 0.6701 3.5338 see HG 0.0254 0.1874 0.6985 0.8018 4.2282 2.9984

0.62059 0.0162 0.8479 0.3249 0.6683 3.5609 2.0944 0.0225 0.1680 0.7190 0.7882 4.1995 2.9129

0.735 0.0135 0.8271 0.4107 0.6685 3.6501 2.0944 0.0197 0.1922 0.6841 0.8082 4.4131 3.0615

φ0 rG

−π/3 0.0016 0.8461 0.2188 0.6522 5.7026 4.1888 0.0022 0.1121 0.7159 0.7708 6.7395 5.8507

−π/6 0.0127 0.8250 0.3841 0.6622 5.3259 4.1888 0.0187 0.1780 0.6807 0.8026 6.4553 6.1537

r0 rPD

0.49472 0.0164 0.8174 0.4376 0.6677 5.2631 2.0944 0.0246 0.1953 0.6681 0.8169 6.4392 3.1350

0.53 0.0190 0.8518 0.3542 0.6782 5.1517 2.0944 0.0261 0.1865 0.7256 0.7962 6.0478 2.8864

1/
√

2 0.0163 0.9106 0.2188 0.6980 4.6297 2.0944 0.0197 0.1504 0.8292 0.7665 5.0842 2.5258

1 0.0128 0.8754 0.2629 0.6798 3.9917 2.0944 0.0167 0.1544 0.7663 0.7766 4.5600 2.7332√
2 0.0041 0.8657 0.2188 0.6668 3.6191 2.0944 0.0054 0.1229 0.7495 0.7702 4.1803 2.7944

2.02134 0.0117 0.8249 0.4376 0.6702 3.5318 2.0944 0.0171 0.2027 0.6805 0.8124 4.2813 3.0776

r0 tD

0.43188 0.0081 0.8246 0.3165 0.6573 3.8797 1.5708 0.0120 0.1463 0.6800 0.7971 4.7050 2.3101

0.51764 see rPD with r0 =
√

2 3.6190 1.5708 see rPD with r0 =
√

2 4.1804 2.0959

φ0 tG

0 see tD with r0 = 0.43188 3.8797 3.1416 see tD with r0 = 0.43188 4.7050 4.6202

−π/4 see rG with φ0 = −π/3 4.0323 3.1417 see rG with φ0 = −π/3 4.7662 4.3894

r0 tP

0.51764 see rPD with r0 =
√

2 3.2737 1.5708 see rPD with r0 =
√

2 3.5951 1.8943

homogeneity index H = A3/2/(
√
−2πχV ) [11,21,17] for

the H surface family is also shown in Figure 7. The H sur-
face has a member, r0 = 0.40534, for which it adopts the
value 3/4 (once believed to indicate optimal homogene-
ity). It has already been shown that that value does not
correspond to minimal curvature fluctuations [10]; neither
does it minimise global packing inhomogeneities, see also
Figure 5 and Table 1.

It is interesting to compare homogeneity data for the
cubic P IPMS with the most locally homogeneous member
of the H surface family, r0 = 0.62059. To our surprise,
we find that this H surface is almost as homogeneous as
the cubic P surface, in terms of both local and global
measures.

Consider next the energy cost due to curvature and
distance fluctuations for the various pathways between
the surfaces, displayed in Figure 2. In particular, there
are two paths connecting the cubic D and G: one of
rhombohedral symmetry (D→ rPD → P → rG → G)

and one of tetragonal symmetry (D → tD → tG → G).
Among these paths, the tetragonal one is far more homo-
geneous than the rhombohedral. In terms of both global
and local homogeneity, the intersection point of tD and
tG is the most inhomogeneous point along the tetragonal
path, with curvature fluctuations ∆K2

max and ∆d2
max. For

the rhombohedral path, the most locally inhomogeneous
point is the rG endpoint on the rPD (at r0 = 0.49472),
whereas the most globally inhomogeneous point is on the
rPD at r0 = 0.53. For the rhombohedral path, relative
to the homogeneity of the G given by ∆K2

