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Abstract. – We describe a construction procedure for polycontinuous structures, giving
generalisations of bicontinuous morphologies to more than two equivalent, continuous and in-
terwoven sub-volumes. The construction gives helical windings of disjoint graphs on triply
periodic hyperbolic surfaces, whose universal cover in the hyperbolic plane consists of packed,
parallel trees. The simplest tri-, quadra- and octa-continuous morphologies consist of three
(8, 3)− c, four (10, 3)− a and eight (10, 3)− a interwoven networks, respectively. The quadra-
and octa-continuous cases are chiral. A novel chiral bicontinuous structure is also derived,
closely related to the well-known cubic gyroid mesophase.

Introduction. – The concept of a bicontinuous morphology has proven to be a useful
one in understanding structures at various length scales in a variety of (sometimes partially)
condensed atomic, molecular and macromolecular systems [1–3]. These phases are now recog-
nised in a range of natural and synthetic atomic frameworks, lyotropic and thermotropic
liquid crystalline systems, and block copolymers [4]. A useful model of bicontinuous crys-
talline (meso)phases is a single-sheeted crystalline dividing surface that is close to a triply
periodic minimal surface or TPMS (an ordered “sponge”). The most commonly encountered
surfaces in liquid crystalline mesophases are the three genus-three cubic TPMS: the P , D and
gyroid (G) surfaces. Alternatively, the surface topology can be characterised by its “labyrinth”
graphs, that describe the channel architecture carved out by the hyperbolic surface (fig. 1).
The self-assembly process that leads to these morphologies in molecular systems has been
described in detail elsewhere [5–7]. The stability of the P , D and G surfaces in molecular as-
semblies is likely to be due to their “quasi-homogeneous” geometries, with minimal variations
of Gaussian curvature and channel radii compared with other known minimal surfaces.

Polycontinuous morphologies. – Polycontinuous structures consist of identical (n say)
interwoven 3d domains. Bicontinuous forms can be constructed by aggregation of di-block rods
with mutually immiscible blocks (surfactants, copolymers,...). Polycontinuous morphologies
result from aggregation of star-shaped rods, each consisting of n-arms, where the number
of domains may exceed two. Tri-, quadra-, ... continuous morphologies cannot be trivial
c© EDP Sciences



136 EUROPHYSICS LETTERS

Fig. 1 – Pair of interwoven labyrinth graphs defining the channels of (a) the P and (b) the G surfaces.

extensions of the surfaces that separate immiscible domains in bicontinuous phases, since
neighbouring star-shaped rods can only be stacked along one-dimensional lines, so that the
star centres lie on graphs rather than surfaces. The simplest 3d star-aggregates can be inferred
from planar three- and four-connected networks. Stacks of Y-shaped stars can be placed end-
to-end to form a hexagonal honeycomb network; X-shaped stars can form a square honeycomb
(fig. 2). More generally, the node density can be “tuned” by twisting the stars along the
vertical axis. The tips of the stars trace helical wrappings on cylindrical surfaces, so that each
cylinder resembles a barber-pole (fig. 2). These 2d Euclidean patterns will be curved, via
insertion of disclination networks, to give polycontinuous morphologies.

The 2d Euclidean nature of these wrappings follows from the vanishing Gaussian curvature
of the rods. Unglue each rod along a seam that runs along its length, to form a flat sheet.
The helices unfold, to form a sheaf of parallel “diagonals”. Reversing that construction allows
any helical wrapping to be generated from decoration of a {4, 4} tiling of E2, the Euclidean
plane. (Denote a tiling by its Schläfli symbol, {n, z}, where the first entry is the ring size,
and the second the number of edges about each vertex). The helical pitch is dependent on
the angle the helix subtends with the edges of the {4, 4} network, or the vertex (x, y) of the
{4, 4} network closest to the origin that is visited by the helix (where the origin is located at x

Fig. 2 – Planar end-to-end arrangements of (a) 3- and (b) 4-armed stars. (c) Twisted stacking of
3-armed stars, forming helices. (d) Universal cover of (1, 1) helical windings on a cylinder in E2, of
orbifold symmetry 2 ∗ 22 (ignoring the colouring). (e) Single unit of (d), with mirrors along ad and
cd, and two-fold rotational symmetry sites at a, b, c and d. (f) Compactified 2 ∗ 22 orbifold from (e),
formed by joining edges linked by the arrow. The orbifold is bounded by mirrors, with an order 2
cone point at d, formed from (d) by identification of edges ab and cb.
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and y directions lie along the curved and straight principal directions of the rod, respectively,
and the circumference of the rods is set to unity). Choose the simplest symmetric helical
patterns, with pitch (1, 0) and (1, 1) (fig. 2(d)). (Other examples are canvassed in [8].) The
symmetries of these planar patterns are p2mm and c2mm, or in the more transparent orbifold
nomenclature of Conway [9], ∗2222 and 2 ∗ 22 (1).

