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Abstract

We propose a general method to study the hierarchical organization of financial
data by embedding the structure of their correlations in metric graphs in multi-
dimensional spaces. An application to two different sets of interest rates is discussed
by constructing triangular embeddings on the sphere. Three dimensional represen-
tations of these embeddings with the correct metric geometry are constructed and
visualized. The resulting graphs contain the minimum spanning tree as sub-graph
and they preserve its hierarchical structure. This produces a clear cluster differen-
tiation and allows to compute new local and global topological quantities.
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1 Introduction

In this paper we investigate the hierarchical organization of interest rates
data and we discuss a general method to characterize the statistical, geomet-
rical and topological properties of correlation matrices in complex systems. A
number of physicists have observed that the structure of the correlation co-
efficients from complex datasets (such as times series from financial markets)
can be conveniently studied by mapping the data-structures onto graphs [1–7].
Mantegna [1] has studied the hierarchical organization of such correlations by
retaining only the most relevant correlations which form the minimal spanning
tree (MST) (see also [3,5–7]). However, this reduction to a minimal skeleton
necessarily results in extreme sensitivity to dynamical variations in the system
(small variations in interactions). An extension from trees to graphs has been
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proposed by Onnela et. al. [6], but a general procedure which allows the con-
struction of connected networks with varying degrees of information content
and controlled complexity has not been introduced yet. In this framework, we
propose to map the interest rates correlations into graphs embedded on mani-
folds with different topologies in multidimensional spaces, both Euclidean and
non-Euclidean.

We choose to apply this method to interest rates data, because, in the Econo-
physics literature, these data have been less investigated in comparison with
the investigations performed on stock market prices. Only recently these stud-
ies are becoming very attractive and approached from many different perspec-
tives [8–14].

For several economic reasons, interest rates have very similar statistical behav-
iors in time following similar trends. This makes the subject very challenging
since one is no more dealing with the statistics of single objects but with the
collective dynamics of a whole complex set of highly correlated data.

Our study starts from the analysis of the collective behavior of the stochas-
tic fluctuations of interest rates data by using a clustering linkage procedure
which has been proved to be a useful tool to detect differences and analogies
among these tangled correlated data [12]. The output of this clustering linkage
procedure, gives us the simplest picture of the interest rates hierarchical orga-
nization. We show that the same clustering structure naturally emerges from
the embedding on the sphere of the graph made by retaining the strongest
correlations. We emphasize that the resulting graph contains the MST.

The structure of this paper is the following: Section 2 describes the interest
rates data set, Section 3 gives a resume of the main outcomes obtained from
a correlation cluster analysis. The general idea and the specific results are
reported in Section 4 where a 3D visualization of these metric graphs is also
shown.

2 Data description

We investigate two data sets: 16 Eurodollars interest rates (Set 1) and 34
interest rates in money and capital markets, referring to government, private,
industries securities and commitments (Set 2). Set 1 contains daily values
fi(t), where t is the current date and 3i = θ is the maturity date in the time
period 1990− 1996 [11]. On this time period we have 16 different time series
corresponding to maturity dates ranging from θ = 3 to 48 months with a step
of three months (reported in Tab. 1). The behavior of fi(t) as function of t is
shown in Fig.1 where we use i(= θ/3) to label the different maturity dates θ.
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Fig. 1. a) Eurodollar interest rates (fi(t)) as function of t for i ranging from 1 to
16; b) Eurodollar interest rates (fi(t)) as function of t for i = 1, 5, 10, 16.
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Fig. 2. Interest rates fi(t) as function of t for i = 1− 34 (thin grey lines) and their
average f̄(t) (thick black line).

For a better visualization of the plot, in Fig.1 b) we report only those values
corresponding to the following maturity values: θ = 3, 15, 30, 48 months. The
interest rates behaviors for all maturity dates follow very similar trends in
time, and stay mostly inside the shape traced by the two extreme maturity
values, namely θ = 3 and θ = 48 months. Set 2 contains 34 weekly data for
different interest rate during a time period of 16 years between 1982 and 1997
recorded in the Federal Reserve (FR) Statistical Release database [12,15]. In
appendix A are reported their main characteristics. In the following we will
indicate these time series with the symbol fi(t), where t is the current date and
i is a number which labels the different time series (see Tab.2). The behavior
in time of these interest rate time series, fi(t), is shown in Fig.2, where their
average f̄(t) =

∑
i fi(t)/34 is also shown. It is evident from Fig.2 that all these

data follow very similar trends in time and they lay in a rather narrow band
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Table 1
Data Set 1: Eurodollar interest rates in the time period 1990-1996.

