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Abstract. Although the primitive (P ), diamond (D) and gyroid (G) minimal surfaces form the structural
basis for a multitude of self-assembling phases, such as the bicontinuous cubics, relatively little is known
regarding their geometrical transformations, beyond the existence of the Bonnet isometry. Here their
highest symmetry deformation modes, the rhombohedral and tetragonal distortions, are fully elucidated
to provide a unified description of these simplest minimal surface families, with all quantities expressed
in terms of complete elliptic integrals. The rhombohedral distortions of the gyroid are found to merge
continuously with those which bridge the P and D surfaces, furnishing direct transformations between all
three cubics, preserving both topology and zero mean curvature throughout. The tetragonal distortions
behave analogously, offering an alternative route from the gyroid to the D surface. The cell axis ratios,
surface areas and Gaussian curvature moments of all families are given, supplying the necessary geometrical
input to a curvature energy description of cubic and intermediate phase stability.

PACS. 61.30.-v Liquid crystals – 64.70.-p Specific phase transitions – 83.70.-f Material form

1 Introduction

The importance of crystalline bicontinuous morpholo-
gies in condensed atomic and molecular systems is now
broadly recognized [1,2]. Examples can be found in co-
valent atomic crystals, such as zeolites [2]; lyotropic
liquid crystals [3–5], including lipid-water biochemical sys-
tems [6,7] and synthetic surfactant systems [8]; meso-
porous inorganic materials synthesized in the presence of
amphiphiles [9–12]; in thermotropic liquid crystals [13,14];
block copolymer melts [15,16]; ultrastructured biomin-
eralized skeletons of sea-urchins [17], and cell mem-
branes [18], apparently in vivo. Related disordered bi-
continuous morphologies are also prevalent in condensed
systems, such as “sponge” mesophases in lyotropic sys-
tems [19–21], condensed mesoporous inorganics [22], and
late-stage spinodals [23]. Given the wide occurrence of
these morphologies, the need for a fundamental under-
standing of the range of competing structures, and their
attendant relative stabilities, is evident.

The subtlety of amphiphile aggregation behaviour,
revealed through structural studies of soft materials,
continually challenges the existing framework of physi-
cal theories for self-assembly. The classical DLVO the-
ory [24] of colloidal interactions requires a reformulation
for microstructured fluids which accounts for the signif-
icant thermal fluctuations of the interfaces. The basis
for this renormalization is the bending Hamiltonian of
Helfrich [25]. The intrinsic free-energy of an interfacial
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state is expressed as an expansion in the geometrical in-
variants of the dividing surface. For a symmetric, sponta-
neously flat, bilayer the bending energy per unit midsur-
face area is then

g = 2kcH
2 + k̄cK + . . . (1)

in which H = (c1 + c2)/2 and K = c1c2 are the mean and
Gaussian curvatures, i.e. the first and second invariants
in the local principal curvatures ci. Moreover, if the bare
repulsion of ionic surfactant bilayers across the solvent
domains is sufficiently short ranged, then its free energy
contribution for an arbitrary (weakly curved) interfacial
configuration can be incorporated consistently into this
general prescription, through an additional contribution
to the intrinsic bending moduli kc and k̄c [26]. Within
this approximation, the determination of free energies of
bilayer systems reduces to the primarily geometrical task
of choosing a sufficiently complete set of fluctuation modes
for summation. For a lamellar phase, the undulation am-
plitudes are decomposed into Fourier modes and treated
within the harmonic (or a pseudo-harmonic) approxima-
tion. In the case of purely steric repulsion, the thermal
fluctuations were found to give rise to a long ranged repul-
sive force [25]. For charged lamellae, the transition from
entropy- to energy-dominated repulsion with decreasing
ionic strength has been the subject of detailed investiga-
tions [27].

In bicontinuous cubic (V2) and sponge phases the
bilayer partitions the solvent into a pair of interwoven
multiply-connected tunnel systems. The Helfrich Hamil-
tonian implies that these structures, on average, be based
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upon midsurfaces which, as for the lamellar sheets, pos-
sess zero mean-curvature, but now bear negative Gaussian
curvature. Owing to the difficulty of geometrically formu-
lating an ensemble of hyperbolic interfacial configurations,
one cannot then aspire to the level of statistical mechani-
cal sophistication attainable for lamellar phases. For ide-
alized disordered sponges some progress has, though, been
possible using Gaussian random fields [28].

For cubic phases, the focus of thermodynamic descrip-
tions has rested principally on the zero temperature limit
of a (fluid) bilayer midsurface possessing identically zero
mean-curvature throughout, i.e. an infinite periodic mini-
mal surface (IPMS). Small angle scattering data collected
from V2 phases have to date [4–8] revealed three predomi-
nant symmetries, corresponding to those of the three topo-
logically simplest examples of IPMS, the G (gyroid), D
(diamond) and P (primitive) surfaces [29,30]. Although
these models have been broadly successful, their neglect of
fluctuations gives rise to a ground-state degeneracy (van-
ishing bulk and shear moduli) in the Helfrich description of
cubic phases [31]. This degeneracy can, however, be lifted
by introducing higher orders to equation (1), specifically a
fourth-order term in K2. To construct an ensemble of par-
titions about the three cubic surfaces, an obvious starting
point is their lower symmetry generalizations, namely the
rhombohedral and tetragonal IPMS families obtained by
distortion along a 3-fold or 4-fold axis, respectively. These
special modes could be expected to furnish important con-
tributions to fluctuation entropy, since it is the freedom of
such minimality – preserving (H = 0) degradations which
causes the harmonic degeneracy in the cubics. Our objec-
tive in this paper is to explicitly construct these families of
cubic distortions and determine their Gaussian curvature
variations.

Knowledge of the mathematics of lower symmetry
IPMS has developed over the past few years [32–34], but is
far from complete. Sadoc and Charvolin provided a topo-
logical picture of the simplest pathway linking the G, D
and P surfaces, in which the junctions of their bicontin-
uous labyrinths are systematically merged [3]. A similar
mechanism, also phrased in terms of the labyrinth nets,
was recently discussed [35], with the argument that the
intermediate states of its cubic transitions would be ener-
getically highly unfavourable due to deviations of the cor-
responding midsurfaces from minimality. In the present
study we demonstrate that these types of pathway can,
in fact, be traced using exactly minimal surfaces. Specifi-
cally, the union of the rhombohedral and tetragonal defor-
mation families provides direct routes between their three
cubic parents. Thus, the relevance of these families, and
the variations in Gaussian curvature they bear, extends
beyond fluctuations to provide fully developed structural
pathways, together with the associated bending-energy
barriers.