G and ∆d2
G,

the local homogeneity barrier (∆K2
max − ∆KG)2)/∆K2

G
is 1.20 (0.73, 1.0) and the global homogeneity barrier
(∆d2

max − ∆dG)2)/∆d2
G is 9.8 (10.8, 10.9), for constant

V/A (〈d〉, 〈K〉). For the tetragonal path the local barrier
is 0.49 (0.3, 0.45) and the global 3.9 (2.7, 6.5), again for
constant V/A (〈d〉, 〈K〉). As a reference, ∆K2

D/∆K2
G =

0.091 (0.096, 0) and ∆d2
D/∆dG = 0.60 (1.45, 0), and

∆K2
P /∆K2

G = 0.2 (0.3, 0) and ∆d2
P /∆dG = 2.6 (2.6, 0)
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Fig. 8. Normalised volume-to-surface ratio V/A, lattice parameter ratio c/a and normalised lattice parameter a as a function
of the free parameter for the H, rG and rPD surface families. Within each column (row), the x-axes (y-axes) have the same
scale. Note that the volume V is the volume on one side of the surface, i.e. of one of the two labyrinths only.

for constant V/A (〈d〉, 〈K〉). Hence, the tetragonal path
incurs approximately half the energy cost of the rhombo-
hedral path.

A transition from the optimal H member to the cubic
Gyroid via the H family and the rG family is relatively
unfavourable, due to large penalties in both curvature and
distance functions: the large values of ∆d and ∆K at the
three-fold saddle tower (the r0 = 1 member of the H and
the φ0 = −π/2 of the rG) make that route unlikely. (This
result too holds for all three length scale normalisations.)

Thus far, we have only considered the fluctuations
of K and d around their average values. A precise as-

sessment of the implications of deviations of the average
quantities, 〈K〉 and 〈d〉, from the preferred values, K0

and d0, is not possible without assigning relative weights
for curvature and packing contributions in equation (1).
However, we note that for constant V/A the expression
Γ d = dA/V is reminiscent of the “shape parameter” used
to predict lipid self-assembly geometries [25]. For the anal-
ysis of phase transitions between D and G (both of which
are assumed to be stable phases and with very similar
values for dA/V ), a path with small variations of that
quantity should be favourable. Again, the tetragonal path
has smaller variations than the rhombohedral path.
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Fig. 9. Normalised volume-to-surface ratio V/A, lattice parameter ratio c/a and normalised lattice parameter a as a function
of the free parameter for the tD, tP and tG surface families. Within each column (row), the x-axes (y-axes) have the same scale.
Note that the volume V is the volume on one side of the surface, i.e. of one of the two labyrinths only.

So far, we have omitted any discussion of the mini-
mal surfaces that emerge as end-points of these surfaces
families. Those limit cases are no longer 3-periodic as
some lattice vectors diverge, leaving zero- and one-periodic
minimal surfaces. The zero-periodic case is the the
catenoid, one-periodic surfaces are the 3- and 4-fold saddle
towers and the helicoid. Consider the behaviour of ∆K,
〈K〉, ∆d and 〈d〉 for the 3- and 4-fold saddle towers (rG
and tG with φ0 = −π/2). The fluctuations ∆K and ∆d
are large, in fact ∆d → ∞. (The behaviour of all quan-
tities involving the Gaussian curvature is a subtle one in
that limit, as 〈−K〉/(A/V )2 → ∞, see [35] for details. Our

diagrams do not indicate that behaviour as the plot range
is too limited.) Viewed from a distance, these surfaces con-
sist of 3 and 4 asymptotically flat sheets, smoothly con-
nected along a common 3- or 4-fold axis. In the vicinity of
that axis, the surfaces form one-periodic strings of chan-
nels, oriented along distinct directions, of finite radius rh.
The distribution of distance function values then ranges
from rh to ∞.

In contrast to all other minimal surfaces, the catenoid –
that emerges as the r0 → ∞ member of the rPD and r0 =
0 of the tP family – is not a balanced surface, i.e. its two
sides are different. The fluctuations of ∆d and ∆K for the
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catenoid are larger than for periodic examples. For these
three limiting surfaces, global and local inhomogeneities
are larger than related measures for 3-periodic IPMS.