i θ months i θ months i θ months i θ months

1 3 5 15 9 27 13 39

2 6 6 18 10 30 14 42

3 9 7 21 11 33 15 45

4 12 8 24 12 36 16 48

Table 2
Data Set 2: Interest rates in the time period 1982-1997.

i fi i fi i fi i fi i fi i fi

1 FED 7 FP3 13 CD6 19 TC5Y 25 TBS3M 31 ED6M

2 SLB 8 FP6 14 TC3M 20 TC7Y 26 TBS6M 32 AAA

3 CP1 9 BA3 15 TC6M 21 TC10Y 27 TBS1Y 33 BAA

4 CP3 10 BA6 16 TC1Y 22 TC30Y 28 TC10P 34 CM

5 CP6 11 CD1 17 TC2Y 23 TBA3M 29 ED1M

6 FP1 12 CD3 18 TC3Y 24 TBA6M 30 ED3M

around f̄(t).

3 Correlation cluster formation

We study the hierarchical structure arising from the correlations between the
interest rate fluctuations ∆fi(t) = fi(t + ∆t)− fi(t) with ∆t = 1 day for Set
1 and ∆t = 1 week for Set 2. To this end, we compute the metric distance di,j

between the series ∆fi and ∆fj (which is defined in [16] and used for financial

time series in [1]): di,j =
√

2(1− ci,j) with ci,j the correlation coefficient among
the i, j interest rates fluctuations:

ci,j =
〈∆fi∆fj〉 − 〈∆fi〉 〈∆fj〉

σiσj

, (1)

where the symbol 〈...〉 denotes a time average performed over the investigated
time period and σi is the standard deviation defined as:

σi =

√√√√√ 1

T2 − T1

T2∑

t=T1

(∆fi(t)− 〈∆f〉)2 , (2)
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where T1 and T2 delimit the range of t. The correlation coefficients are com-
puted between all the pairs of indices labeling our interest series. Therefore
we have a 16× 16 (for Set 1) and 34× 34 (for Set 2) symmetric matrix with
ci,i = 1 on the diagonal. By definition, ci,j is equal to zero if the interest rates
series i and j are totally uncorrelated, whereas ci,j = ±1 in the case of perfect
correlation/anti-correlation. Therefore di,j can vary between 0 to 2. In order
to single out the clustering structure, we determine an ultra-metric distance
d̂i,j which satisfies the first two properties of the metric distance and replaces

the triangular inequality with the stronger condition: d̂i,j ≤ max[d̂i,k, d̂k,j],
called ‘ultra-metric inequality’. Once the metric distance di,j is defined, one
can introduce several ultra-metric distances. Mantegna et. al have used the
‘subdominant ultra-metric’, obtained by calculating the minimum spanning
tree connecting several financial time series [2–4]. As the correlations between
interest rates are strong in any part of the analyzed period, we have instead
considered a different ultra-metric space that emphasizes the cluster-structure
of the data [11,12]. The result of this procedure, for the 16 Eurodollars inter-
est rates (Set 1) in the whole time period 1990-1996, tells us that the data
set is gathered into 3 main clusters: Cls1 = {3, 6}, Cls2 = {9, 12, 15, 18, 21},
Cls3 = {24, 27, ...., 45, 48}. The first cluster (Cls1) gathers together interest
rates with maturity shorter than 1 year; Cls2 contains those with maturity
dates between 1 year and 2 years; whereas Cls3 includes those with maturity
dates which are larger than 2 years. For the other 34 interest rates (Set 2) the
same procedure yields to a separation in the following clusters:

- all the interest rates with maturities equal to 1 months (CP1, FP1, CD1,
ED1M);

- all the interest rates with maturities 3 and 6 months (CP3, CP6, FP3, FP6,
BA3, BA6, CD3, CD6, ED3M, ED6M);

- Treasury securities at ‘constant maturity’ (TC), and Treasury bill secondary
market rates (TBS) with maturities 3 and 6 months (TC3M, TC6M, TBS3M,
TBS6M);

- Treasury bill rates (TBA) with maturities 3 and 6 months (TBA3M, TBA6M);
- all the interest rates with maturities between 1 and 3 years (TC1Y, TC2Y,

TC3Y, TBS1Y);
- all the interest rates with maturities larger than 3 years (BAA, AAA, TC5Y,

TC7Y, TC10Y, TC30Y, TC10P).

Finally, there are also three isolated elements, namely FED, SLB and CM. In
the next section, we show how the same cluster structure obtained with the
ultrametric/linkage procedure spontaneously emerges from the planar sub-
graph made by the most correlated links.
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Fig. 3. Three dimensional representation of the embedding on S0 of the correlation
structure of the 16 Eurodollar interest rates (Set 1). Each edge-length corresponds
to the metric distance di,j .