The unified structural picture which emerges can
serve to further elucidate the epitaxial relationships
for lyotropic systems exhibiting first-order transitions
from the G to D and/or D to P types of bicontin-
uous cubic phases in lipid-water and surfactant-water

mixtures [6–8,36]. Even more pertinent are the increas-
ingly frequent observations of lyotropic liquid-crystalline
phases which display optically anisotropy. The vast major-
ity of the known examples exhibit either rhombohedral or
tetragonal symmetry [6,37]. The resolution of interfacial
topology is subtle: these phases have, to date, been pre-
sumed to be “mesh” structures (with 2-dimensional chan-
nel networks, in contrast to the 3-dimensional networks of
bicontinuous phases) [38]. The rhombohedral and tetrag-
onal IPMS families explored here offer competing bicon-
tinuous topologies of the same symmetry classes.

Due to the general geometrical nature of this study, the
results bear on the diversity of microstructured systems
mentioned above. Detailed consideration of non-cubic bi-
continuous and mesh morphologies are equally applicable
to these systems. For example, block copolymer melts ex-
hibit liquid-crystalline mesophases analogous both in type
and sequence to the lyotropics. Even with transmission
electron microscopy, it is often difficult to clearly distin-
guish bicontinuous and mesh phases since image textures
change drastically with the sample section [39]. The fam-
ilies which link the simplest isotropic IPMS are likely
to offer a useful aid towards recognition of complex mi-
crodomain morphologies, and may help to resolve con-
troversies over G and D cubic structures in copolymer
systems [40].

2 Distortions of the D, G and P surfaces

In Figure 1 we show the translational unit cells of the
D, G and P surfaces, with space-groups Pn3̄m, Ia3̄d and
Im3̄m. All three surfaces are “balanced” since they bear
embedded symmetry elements, i.e. 1̄ (inversion) points to-
gether with 2-fold lines for D and P , which interchange
the two sides of the surface and the two skeletal labyrinths
partitioned by it. Thus the 4-connected labyrinths of theD
surface are related by translation, as are the 6-connected
pair for the P surface, while the 3-connected networks
for G are enantiomorphic. The overall cell topology is
indexed by the Euler characteristic χ, which equals −2,
−8 and −4 per the units of D, G and P in Figure 1. If
the IPMS are used in an unbalanced context – e.g. the
labyrinths are “colored” to be symmetrically distinct –
then these space-groups must be replaced by their black-
white subgroups, so the D unit cell in Figure 1a is doubled
in all three directions to allow a full rotation of the surface
normal n̂ [41].

The balanced cells in Figure 1 can be generated via
their internal symmetries from the 3-sided asymmetric
patches shown there (comprising fractions 1/48, 1/192
and 1/96, respectively, of the cell). The Gauss maps of
the three patches, given by the image regions traced by n̂
onto the unit sphere, are identical, bounded by a triangle
of great circle arcs meeting at angles π/3, π/4 and π/2 and
covering 1/48 of the sphere. The three IPMS are thus re-
lated by the Bonnet transformation [30]; such patches can
be bent continuously into each other, preserving curvi-
linear line lengths, areas and curvatures. Such Bonnet-
related isometric IPMS are thus locally indistinguishable
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Fig. 1. The unit cubes of the (a) D, (b) G, and (c) P , surfaces.
The common z-axis, not shown, is perpendicular to (x, y).

in a 2-dimensional sense, with their global embeddings
in 3-dimensional space distinguished solely by their asso-
ciation variable, the Bonnet angle. The D surface patch
is bounded by two lines (embedded 2-fold axes) and one
mirror plane curve, while the opposite is true of the P
patch, so they are related by a quarter cycle and termed
an “adjoint” pair.

For the continuum of bent states intermediate to D
and P the patch boundary segments are neither straight
nor planar, yet the point-group symmetries ascribed to
their vertices (3̄, 4̄ and 2 about the respective n̂) are pre-
served. The G surface is the unique member for which
these elements lock into a crystallographic scheme (Ia3̄d)
completely free from self-intersections [30]. For all other
intermediates, continuation of the patch via these sym-
metries creates intersections which, in the generic case,
eventually densely fill 3-dimensional space. Thus a phys-
ical, self-avoiding transformation route D → G → P us-
ing the Bonnet transformation alone would entail an or-
chestrated process of cutting, bending and gluing patches.

As an illustration, the D and P surfaces can both be
generated by repeated 2-fold rotation of an element com-
prising a catenoidal neck spanning a coaxial pair of equi-
lateral triangular frames screwed by π/3 (parts of these
frames are highlighted in Figs. 1a and 1c). Such catenoidal
pieces do not remain topologically intact throughout the
Bonnet bend; their frames are cut and resealed as helices
winding around the 3-screw axis tunnels in the gyroid.

All three of the surfaces (indeed any IPMS) can be
continuously deformed by crystallographic degradations
which preserve their minimality and topology. The cubics
can be systematically degraded to liberate one-variable
families of rhombohedral or tetragonal variants, two-
variable orthorhombics, and so on. The rhombohedral dis-
tortions of the D and P surfaces are obtained by pulling
along the z-axis in Figures 1a and 1c (in the [1̄11̄] direc-
tion), stretching the screwed triangular catenoidal units
shown there. This operation yields a single unifying IPMS
family, denoted rPD and of space-group R3̄m, in which
the D is transformed to the P by halving the separation
distance between the triangle frames [30,34,41,42]. So by
introducing a crystalline anisotropy, these two end states
of the (isotropic and isometric) Bonnet transformation can
be accessed continuously without slicing or fusing.

Rhombohedral distortions of the gyroid have been in-
vestigated only relatively recently, owing to the challenge
of visualizing such surfaces. Unlike the straight line frames
maintained in the rPD family, the G surface contains no
fixed boundaries upon which to base the distortion. Nev-
ertheless, its rhombohedral “stretching” freedom (along
this same z-axis direction in Fig. 1b) is again guaranteed
by general principles, giving rise to a one-variable family
christened rG, of space-group R3̄c [43]. In Figure 2 we
show a different piece of the cubic G surface – one that
is larger than the patch in Figure 1b; the normal n̂ now
traces 1/6 of the unit sphere. This piece is oriented with
respect to the coordinates (x, y, z) in Figure 1b and is
viewed both obliquely (Fig. 2a) and in plan view (Fig. 2b,
for a hexagonal cell description). In both views only the
symmetry elements of Ia3̄d which remain in its subgroup
R3̄c are included, so the scheme represents a general
rG member. The boundary point A remains a 3̄ site, B
and E are degraded to 1̄, while 2-fold axes pass through
points C and D along their n̂ directions indicated there.
For later comparison, Figure 2b also displays the shadow
of a rPD surface piece spanning the screwed triangular
frames (in gray), with respect to the (x, y, z) orientation
in Figures 1a and 1c.