The 1-periodic helicoid (the r0 = 0 member of the
rPD and tD) requires more subtle reasoning concerning
its homogeneity, as ∆K and ∆d assume very small val-
ues. This is a consequence of the periodic sheet structure
which is, apart from its rotational screw axis, reminiscent
of a stacking of asymptotically flat lamellae (the transla-
tional lattice vector is now perpendicular to the sheets).
This causes very small variations of the distance function
(as between two parallel planes). Indeed, the helicoid is a
very homogeneous space partition, but for a planar geom-
etry rather than a labyrinth geometry. This is evidenced
by the average curvature 〈K〉 = 0 and distance function
value (or shape parameter) Γ 〈d〉 = 〈d〉A/V = 1. This ex-
ample is one where deviations of average measures from
their preferred values dominate the point-wise deviations
around the average.

8 Conclusion

Our analysis of the packing and curvature homogeneities
of the tG, tP, tD, rPD, rG and H IPMS families and their
zero-, one- and two-periodic end-members allows some
generic conclusions to be drawn regarding (i) the relative
stabilities of various minimal surface geometries as molec-
ular assemblies and (ii) the relative feasibilities of continu-
ous IPMS pathways between homogeneous three-periodic
IPMS. This work, together with [10], demonstrates un-
equivocally that the cubic Diamond and Gyroid surfaces
are distinct local maxima of the homogeneity, both in
terms of curvature and packing homogeneity. This result
holds regardless of the normalisation chosen (to either
constant V/A, constant average Gaussian curvature or
constant average distance function). For these two sur-
faces, there is no competition between curvature and pack-
ing homogeneity. This result goes some way towards ex-
plaining why the cubic Gyroid and Diamond IPMS are so
commonly found in liquid-crystalline self-assemblies.

Among the three cubic geometries, the Gyroid is the
most homogeneous: for constant V/A and 〈d〉, it has min-
imal curvature fluctuations, and for constant 〈K〉 the cur-
vature fluctuations are, due to the Bonnet isometry, iden-
tical for P, D and G. The distance function fluctuations
are also minimal for the Gyroid, followed by the D and
the P geometries (see also [12]). That conclusion may ex-
plain the prevalence of G mesophases in block copolymeric
systems, whose free energies favour local and global homo-
geneity. It is commensurate with our analysis that the only
reported bicontinuous type I lipid mesophase (i.e. the MS
distance function can be identified with the hydro-carbon
chain length) is Q230 with cubic Gyroid symmetry Ia3d,
reported by Luzzati et al. [55].

A further key result is that the cubic P surface is not
an optimum of the global (distance) homogeneity, despite
its locally optimal local (curvature) homogeneity. Within
the precision of our calculations, the P surface represents
an inflection point of the fluctuations of the distance func-

tion d; all deformations along the rPD towards the D sur-
face have lower fluctuations of d than the P. In particular,
this means that a stable phase with geometry of the cu-
bic P surface is globally frustrated. Therefore molecular-
assemblies whose energy is strongly dependent on do-
main thicknesses (e.g. those with strongly preferred chain
lengths and curvatures comparable to the chain length)
are far less likely to adopt the P surface geometry than the
D or G. We note that the P mesophase has been detected
in soft mixed-molecular assemblies, including surfactant-
water mixtures and polymer-lipid-water mixtures [56]; to
our knowledge it has not been reported in pure copoly-
mer systems, although it has been found in copolymer-
ceramics nanocomposites [57]. It is noteworthy that the
presence of the P surface geometry in liquid crystals com-
prised of a single chemical species (and hence subject to
homogeneity constraints) has been the subject of much
debate over the past few years. For example, the early re-
port of a P mesophase in the SDS-water system [58] has
not been reproduced since and the mesostructure of the
thermotropic Im3̄m mesophase has remained elusive, ap-
parently fitting neither the P surface nor the I-WP surface
(another Im3̄m IPMS) geometry [59].