4 Results from a 2D embedding and discussion

Here the general idea is the construction and characterization of metric graphs
(networks of specific topology and geometry) that encode relevant information
concerning the hierarchical organization, interactions and dynamical proper-
ties of these systems. For a set of n interest rates we can associate a point in
a multi-dimensional space to each of the n interest rates. To all pairs (i, j) a
metric distances dij is associated and the resulting network is an n-th order
‘complete graph’ (Kn). In this construction the length of each edge is equal
to the metric distance between the two interest rates increments in the high-
dimensional space and short distances are associated with highly correlated
rates values. The problem we are addressing is to extract maximal informa-
tion both qualitative (visual) and quantitative by topological and geometric
simplification of the complete graph, without excessive information loss. Such
simplification can be obtained by starting from the set of n unconnected nodes
and for a given genus g by connecting iteratively two nodes if and only if the
resulting graph can be embedded on an orientable surface of genus g: Sg [17].
This process will end with a maximally connected graph compatibly with the
surface-genus. Here we present an application of this genus-dependent proce-
dure to the two sets of interest rates data (Set 1 and Set 2) for the genus g = 0
case (the sphere). In Figs. 3,4 their 3D representations, respectively for Set 1
and Set 2, are shown. In both figures we can observe that the resulting graph
on S0 is a triangulation of a topological sphere and we can visualize the hierar-
chical organization of the whole system [18]. Each node represents an interest
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Fig. 4. Three dimensional representation of the embedding on S0 of the correlation
structure of the 34 interest rates (Set 2). Each edge-length corresponds to the metric
distance di,j .

Fig. 5. Two dimensional representations of the minimum spanning tree (MST) with
edge-lengths equal to di,j . Left) MST for Set 1. Right) MST for Set 2.

rate and the length of each edge is the metric distance di,j introduced in the
previous section. Different colors (on line version) have been chosen to dis-
tinguish different clusters. We have relaxed the resulting network numerically
([19,20]) seeking to make all vertex angles as equal as possible, consistently
with the imposition of edge lengths equal to di,j. A detailed description of
this relaxation procedure is given in Appendix B. Note that both graphs in
Figs. 3,4 contain as sub graph the minimum spanning tree (MST) shown in
Fig. 5. In these MST representations the system has also been relaxed to the
real distances using the same procedure as for the 3D case. The planar graphs
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Fig. 6. Two dimensional Pelting representation of the graph in Fig. 3 which opens
it into a topological disk on the plane.

Fig. 7. Two dimensional Pelting representation of the graph in Fig. 4 which opens
it into a topological disk on the plane.

of Figs. 3,4 are a natural further step from the construction of the MST. In
[21] we prove that such graphs preserve the hierarchical organization of the
MST and allow us to compute new local and global topological quantities.
The embedding on S0 gives us a clear clustering differentiation, we can see
from Figs. 3 and 4 that the clusters described in Section 3 naturally emerge
from this construction. Once we have the embedding on S0 we can project
the 3D graph on the plane for a convenient alternative visualization. This has
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been done by using the Pelting Surface Operator [22] (inside the 3D Houdini
package). In our case the Pelting is constructed by cutting the surface along
the MST. The result is a topological disk, with every edge of the MST opening
out into edges of the boundary. Every edge is treated as a spring, with every
point on the boundary connected to a surrounding circular frame. The spring
network is relaxed approaching as closely as possible to metric distances to
create a disc-like mesh with no overlaps. Distances, however are not respected.
The results are shown in Figs. 6 and 7.

5 Conclusion

We have investigated the hierarchical structure of two sets of interest rates by
reducing their correlation matrices to a sub-set of relevant interactions which
can be mapped into a metric graph topologically embeddable on a sphere. We
show that such a procedure yields to structures which are naturally organized
accordingly to the same clustering structure which can be extracted from
a linkage procedure over an ultrametric distance. These graphs, contain the
minimal spanning tree and they can be considered as a natural extension
of such minimal structures which share the same hierarchical organization
but contain a larger amount of information. This embedding procedure can
be extended to surfaces of higher genus constructing in this way networks
with different degree of complexity and tunable information content. This will
introduce new investigation tools (e.g. genus versus information content) and
pose new challenges for their visualizations.
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A Data description

Hereafter we list the different interest rate time series analyzed and their main
characteristics.

• The Federal funds rate (FED) is the cost of borrowing immediately
available funds, primarily for one day. The effective rate is a weighted av-

9



erage of the reported rates at which different amounts of the day’s trading
through New York brokers occurs. The weekly data are unweighted averages
of 7 calendar days ending on Wednesday of the current week.