In the next section (and Appendix A) we shall anal-
yse in detail these rhombohedral distortions of D, G
and P . Previously, one of the authors numerically con-
structed some examples of rG surfaces [43], and in par-
ticular, demonstrated that the HG surface discovered in
an earlier study [44] is a member of this one-variable fam-
ily. These preliminary studies are extended here to a full
analytic investigation of the rG family using complete el-
liptic integrals. In doing so, certain errors in the previous
work are corrected. Importantly, it will be established that
the rhombohedral stretching of the G surface ultimately
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Fig. 2. A piece of the G surface in its rhombohedral as-
pect, showing (a) the trace of its boundary normal vectors,
and (b) the symmetry scheme from above.

restores a member of the rPD family linking P to D. The
coupling of these two families gives a “rGPD” unifica-
tion, allowing continuous minimal-surface access between
all three cubics. This offers an interesting alternative to
the Bonnet transformation route. All quantitative features
of the rGPD surfaces, including cell axis lengths, areas and
their Gaussian curvature moments, will be presented.

Systematic removal of the 3-fold symmetry axes of a
cubic minimal surface leads to a one-variable IPMS family
of tetragonal degradations. For the three simplest cubics,
the elliptic integral derivation of their tetragonal general-
izations proceeds in direct analogy with the above, and the
results are briefly summarized in a following section (and
Appendix B). The degradations tD and tP were the first
IPMS families to be discovered [29,32–34,42]. In contrast
to rPD, these two tetragonal families do not merge, since
the cubic D and P cannot be simply related by stretching
along a 4-folds axis (the P -generating unit of a catenoidal
neck spanning two overlain square frames, in Fig. 1c, is not
present in the D). Aside from this distinction, the tetrag-
onally distorted gyroids tG play the same role as their
rhombohedral counterparts. The degradation is found to
ultimately lead to a tD surface, thus providing an alter-
native route for direct structural transformation between
the cubic G and D.

Fig. 3. Layout of the three cubic IPMS and the pathways of
their 3- and 4-fold generalizations and relatives. The diagonal
paths through G are the main focus of this study. The termi-
nals (open circles) of the families are labeled 3 and 4, repre-
senting saddle towers of this symmetry (∗ denotes the adjoint),
or h and c to indicate helicoid and catenoid.

The interrelations covered in this study are represented
diagramatically in Figure 3. We include the hexagonal H
and tetragonal tCLP families [29,30,32–34] to complete
the set of (balanced) IPMS sharing the lowest attainable
genus (g ≡ 1−χ/2 = 3 per black-white primitive unit cell)
and possessing at least 3- or 4-fold symmetry. Although
these extra two families are closely related in parametriza-
tion, they are topologically distinct within this class and
cannot be transformed to any of the three cubics without
first taking the in-plane periodicity to infinity (creating a
3- and 4-fold “saddle tower” [45] or its adjoint). The Gaus-
sian curvature distributions of the H and tCLP families
are less homogeneous than those of the cubics, thus pro-
viding a useful comparison with the growing heterogeneity
in the cubic distortions.

3 Analysis of the rhombohedral surfaces

The Gauss map of the piece of a generic rG surface rep-
resented in Figure 2 is the shaded 2π/3 sector displayed
in Figure 4 in stereographic projection (i.e. n̂ taken on
the unit sphere is then projected from the north pole onto
the equatorial plane, regarded as the complex ω-plane).
In particular, the 1̄ surface site B is imaged to some point
ω = ω0 = r0 exp(iφ0) at which the dihedral angle is dou-
bled (from π/2 to π), illustrating a general property of
embedded inversion centers (also at E and A). The 3-fold
surface symmetry about A, and the 2-folds about C and
D, are manifested as the same rotational symmetries on
the sphere. So continuation of the surface piece gives mul-
tiple copies of a 6-tiling of the sphere and the full group
{ωn} of 6 rotated images of ω0 marked in Figure 4.

The embedding of all minimal surfaces in 3-
dimensional Euclidean space can be parametrized by re-
constructing the surface from its image in the ω-plane
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Fig. 4. The analytic structure of the rG family in its parameter
space (see the text).

via the Weierstrass representation

(x(ω), y(ω), z(ω))=Re
{
eiθ
∫ ω

0

dω′(1−ω′2, i(1+ω′2), 2ω′)

×R(ω′, ωn)
}
.

(2)

At any point ω = u+ iν the surface metric is thus simply
defined as

dS = dudν(1 + |ω|2)2|R(ω, ωn)|2 (3a)

and the Gaussian curvature is

K = −4(1 + |ω|2)−4|R(ω, ωn)|−2. (3b)

The choice of the complex analytic function R is dictated
by the symmetry and topology of the IPMS [34], and the
general form for the reconstruction of rG is particularly
simple. It must possess first-order branch points at the
eight n̂ corresponding to 1̄ sites (ω = 0,∞, and the six
ωn), and is given by

R(ω, ωn) = [ω(ω3 − ω3
n)(ω3 + ω−3

n )]−1/2. (4)

The Bonnet associates are then obtained by varying the
(real) angle θ in equation (2), which has no effect on
the local areas and curvatures in equation (3). The lay-
out in Figure 4, and hence the choice in equation (4),
is not restricted to the rG family alone, but also con-
tains the rPD family and the hexagonal H surfaces [34].
Combining equations (2) and (4), the contour integrals for
the surface coordinates are expressible in terms of ellip-
tic integrals – the necessary mathematical manipulations
are given in Appendix A as equations (A.1–A.3). These
coordinates contain the three, as yet free, variables φ0,
r0 and θ.

For the three cubic surfaces, the 4-folds symmetries
give to the Gauss map the geodesic tiling substructure
shown with faint lines in Figure 4 (each tile is the im-
age of one small patch in Fig. 1). The eight n̂ entering
into equation (4) now run along cube body diagonals so

φ0 = −π/3 and r0 = 1/
√

2 in our orientation, which is,
for convenience, rotated by −π/3 relative to that used in
earlier accounts [43]. It only remains to specify the de-
gree of Bonnet bend θ (which is now shifted by −π/2 as a
consequence of this reorientation). The D and P surfaces
then correspond to the special values θ = −π/2 and 0,
respectively, thus ascribing to this adjoint pair the mirror
and embedded 2-fold symmetries. The G surface is locked
into the space-group Ia3̄d by forcing the inversion center
B, with image ω0, to satisfy y(ω0) = 0 (see Fig. 2b). The
4-fold (not shown there) then ensure that all other point-
group symmetries simultaneously lock in. This constraint
on the bend then implies [30]

θ = −arc tan[K ′(1/2)/K(1/2)] = −90◦ + 38.015◦. (5)

(Note that this K, the complete elliptic integral [46] used
throughout the appendices, is not to be confused with the
Gaussian curvature in Eq. (3b).)