In order to generate polycontinuous morphologies, we generalise these barber-pole patterns
to wrappings on sponges embedded in E3. To ensure quasi-homogeneity of the final patterns,
we consider only the most symmetric genus-three TPMS. We analyse first the wrappings in
H2, the universal cover of sponges. The Euclidean 2 ∗ 22 orbifold can be “edited” [10] to give
a related two-dimensional symmetry group in H2. The simplest hyperbolic analogue of the
kaleidoscopic ∗2222 case is ∗2223, likewise 2∗23 is the analogue of the 2∗22 orbifold. In slightly
more generality, 2 ∗ 2i, 22 ∗ i and 222 ∗ i orbifolds are possible symmetry groups in H2, where
i exceeds two [9]. That editing process is accomplished by insertion of disclinations on the
helical pattern, with disclinations located at all common vertices (x, y). For sufficiently low
disclination densities the (Clifford) parallel helical lines form infinite arrays of non-intersecting
trees in H2. To embed the network in E3, a transformation from the forested H2 to the triply
periodic sponge is imposed, via a tiling of H2. Judicious selection of the forest results in a 3d
helical winding of the sponge containing a number of intertwined helices.

Sadoc and Charvolin have demonstrated the use of the {4, 6} tiling as a map for the P ,
D and G triply periodic minimal surfaces [11]. (Note that although the global embeddings
of the P , D and G surfaces differ in E3, their Gauss maps are identical.) Here we adopt a
slightly more general algorithm for the underlying map from H2 to the minimal surface in
E3. Since the surfaces are minimal, the Gauss map is conformal, except at isolated flat points
on the surfaces. It is necessarily branched at the surfaces’ flat points, of order b. Further,
the mapping of simpler “regular” three-periodic minimal surfaces (defined in ref. [12]) is very
symmetric: the orbifolds are kaleidoscopic. Fundamental domains for the Gauss maps of
simpler TPMS (derived elsewhere [12]) can be used to form maps of the surfaces in H2 as
follows. Domain edges are geodesics, we demand that they are also geodesics in H2. Vertex
angles in H2 are shrunk by a factor of 1

b+1 relative to those on the Gauss map, where b
denotes the branch point order of the vertex on the Gauss map. That algorithm applied to the
simplest TPMS, the genus-three cubic P/D/G family of triply periodic minimal surfaces and
the genus-three hexagonal H surface, produces the “kaleidoscopic nets” of symmetries ∗246
and ∗2226, shown in fig. 3. (Note that the ∗2226 pattern is in fact a one-parameter family
of nets, corresponding to the variable axial ratio of the hexagonal surface. We choose here—
for convenience only— the most symmetric member of that family in H2, that is generated
from the more symmetric 24(12) orbifold.) Those kaleidoscopic nets of H2 contain simple
Platonic sub-graphs, related to the Euclidean {4, 4} network: the P/D/G net contains the
{4, 6} graph, the H net contains {4, 12}. To obtain the hyperbolic analogues of the helical
(1, 0) and (1, 1) patterns, insert networks of (negative) disclinations at vertices of the original
{4, 4} tiling. Those disclinations increase connectivity of the original (2-connected) unfolded
helical diagonals, resulting in 3- and 6-connected trees in H2 superimposed on the {4,6} and
{4,12} nets, respectively, shown in fig. 3 (2). Finally, the patterns in H2 are wrapped (with

(1)A generic 2D symmetry group containing rotation and reflection symmetries is labelled ab...c ∗ de...f .
Entries a,. . . preceding the asterisk denote sites of a-fold rotational symmetry; entries d, ... conjunctions of
rotational symmetry lying on mirrors intersecting at 2π

d
. (If the symmetry order exceeds single digits, the

entry is contained between parentheses, e.g. 36(12) denotes an orbifold bounded by 3-, 6- and 12-fold rotational
symmetries.) Orbifolds bounded exclusively by mirrors (∗de...) are called “kaleidoscopic”.
(2)The tree morphologies can be inferred by calculating the diagonal edge lengths, which exceed the values
required to form closed loops.
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Fig. 3 – Packed 3-connected trees of edge length (a) cosh−1(3) and (b) cosh−1(5) superposed on the
{4,6} tiling. (c), (d) The corresponding trees superposed on the Platonic {4,12} tiling. (e) Less
symmetric 6-connected trees on {4,12}; (f) 3-connected trees on {4,12} formed by replacing each
vertex of the previous pattern with a Y-shaped star of edges.

some distortion of the metric, required to embed H2 in E3) according to the gluings needed to
form the P/D/G and H surfaces in E3. That process has been described for the P/D/G family
in [6], and is generalised elsewhere [8]. The wrappings result in multiple disjoint networks in
E3, whose translational symmetries are generally subgroups of their underlying surfaces [8].

The topology of those networks is dependent on the helical pitch, and the embedding
process into E3. Some trees form zero pitch helices on the surfaces in E3, resulting in either
3d lattices of finite (“molecular”) graphs, or lattices of planar graphs. These examples, while
interesting and of possible relevance to atomic and molecular structures [8], are oblique to the
goal of this paper.