• The State & local bonds (SLB) consists of 20-year tax-exempt bonds,
primary market general obligation, 20 Bonds in index mixed quality. We
report weekly data ending on Thursday.

• The Commercial Paper (CP) and the Finance Paper placed directly
(FP) [23] are unweighted averages of offering rates, reported each business
day to the FR Bank of New York, on commercial paper placed by several
leading dealers for firms whose bond rating is AA or the equivalent and on
paper directly placed by finance companies. The symbols CP1, CP3, CP6
stand for maturity dates of 1, 3 and 6 months.

• The Bankers acceptances (BA) rates are representative of the closing
yields for each business day as obtained from dealers by the FR Bank of
New York. They are short-term negotiable time drafts or bill of exchange
drawn on and accepted by a bank on behalf of its customers. The BA3 rates
refer to a maturity date equal to 3 months and the BA6 to a maturity date
equal to 6 months. These last are trading rates for the best rated money
center banks.

• The rate on certificates of deposit (CD) is a simple average of dealer
rates on negotiable certificates of deposit nationally traded in the secondary
market. These rates CD1 (maturity date = 1 month), CD3 (maturity date
= 3 months) and CD6 (maturity date = 6 months) are determined for each
business day.

• The yields on Treasury securities at ‘constant maturity’ (TC) are
interpolated by the U.S. Treasury from the daily yield curve. This curve,
which relates the yield on a security to its time to maturity, is based on the
closing market bid yields on actively traded Treasury securities in the over-
the-counter market. These market yields are calculated from composites of
quotations obtained by the FD Bank of New York. The constant maturity
yield values are read from the yield curve at fixed maturities, currently 3
and 6 months (TC3M, TC6M) and 1, 2, 3, 5, 7, 10, and 30 years (TC1Y-
TC30Y).

• The Treasury bill rates (TBA) are weekly averages computed on an
issue-date basis [24]. The Treasury bill secondary market rates (TBS)
are the averages of the bid rates quoted on a bank discount basis by a sample
of primary dealers who report to the FR Bank of New York. The rates
reported are based on quotes at the official close of the U. S. Government
securities market for each business day. They have maturities of 3 and 6
months (TBA3M, TBA6M, TBS3M, TBS6M) and 1 year (TBS1Y) [25].

• The Treasury long-term bond yield (TC10P) are the unweighted av-
erage of yields on all issues of bonds outstanding which are neither due nor
callable in less than 10 years. It represents yield on US Treasury bonds with
maturity over 10 years.
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• The Eurodollar interbank interest rates (ED) are bid rates with ma-
turity dates 1 month, 3 months and 6 months (ED1M, ED3M, ED6M),
respectively.

• The Corporate bonds Moody’s seasoned rates (AAA, BAA) are
average yield to maturity on selected long-term bonds.

• The Conventional mortgages rates (CM) are contract interest rates
on commitments for fixed-rate first mortgages.

Unless differently stated, we report weekly data obtained from unweighted
averages of daily data ending on Friday.

B Network relaxation procedure

The numerical code we use to relax the generated networks runs as follows.
The initial network geometry consists of a set of vertices placed at random
in Cartesian space (xi,yi,zi) [20,26]. That initial structure is then ‘relaxed’
by motion under the influence of a vector force on each n-connected vertex.
Those forces are calculated by the gradient of the (elastic) energy function.
We adopt the following form for the energy:

E = Eangle + Elength (B.1)

with:

Eangle = kb

n(n−1)
2∑

i,j,k=1

(π − θijk)
2 (B.2)

and

Elength = ks

n∑

i,j=1

(δij − di,j)
2 (B.3)

where kb, ks denote the elastic moduli for equalizing angles and edges respec-
tively and di,j denotes the rest spring length. The indices i, j, k label the
vertices. θijk denotes the angle (centered on vertex i) subtended by the three
(edge-linked) vertices i, j, k; of magnitude:

θijk = arccos(
δ2
ij + δ2

ik − δ2
jk

2δijδik

) (B.4)
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where δij denotes the distance of the vector joining vertices i and j:

δij =
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2 (B.5)

The force acting on each n-connected vertex is the gradient of E respect to
xi, yi, zi:

Fxi
= −dE

dxi

; Fyi
= −dE

dyi

; Fzi
= −dE

dzi

. (B.6)

In order to minimize the energy, the position of the vertices changes by an
amount proportional to these forces:

dxi ∝ Fxi
; dyi ∝ Fyi

; dzi ∝ Fzi
. (B.7)

In practice, the magnitudes of the elastic moduli are tuned to ensure conver-
gence to a final configuration with all edges of length equal to di,j and angles
as nearly equal as possible.
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