The one-variable families of rhombohedral distortions
from these cubics correspond to a single residual degree of
freedom in the Gauss map, resulting from a pair of con-
straints on φ0, r0 and θ. The rPD family, generalizing the
P and D surfaces, is obtained by fixing θ = −π/2 or 0
and simply sliding the six points ωn along the six (solid)
radial lines in Figure 4 [34]. These two symmetry require-
ments ensure that the embedded 2-fold axes framing the
catenoidal units in Figures 1a and 1c are maintained, to-
gether with their subdividing mirror planes. For our choice
of coordinate orientation we use the convention θ = −π/2
and φ0 = 0 for rPD, allowing ω0 to run along the entire
positive real axis (0 < r0 < ∞), passing through the cu-
bic P and D at r0 = 1/

√
2 and

√
2, respectively. Since

the rPD surfaces can be obtained as a special case of the
general constructs for rG, we begin our analysis with the
latter family.

For the rG family the prerequisite point-group sym-
metries are guaranteed by the form of equations (2, 4);
instead it is their relative positions in the space-group
which must be maintained through a pair of constraints.
As shown in Figure 2b with respect to the crystallographic
cell coordinates (X, Y, Z), the points A, B, C, D and
E must mutually lock into the sites, or lines, (0, 0, 0),
(−1/6, 1/6, 1/6), (0, YC , 1/4), (XD, 1/3, 1/12), and (1/6,
1/3, −1/6). Our Cartesian coordinates are given by

X = −
1
√

3

x

a
−
y

a
, Y =

1
√

3

x

a
−
y

a
, Z =

z

c
(6)

so (x, y, z)(ω0) = (a/(2
√

3), 0, c/6) and we must impose
y(ω0) = 0 as for the cubic G surface mentioned above.
Due to the 4-fold degradation of Ia3̄d, a second condi-
tion is necessary, and moreover sufficient, for lock-in to
the rhombohedral space-group R3̄c. The 3̄ site with im-
age ω =∞ has position (x, y, z)(∞) = (0, 0, c/2) and thus
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Fig. 5. The (a) branch-point magnitude r0, (b) Bonnet angle
θ (in degrees), and (c) ratio of vertical to horizontal periods
c/a, corresponding to each member, i.e. φ0 value (in degrees),
of the rG family.

we demand that z(ω0) − z(∞)/3 = 0. In equations
(A.4, A.5) we formulate these constraints on rG us-
ing the general elliptic integral representation. This pro-
vides a single transcendental equation relating r0 and
φ0, with the Bonnet association angle θ and the hexag-
onal cell lengths a and c for R3̄c then given ex-
plicitly in terms of these two. We choose the argu-
ment φ0 as the independent variable for the rG fam-
ily, swinging through the range −π/2 < φ0 < 0.
The trajectory r0(φ0) of the solutions in the complex plane
is as sketched in dark gray in Figure 4.

The exact numerical solutions for r0, θ and the axis
ratio c/a are plotted against φ0 in Figures 5a, 5b (which
is shifted up by π/2 for simplicity) and 5c, respec-
tively. Recall that the cubic G surface is given by φ0 =
−π/3, r0 = 1/

√
2, with the θ value in equation (5), and

c/a =
√

3/2/2. As φ0 decreases to approach −π/2, r0
increases to unity and the {ωn} merge pairwise on the
equator in Figure 4. This creates a degenerate surface with

infinite ends, i.e. a→∞ at finite c; the ratio c/a decreases
sharply to zero in the vicinity of this endpoint. The limit-
ing surface (with θ = −π/4) is the 3-fold saddle tower of
Karcher [45]. On the other hand, as φ0 increases from the
cubic G case to reach −π/6, the {ωn} lie on rays dotted
in Figure 4 and are mirror related in the equatorial plane.
The surface is then the special, intersection-free member
of the Bonnet transformations of the hexagonal H family,
called HG, with r0 = 0.53607 and θ = −90◦ + 19.2098◦

(agreeing with previous studies [43,44]). This additional
symmetry in the Gauss map is not evidenced in Euclidean
space, so the HG surface displays the common R3̄c sym-
metry, with c/a = 0.76327. As φ0 increases further and
tends to zero, θ approaches −π/2 and r0 → 0.49472, with
c/a = 0.79746. This rG endpoint is thus a non-degenerate
member of the rPD family (correcting an earlier conclu-
sion [43]). So the two families join at this common surface,
creating the rGPD union, which provides a continuous
pathway of IPMS linking all three simplest cubic surfaces.

Figure 6 is a scan of the rG family, displaying the
(intersection-free) IPMS corresponding to four φ0 values.

Each surface unit shows the screw-axis repeat of three
monkey saddles (i.e. 18 of the pieces in Fig. 2 for the cubic
gyroid in Fig. 6c), again in both oblique and plan views,
with the perspectives and orientations fixed throughout.
In passing from Figure 6c to 6d, the G surface flattens to
approach infinite saddle towers; the curves connecting the
saddle centers gradually straighten and lengthen so the he-
lix becomes more planar. On passing back from the G to
HG surface in Figure 6b, these trends continue – the tun-
nel down the screw axis is now significantly tighter. Pro-
ceeding further to Figure 6a, the tunnel eventually van-
ishes completely due to the formation of embedded 2-fold
axes (crossed triangular frames) which exchange the mir-
ror plane curves connecting the saddle centers, and thus
the rPD family is reached.