A number of polycontinuous examples result, listed in table I. Interwoven 3d graphs result
from the 3-connected trees of edge-length cosh−1(3) and cosh−1(5) overlayed on the {4, 6}
net, followed by embedding in E3 via the D and P surfaces, respectively. In both cases, the

Table I – Hyperbolic symmetries of z-connected trees on kaleidoscopic nets characteristic of the
genus three cubic P/D/G and hexagonal H triply periodic minimal surfaces, and the 3d space group
symmetries of resulting helical networks on these surfaces. The net symbols are either those of Wells
for 3d infinite graphs [13].

Edge H2 Surface Nets E3 Number E3

length symmetry symmetry of disjoint symmetry
of each net nets

cosh−1(3) ∗2223 D {10, 3}−a I4132 4 P4232

cosh−1(5) 2 ∗ 23 P {10, 3}−a I4132 8 I432

cosh−1(3) ∗2223 G {10, 3}−a (distorted) P4332 2 I4132

cosh−1(
√

3+1√
3−1

) 22 ∗ 3 H {8, 3}−c P63/mmc 3 P63/mcm
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Fig. 4 – (a) Embedding of the 3-connected trees shown in fig. 6 in the D surface, resulting in (b) four
discrete interwoven graphs. The edges lie on straight lines of the surface, and each discrete graph is
a right-handed (10, 3)− a graph (Y ∗+).

windings are collections of chiral {10, 3}−a nets (to use the nomenclature of Wells [13]), with
vertices on the Y ∗ lattice complex of the Ia3d space group. Four identical enantiomers of
the {10, 3} − a network wrap around the D surface (figs. 4), and eight wrap the P surface.
These wrappings define labyrinth graphs of chiral quadra- and octa-continuous structures,
respectively (figs. 5). Both helical patterns form “dogs-leg” motifs, with graph edges twisting
about each catenoidal channel of the minimal surface. Four discrete graphs wind each channel
of the P surface and three wrap around channels of the D surface (fig. 6).

The 3-connected tree of edge length cosh−1(3) can also be embedded in the gyroid to
form a pair of chiral (geometrically distorted) {10, 3} − a networks. If the curved edges are
straightened in E3 (fixing the vertex positions on the surface) the angles between straight
edges are equal to the tetrahedral angle, arccos(− 1

3 ), resulting in a pair of cubic {10, 3} − a
graphs of identical handedness, each a subgraph of the diamond graph (figs. 7). This novel
chiral bicontinuous pattern differs from that of the gyroid, that partitions space into a pair of
{10, 3} − a graphs of opposite handedness.

Fig. 5 – (a) Embedding of the 3-connected trees shown in fig. 3 in the P surface; they result in (b)
eight right-handed interwoven cubic (10, 3)− a graphs.
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Fig. 6 – Winding of edges around catenoidal channels in the (a) P and (b) D surfaces. Notice the
dogs-leg motifs in both cases. The P channels are wrapped by four such legs, the D by three.

Fig. 7 – (a) Embedding of the 3-connected trees shown in fig. 3 in the G surface, resulting in (b) two
right-handed interwoven graphs. The graphs are slightly distorted versions of the cubic (10, 3) − a
examples shown in the previous figures.

Fig. 8 – (a) Embedding of the 3-connected trees shown in fig. 3 in the H surface, resulting in (b)
three interwoven (8, 3)− c hexagonal graphs.
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These cubic embeddings do not admit morphologies with odd numbers of graphs. To
generate a trio of identical 3-connected nets, a hexagonal sponge, the H surface, is invoked.
Choose the dogs-leg motif on the H surface. Tricontinuous achiral structures result from
embedding of 3-connected trees of 2d symmetry 22 ∗ 3 on the {4, 12} net of the H surface,
forming the {8, 3} − c network of Wells for fixed axial ratio of 0.4 [13] (figs. 8).

We have shown that generalisations from bi- to tri-, quadra- and octa-continuous mor-
phologies can be deduced from helical wrappings of sponges, derived from arrays of trees in
the hyperbolic plane. The challenge is now to identify these structures in chemical systems.
Multiple interpenetrating networks are well known in molecular crystals, and the chiral bi-
continuous (slightly geometrically distorted) and quadra-continuous {10, 3} − a pattern have
indeed been reported in a coordination polymeric molecular crystal [14]. The geometric regu-
larity of these morphologies makes them promising candidates for polycontinuous mesophases
in soft molecular systems containing three and four immiscible moieties. Further analysis
must invoke a more concrete physical model for the self-assembly process, and will be done
elsewhere. We note that these examples, that are the most symmetric decorations of the
quasi-homogeneous sponges, are likely to be the most homogeneous partitions of space into
multiple identical three-dimensional domains. These polycontinuous structures are thus the
analogues of the energetically favoured bicontinuous forms, described by the P , D and G
structures.

***
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at www.mesoscale.anu.edu.au. We are grateful to D. Huson for his Funtiles software, used
here to draw the underlying kaleidoscopic tilings of figs. 3.
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