Our analysis of Schwarz’ H surface was motivated by
the observation that one member (at r0 = 0.41) has the
‘optimal’ value of 3/4 for the scale-invariant homogene-
ity index H, yet large curvature fluctuations [10]. We find
that in addition to high curvature fluctuations at that
member (more than double compared to the minimum
at r0 = 0.62) it also has high distance function fluctu-
ations (approximately 1.5 times the minimum value at
r0 = 0.735). However, the H surface has members with
fluctuations ∆d of the distance function that are slightly
lower than those for the cubic P surface, for all three nor-
malisations; the curvature fluctuations ∆K at those mem-
bers are only slightly higher than those of the P. These
data suggest that the H surface is as likely to be found in
molecular assemblies as the P. We note that the c/a axial
ratio of any H surface does not exceed c/a = 0.8840 (both
in the space group P6m2 of the oriented and P63/mmc of
the non-oriented surface) — approximately half the value
of hexagonal closed-packed spheres (c/a = 1.6330 [60]. It
is therefore unlikely that the mesostructures of hexagonal
mesophases in mesoporous silicates [61] and amphiphilic
molecules — whose axial ratios are similar to those of
close-packed spheres — are related to H surfaces [62].

We have also shown that the lowest energy pathway
linking the optimal bicontinuous geometries, the G and
D structures, is a continuum of embedded, three-periodic
IPMS of tetragonal symmetries (I41acd and I41/amd), re-
lated to the cubic G and D IPMS, viz. the tG and tD sur-
faces (see [11,36] for illustrations of these surface families).
It is clear that this low-energy continuum of embedded and
minimal surfaces (the only one with tetragonal symmetry)
provides a seemingly favourable transition path between
the G and D cubic geometries. We speculate that it may
also open the possibility of stable hybrid geometries be-
tween the G and D surfaces. Thus, experimentalists should
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not overlook the possibility of non-cubic ’intermediate’ bi-
continuous mesophases of tetragonal symmetries.

Lastly, these data support a long-standing specula-
tion in the self-assembly literature. The very existence
of isotropic, three-periodic crystalline mesophases in soft
materials, whose energy is governed by preferred (hyper-
bolic) curvature and domain thicknesses, is a result of the
relative homogeneity of crystalline geometries relative to
other forms, including two-periodic and less symmetric
structures.

S.T.H. acknowledges the Australian Research Council for fi-
nancial support through a Federation Fellowship.
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12. G.E. Schröder, S.J. Ramsden, A.E. Christy, S.T. Hyde,

Eur. Phys. J. B 35, 551 (2003)
13. A. Fogden, S. Hyde, Eur. Phys. J. B 7, 91 (1999)
14. D.M. Anderson, S.M. Gruner, S. Leibler,

Proc. Natl. Acad. Sci. USA 85, 5364 (1988)
15. J. Sadoc, J. Charvolin, J. Phys. France 48, 1559 (1987)
16. W. Helfrich, H. Rennschuh, Landau Theory of the

Lamellar-to-Cubic Phase Transition, in Colloque de
Physique C7-1990 (1990), Supplément au J. Phys. France,
pp. 189–195

17. S. Hyde, Curvature and the global structure of interfaces in
surfactant-water systems, in Colloque de Physique C7-1990
(1990), Supplément au Journal de Physique, pp. 209–228

18. U. Schwarz, G. Gompper, Phys. Rev. E 59(5), 5528 (1999)
19. U. Schwarz, G. Gompper, Phys. Rev. Lett. 85(7), 1472

(2000)
20. P. Duesing, R. Templer, J. Seddon, Langmuir 13, 351

(1997)
21. S. Hyde, S. Andersson, K. Larsson, Z. Blum, T. Landh,

S. Lidin, B. Ninham, The Language of Shape, 1st edn.
(Elsevier Science B. V., Amsterdam, 1997)

22. A. Schoen, Tech. rep., NASA (1970)
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35. G. Schröder-Turk, A. Fogden, S. Hyde, in preparation

(2007)
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