The surface area S of an IPMS cell is commonly ex-
pressed via the dimensionless ratio σ = S/V 2/3, where V
is the cell volume. However, the value of this quantity for
a given IPMS is dependent upon the choice of cell. It is
more convenient to use the so-called homogeneity index H
which divides σ3/2 by [−2πχ]1/2 = [

∫
(−K)dS]1/2, and is

thus both dimensionless and intensive. Furthermore, H
takes the value of 3/4 for a hypothetical minimal sur-
face with uniform K, so its deviation from this “ideal-
ity” can give some measure of the inhomogeneity in the
Gaussian curvature distribution [5]. The surface area Sp
of the smallest representative piece of rG, such as that in
Figure 2, is directly obtained from equation (3a) and ex-
pressed via complete elliptic integrals in equations (A.6,
A.7). In terms of this and the unit cell dimensions a and
c already determined, the homogeneity index for the rG
family is

H =
S3/2

[−2πχ]1/2V
= 36

√
2

π

S
3/2
p

a2c
· (7)

More direct measures of the inhomogeneity are given
by the surface area averages (denoted 〈 〉) of powers q
of the Gaussian curvatures. We consider the normalized
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Fig. 6. Units of the rG surfaces corresponding to the φ0 values (a) −10◦, (b) −30◦, (c) −60◦ and (d) −80◦, each shown in both
perspective and plan views.

quantities

µq ≡
〈|K|q〉

〈|K|〉q
=

(
3

2π

)q
Sq−1
p

∫
(−K)qdSp (8)

over these same surface pieces, again making use of the
definitions in equation (3).

The indices in equations (7, 8) for the rG surfaces are
plotted, versus φ0, in Figures 7a and 7b. In the latter we
consider powers q = 1/2, 3/2, 2, 5/2 and 3 (µq is unity
for q = 0 or 1). For the cubic gyroid H = 0.766668 [30]
and represents the absolute maximum over the family. As
φ0 decreases from −π/3, H descends increasingly steeply
and approaches zero vertically (not included in the range
of the figure) at the saddle tower endpoint. On the other
side, H decreases slowly, through a value of 0.755043 at
the HG surface, and reaches a local minimum of 0.748837
at the rPD surface. In Figure 7b the plots of the Gaus-
sian curvature moments µq are all of the same shape for
q > 1, with their absolute minima fixed at the cubic G
(values of 1.0891, 1.2188, 1.3896 and 1.6068 for q = 3/2,
2, 5/2 and 3), rising to infinity as φ0 approaches −π/2
and rising to local maxima at the opposite end (with cor-
responding values 1.1638, 1.4376, 1.8543 and 2.4688). For
powers 0 < q < 1 the situation is reversed; µ1/2 has similar
characteristics to H in Figure 7a, with maximum value of
0.95903 at the G surface and a local minimum of 0.93544
at the rPD cross-over.

We complete the analysis of the rGPD union by briefly
summarizing the results for the rPD family, in order to
understand the rG endpoint surface in the context of this
continuum. Recall that the rPD surfaces are the special
case of equations (A.1–A.7) in which the crystallographic
constraints reduce to θ = −π/2 and φ0 = 0. The cell
dimensions a and c are then expressed simply in terms

Fig. 7. Plots of the (a) homogeneity index, and (b) averaged
Gaussian-curvature taken to powers q = 1/2, 1 (straight line),
3/2, 2, 5/2 and 3 in ascending order, across the rG family.

of the free variable r0 in equations (A.8–A.10). Since the
formalism was constructed for rG, this height c refers to
the space-group R3̄c. To avoid ambiguity we shall adhere
to this definition, bearing in mind that the Z values of
the R3̄c hexagonal cell (see Fig. 2b and Eq. (6)) must be
doubled, and thus the c value halved, for the true rPD
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Fig. 8. The (a) ratio c/a, doubled for the space-group R3̄c,
(b) homogeneity index, and (c) averaged Gaussian-curvature
raised to powers q = 1/2, 1 (straight line), 3/2, 2, 5/2 and 3 in
ascending order, corresponding to each member, i.e. r0 value,
of the rPD family.

symmetry R3̄m. Figure 8 displays the plots of the hexag-
onal axis ratio and the two types of homogeneity measure,
H and µq, over the rPD family as a function of r0. The
latter two indices use the same definitions as in equations
(7, 8) for rG (the surface area Sp now reduces by symme-
try to Eq. (A.11)), with the length c again pertaining to
R3̄c, not R3̄m. Figure 9 then shows a scan of six of these
rPD surfaces.

In contrast to Figure 5c, the c/a curve in Figure 8a
has the humped shape characteristic for stretching of a
ring-like minimal surface unit [42], decreasing to zero at
the endpoints r0 → 0 (helicoid) and r0 → ∞ (catenoid),
although the plot only extends to r0 = 4. Each ratio
corresponds to a pair of r0 values and thus two distinct
rPD surfaces. At r0 = 0.49472 the ratio is 0.79746 as for
the endpoint of Figure 5c. It then increases through val-
ues of

√
3/2 and 2

√
3/2 at the cubic P and D surfaces

(r0 = 1/
√

2 and
√

2, respectively). The maximum value is
2.64882 and occurs at r0 = 2.02134 = 1/0.49472, so the

rPD surface at maximum stretch is adjoint (∆θ = π/2) to
that which is shared with the rG family. Each of the rPD
pieces in Figures 9a–9f is generated from the same infinite
wedge 0 ≤ arg(ω) ≤ π/3 of the complex plane in Figure 4.
Thus they correspond to the pair of triangles shaded in
Figure 2b, internally related by the perpendicular 2-fold
axis (along the n̂ direction D in Figs. 2 and 4), and com-
prising 1/6 of the ring-like unit spanning the crossed tri-
angles. The six surfaces group as three adjoint pairs: (a)
and (f), (b) and (e), (c) and (d). On decreasing r0, the
rG endpoint in Figure 9b (compare with Fig. 6a) is com-
pressed to Figure 9a and approaches the helicoidal limit in
which the locus of the horizontal normal vectors straight-
ens to a vertical line. As r0 increases, (b) is stretched to
give the P and D surfaces in (c) and (d); note that for r0
greater than unity these equatorial n̂ switch to run around
the neck. The rPD surface at full extension is displayed
in (e). Further increase in r0 causes a compression of the
surface in which the band of equatorial n̂ flattens, in (f),
to approach a catenoid.

The homogeneity index is plotted over the range 0 <
r0 < 4, for values less than 0.81, in Figure 8b. It rises
without bound at either endpoint and agrees with the es-
tablished values H = 0.748837, 0.716346 and 0.749844 at
the rG endpoint (Fig. 7a), the P and the D [30] surfaces,
respectively. Moreover, these latter two cubics represent
the global minimum and a local maximum within this rPD
family. The extra local minimum value is 0.746063 and oc-
curs at r0 = 2.02134, which corresponds to the maximum
of the c/a ratio in Figure 8a. For the Gaussian curvature
moments µq, equation (8) is independent of Bonnet angle
and so invariant under inversion of r0 for any power q.
Hence the plot in Figure 8c is only given over the range
0 ≤ r0 ≤ 1. The trends are similar to those for rG, with all
curves displaying a global minimum (q > 1) or maximum
(0 < q < 1) at the cubic P and D surfaces. The values of
these extrema are identical to those for the cubic G. At
the self-adjoint case (r0 = 1) the symmetry then imposes
local extrema (e.g. a maximum of 1.2629 for q = 2 and a
minimum of 0.95376 for q = 1/2).

Figure 10 summarizes the quantitative global char-
acteristics for the three IPMS families of genus three
and 3-fold symmetry, by combining the foregoing results
with their analogs for the hexagonal H surfaces [34]. The
dummy variable abscissa has been eliminated from each
family (i.e. φ0 for rG, r0 for rPD and H) to yield direct
plots of the variation in the intensive surface/volume ratio
H (about the value 0.75) with c/a, in Figure 10a, and the
Gaussian curvature second moment µ2 versus H, in Fig-
ure 10b. We maintain the R3̄c definition of c for both rG
and rPD, to emphasize the topological continuity of the
transformation in Figure 10a, while for the H surfaces the
axial ratio refers to their true space-group P63/mmc. For
this ring-like family, obtained from rPD by superposing,
rather than crossing, the equilateral triangular frames,
the maximum attainable stretch is c/a = 0.88400. At
this limit of extension, H has a shallow local minimum
of 0.745793, in close proximity to its local maximum of
0.748806 at c/a = 0.83170. The smallest heterogeneity
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Fig. 9. Pieces of the rPD surfaces at the r0 values (a) 0.1, (b) 0.49472, (c) 1/
√

2, (d)
√

2, (e) 1/0.49472, and (f) 10.

in curvature for the H family is µ2 = 1.3249, occurring at
H = 0.748125. This value is not greatly in excess of the ab-
solute minimum shared by the three cubic IPMS. At the
absolute minimum, the slope of the diverging branches
of the rhombohedral distortions in Figure 10b is 5.222,
−12.90 and −17.66 for P ,D andG, respectively. Although
the pair of plots provide immediate access to the surface
quantities of use, the convoluted curve shapes (e.g. the H
loop in (b)) warn of the intricacy of geometrical interre-
lations about H = 0.75, in the vicinity of which all three
indices display extrema.

4 Analysis of the tetragonal surfaces

The tetragonal distortions of the three cubic IPMS, which
retain 4-fold rotational symmetry, follow from application
of the same methodology as outlined above; the visu-
alizations and mathematical manipulations are, in fact,
now somewhat simpler. Stretching or compression of the
cubes in Figure 1 in, say, the vertical direction gives rise
to the (a) tD, (b) tG and (c) tP families, with space-
groups P42/nnm, I41/acd and I4/mmm, respectively. We
shall not enter into the details of the parametrizations
here. Suffice it to say that the group {ωn} of projected
inversion-center normals now comprises 8 rotated images
of ω0 = r0 exp(iφ0), and accordingly, in equation (2) the
Weierstrass functional form becomes

R(ω, ωn) = [(ω4 − ω4
n)(ω4 − ω−4

n )]−1/2 (9)

for all three tetragonal IPMS, together with the tCLP [34].
In Appendix B the pair of crystallographic commensura-
bility constraints for the tG family, and the resulting sur-
face measures, are phrased in terms of elliptic integrals,

Fig. 10. Plots of (a) homogeneity index versus cell-axis ratio,
and (b) Gaussian-curvature second moment versus homogene-
ity index, for the rG, rPD and H surfaces.

with the tD and its adjoint tP extracted as special cases
of the formalism. As for rG, we take φ0, in the range from
−π/2 to 0, as the independent variable for the tetrago-
nal gyroids, now with the cubic G restored at φ0 = −π/4,



100 The European Physical Journal B

Fig. 11. Units of the tG surfaces for the φ0 values (a) −5◦, (b) −20◦, (c) −45◦, and (d) −70◦, in both perspective and plan
views.

with r0 = (
√

3−1)/
√

2. However, below we limit our focus
to the real-space manifestation of the surfaces.

Figure 11 shows a scan of four representative members
of the (intersection-free) tG family, providing the tetrag-
onal counterpart to Figure 6 – the cubic gyroid is again
in part (c). Each of the identical views now contains a re-
peat unit of four saddles winding around the 4-screw axis.
Proceeding from Figures 11c to 11d, the tetragonal axis ra-
tio c/a decreases from unity to eventually approach zero,
losing the (x, y) periodicity and giving isolated 4-saddle
towers. In the opposite direction, the transition from (c)
to (b) to (a) with slowly increasing c/a, results in a rapid
tightening of the 4-screw tunnel. Beyond Figure 11a the
saddle edges (and the helix they form) become straight
lines, thus merging with the tD family at the particular
ratio c/a = 1.1315 (for symmetry I41/acd), corresponding
to r0 = 0.43188.

With respect to the homogeneity and Gaussian cur-
vature indices (defined in Eqs. (B.6, B.7)), the cubic gy-
roid represents an absolute maximum and minimum (for
q > 1), respectively, over tG. Away from these extrema,
H falls to 0.760735 and µ2 rises to 1.3165 at the tD end-
point. The tD continuum possesses a monotonically in-
creasing c/a ratio, and its two homogeneity measures both
rise without limit from their minima at the cubic D. On
the other hand, the ring-like tP family is restricted to a
maximum extension of c/a = 1.0184 (for I4/mmm), only
slightly above the cubic P value of unity [42]. Again, the
maximally stretched tP surface is precisely the adjoint

of the tD member terminating the tG family. Moreover,
this surface and the cubic P represent a shallow local
minimum and maximum, respectively, of H over tP , with
the latter defining the absolute minimum for the Gaus-
sian curvature moments. Thus, comparing the tetragonal
and rhombohedral distortions, the tG transition is quali-
tatively identical to that for rG if the rPD (in Fig. 8) is
instead regarded as two separate families, with the half
0 < r0 < 1, containing the cubic P , playing the role of the
tD family, and the remainder 1 < r0 <∞ mimicking tP .

The behaviour described above is presented in Fig-
ure 12, and combined with that for the tCLP family [34]
to provide a unified account of the four IPMS with genus
three and 4-fold symmetry, partnering that in Figure 10
for 3-fold symmetry. Again we have retained the c/a def-
inition for tG symmetry in plotting the tD locus in Fig-
ure 12a; with respect to its true space-group P42/nnm
(used in Appendix B) the values must be reduced by a

factor of
√

2. For the other two IPMS, the axial ratios are
defined in the conventional way, i.e. P42/mcm for tCLP.
Since the latter family is not ring-like, but rather owes
its name to the Crossed Layers of Parallel tunnels [30], it
possesses monotonically varying axial ratios, as well as H
values. It is absent from Figure 12b since even the most
homogeneously curved member, with µ2 = 1.9614, lies
above the plotted window (and is thus substantially more
heterogeneous than the hexagonal H). The gradient of
the diverging branches of tetragonal degradations from
the absolute minima at the three cubics in Figure 12b are
−57.12, 9.067 and −12.10 for P , D and G, respectively.
For tD, this slope is maintained over a broad range of H,
so its two branches are almost overlain.
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Fig. 12. Plots of (a) homogeneity index versus axial ratio, and
(b) Gaussian-curvature second moment versus homogeneity in-
dex, for the tG, tD, tP and tCLP surfaces.

5 Conclusions

Our analysis completes the elucidation of the simplest
class of triply-periodic minimal surfaces, namely those of
genus three and possessing 3- or 4-fold symmetry axes.
The class comprises the rhombohedral and tetragonal
degradations of the cubic D, G and P surfaces, together
with the H and tCLP families. All other intersection-
free IPMS sharing this lowest attainable genus are merely
reduced symmetry relatives of these families, e.g. or-
thorhombic degradations of the tetragonal and hexagonal
space-groups.

Most importantly, this limited class is sufficient for the
direct construction of topologically continuous, minimal
surface transformations between these three cubic mem-
bers. As opposed to the Bonnet transformation, for which
the ideality of surface isometry necessitates a piecewise
orchestration of self-avoidance in Euclidean space, the
present mechanism is truly global. Accordingly, it cannot
preserve the isometric and isotropic nature of the Bonnet
route, i.e. maintain the Gaussian curvature variance µ2

at its common value 1.2188 for the three cubics (the most
homogeneous of all IPMS). However, the costs incurred
by increased curvature heterogeneity are relatively slight.
In particular, passing with decreasing H from the G to D
surfaces along their unified tetragonal families (by increas-
ing the c/a ratio a factor of

√
2), the “bottleneck” in µ2 is

1.3165, occurring at the smooth crossover from tG to tD

(see Fig. 12). Subsequent passage from D to P along their
rhombohedral rPD family, by halving the rhombohedral
axis ratio, encounters a µ2 bottleneck of only 1.2629, at the
self-adjoint member of rPD (see Fig. 10). Thus the two-
step process, while involving large deformations in unit
cell dimensions, introduces less heterogeneity than even
the most homogeneously curved H surface, and substan-
tially less than any tCLP surface. Furthermore, the index
µ2 increases rapidly with genus (per primitive black-white
unit cell), e.g. its values for the cubic I−WP , F−RD and
C(P ) surfaces [30], of genus 4, 6 and 9, respectively, are
1.4838, 1.6156 and 2.8045. Thus it is highly probable that
all other conceivable IPMS will exceed the heterogeneity
cost of this global transformation G→ D→ P . For these
reasons we envision the relevance of the transformation to
thermal fluctuations of cubic phases and possible stabi-
lization of anisotropic bicontinuous intermediates.

Appendix A: Parametrization
of the rhombohedral surfaces

The parametrizations of the ordinates x and y in equations
(2, 4) are expressed as elliptic integrals of the first kind
F , via the substitution

u = (ω−1 − ω)/2, (A.1)

similarly defining un in terms of ωn. In particular, the
modulus k and prefactor G of F are

k2 =
1

2

(
1− un{3/(4u

2
n + 1)}1/2

)
,

G = (3(4u2
n + 1))−1/4. (A.2)

The z-ordinate parametrization is simply reduced to el-
liptic form by changing integration variable to ω′3/2; it
further serves to apply the Gauss transformation [46],
resulting in a new elliptic integral F with modulus and
prefactor

kz = ((ω6
n + 1)1/2 + ω3

n)2,

Gz = {−ω3
n/(ω

6
n + 1)}1/2(1 + kz). (A.3)

There are a multitude of equivalent ways of formulating
the two closure constraints for the rG surface family. We
choose here to focus on the position of the 1̄ site with ω =
ω0. Imposition of y(ω0) = 0 gives the first such constraint,
which is used to eliminate the Bonnet angle θ in terms of
ω0; the horizontal cell dimension a is then specified as a
function of ω0 via x(ω0) = a/(2

√
3):

tan θ = Re{GK(k)}/Im{GK(k)} (A.4a)

a = 4|G|Re{K(k)K ′(k)∗}/|K(k)|. (A.4b)

Here k and G are given from equation (A.2) with ωn = ω0,
K and K ′ are the complete, and associated complete,
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elliptic integrals of the first kind, and the asterisk denotes
conjugation. Equivalently, equation (A.4) could be rewrit-
ten, replacingK by iK−K ′ throughout, now using eiπ/3ω0

for ωn in equation (A.2). The second closure constraint
then forces the height z(ω0) = c/6 to be consistent with
z(∞) = c/2. This gives, in analogy to the pairs above,

tan θ =

Re{iGz(K(kz) + iK ′(kz))}/Im{iGz(K(kz) + iK ′(kz))}
(A.5a)

c = 4|Gz|Re{K(kz)K
′(kz)

∗}/|K(kz) + iK ′(kz)| (A.5b)

taking ωn = ω0 in equation (A.3). Due to the branch cut
in K ′(kz), equation (A.5) can only be used, as written,
over the subrange φcut < φ0 < 0, where φcut ≈ −1.4527.
For the remainder, −π/2 < φ0 < φcut, we must switch
the ωn in equation (A.3) to eiπ/3ω0 and also replace the
combination K + iK ′ in equation (A.5) by i3K + 2K ′.

Equating the independent expressions for tan θ then
gives the single constraint on ω0. The resulting equation
for r0 as a function of φ0 is of course transcendental, how-
ever, its numerical solution is straightforward. The Bonnet
angle θ and the axis lengths a and c are then directly ob-
tained from the above formulae.

The surface area Sp corresponding to the region
−π/3 ≤ φ ≤ π/3, 0 ≤ r ≤ 1 in the parameter space
ω = r exp(iφ), is obtained from equation (3a), which sim-
plifies to the radial integral

Sp =
4

3

∫ 1

0

dr(1 + r2)2|(r6 − r6
0)(r6 − r−6

0 )g|−1/2K ′(1/g)

(A.6)

where

g = g1 + (g2
1 − 1)1/2 (A.7a)

g1 =
(r6−r6

0)(r6−r−6
0 )+2r6{(r3

0 +r−3
0 )2−4 sin2 3φ0}

|(r6−r6
0)(r6−r−6

0 )|
·

(A.7b)

The rPD family of surfaces then becomes the special case
of equations (A.1–A.7) for which θ = −π/2 and φ0 = 0,
with the branch point now free to slide over 0 < r0 <∞.
The rPD surface for any such r0 value is equivalent, aside
from a rigid rotation of mπ/3 (m odd) about the z-axis,
to that for 1/r0 with θ = 0. In particular, equation (A.4b)
now simplifies to

a = 4GK ′(k) (A.8)

taken with ωn = r0 in equation (A.2). On inverting r0,
the only change to equation (A.8) is the replacement of
K ′ with K. The vertical axis length c, in equation (A.5b),
can also be rewritten in terms of purely real quantities
using the reciprocal modulus transformation [46], giving

c = 4GrK
′(kr) (A.9)

where

kr = 1/kz = ((r6
0 + 1)1/2 − r3

0)2,

Gr = {r3
0/(r

6
0 + 1)}1/2(1 + kr). (A.10)

Moreover, inverting r0 again corresponds to interchange
of K ′ and K, now together with replacement of the factor
of 4 by 8, in equation (A.9). Finally, for the rPD surface
area, this special case of equations (A.6, A.7) with φ0 = 0
simplifies to

Sp =
4

3

∫ 1

0

dr(1 + r2)2 1

(r3 + r3
0)(r3 + r−3

0 )

×K ′
(
|(r3 − r3

0)(r3 − r−3
0 )|

(r3 + r3
0)(r3 + r−3

0 )

)
(A.11)

and is clearly invariant under inversion of r0.

Appendix B: Parametrization of the tetragonal
surfaces

The parametrization in equation (2), with R now sup-
plied by equation (9), can be readily recast into standard
elliptic integrals (the basic transformations have been long
established [29] and recently re-analysed by Cvijovic and
Klinowski [47]). Below we focus on the constraints and the
resulting geometrical characteristics for the three families,
tG, tD and tP .

The tetragonal degradation of the cubic gyroid to the
space-group I41/acd requires a commensurability con-
dition in both the (x, y) and z directions. We phrase
these conditions in terms of the positions of the surface-
embedded inversion centers (1̄), relative to the origin
ω = 0 at the 4̄ site. The center corresponding to the pa-
rameter value ω = ω0 must satisfy y(ω0) = 0. From this
first constraint on θ the horizontal dimension a of the unit
cell is expressed in terms of ω0 via x(ω0) = a/4, giving

tan θ = Re{iGTK(kT )}/Im{iGTK(kT )} (B.1a)

a = 2
√

2|GT |Re{K(kT )K ′(kT )∗}/|K(kT )| (B.1b)

where the modulus kT and prefactor GT are

k2
T = 1/2 + (ω−2

0 + ω2
0)−1,

GT = (ω−2
0 + ω2

0)−1/2. (B.2)

Equivalently, one could switch the ω0 in equation (B.2)
to eiπ/4ω0 and simultaneously replace K by iK − K ′

throughout equation (B.1) (now removing the
√

2 factor
from a). The second constraint enforces the z lock-in and
also supplies a formula for the vertical dimension c of the
cell. Specifically we require that the height z(ω0) = c/8



A. Fogden and S.T. Hyde: Continuous transformations of cubic minimal surfaces 103

be consistent with that of the other center z(e−iπ/2ω−1
0 ) =

3c/8, giving

tan θ=

Re{iGTz(K(kTz)+iK′(kTz))}/Im{iGTz(K(kTz)+iK′(kTz))}
(B.3a)

c=8|GTz|Re{K(kTz)K
′(kTz)

∗}/|K(kTz)+iK ′(kTz)|
(B.3b)

where the modulus and prefactor are now defined as

kTz = (ω−2
0 + ω2

0)/(ω−2
0 − ω2

0),

GTz = (ω−2
0 − ω2

0)−1. (B.4)

We adopt the argument φ0 as the independent variable
indexing these tG surfaces, with their family spanning the
range −π/2 < φ0 < 0. The corresponding r0 is obtained
by equating equation (B.1a) to equation (B.3a); the re-
maining equations then specify the Bonnet angle and cell
dimensions in terms of φ0.

The area Sp of the representative surface piece gener-
ated by the wedge region −π/4 ≤ φ ≤ π/4, 0 ≤ r ≤ 1,
is given by polar integration of equation (3a), and can be
expressed elliptically as

Sp =

∫ 1

0

drr(1 + r2)2|(r8 − r8
0)(r8 − r−8

0 )g|−1/2K ′(1/g)

(B.5)

where g is again defined by equation (A.7), now with r3

replaced by ir4 (similarly for r0) and 3φ0 replaced by 4φ0.
The homogeneity index is defined in terms of the above
quantities by

H = N
√

2/πS3/2
p /(a2c) (B.6)

where N is the number of such surface pieces comprising
the translational unit cell, so N = 32 for tG. The surface
average of an arbitrary power q of the local Gaussian cur-
vature magnitude (see Eq. (3)), expressed in normalized
form, is

µq = 〈|K|q〉/〈|K|〉q = (2/π)qSq−1
p

∫
(−K)qdSp. (B.7)

The tD family emerges continuously from the endpoint
φ0 = 0 (with θ = 0) of the tG family, with r0 now free
to run over the range 0 < r0 < 1. The tD surface quanti-
ties, as functions of r0, then follow immediately from this
special case of the formalism above. It only remains to
switch from the space-group I41/acd to the true symme-
try P42/nnm for tD by dividing the resulting a and c by√

2 and 2, respectively. This then gives

a = 2GTK
′(kT ) (B.8a)

(with ω0 = r0 in Eq. (B.2)) and

c = 4(r−2
0 + r2

0)−1K
[
2(r−2

0 + r2
0)−1

]
. (B.8b)

Further, the general equation (B.5) for Sp simplifies by
symmetry to

Sp =

∫ 1

0

drr(1 + r2)2 1

(r4
0 + r4)(r−4

0 − r4)

×K ′
(
|(r4

0 − r
4)(r−4

0 + r4)|

(r4
0 + r4)(r−4

0 − r4)

)
(B.9)

and the value of N for the homogeneity index in equation
(B.6) is now 8.

The tP family is adjoint to tD, i.e. only differs in the
replacement of θ = 0 by θ = π/2. Accordingly the quanti-
ties Sp and µq, again as functions of r0, are exactly as for
tD above. For the tP space-group I4/mmm 16 such pieces
build the unit cell. The dimensions a and c of this cell are
simply obtained from their counterparts in equation (B.8)
by taking the complement, i.e. interchanging K and K ′.
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