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High-symmetry free tilings of the two-dimensional hyperbolic plane (H2) can
be projected to genus-3 3-periodic minimal surfaces (TPMSs). The three-
dimensional patterns that arise from this construction typically consist of
multiple catenated nets. This paper presents a construction technique and
limited catalogue of such entangled structures, that emerge from the simplest
examples of regular ribbon tilings of the hyperbolic plane via projection onto
four genus-3 TPMSs: the P, D, G(yroid) and H surfaces. The entanglements of
these patterns are explored and partially characterized using tools from
TOPOS, GAVROG and a new tightening algorithm.

1. Introduction

The interpenetration of multiple networks (or nets) is a
challenging issue from a geometric perspective. The topic is
also one of relevance to materials science. Although they are
difficult to characterize mathematically, or indeed identify in
chemical systems, their importance has long been recognized.
Alexander Wells, who pioneered the systematic study of nets,
recognized the potential importance of multiple nets and
discussed some examples in detail (Wells, 1977). They are
often encountered in typically highly porous metal–organic
frameworks (MOFs), whose various catenation types have
been the subject of a number of studies (Batten & Robson,
1998; Chen et al., 2001; Carlucci et al., 2003; Blatov et al., 2004;
Baburin et al., 2005; Eon, 2006; Blatov, 2006; Blatov &
Proserpio, 2009; Alexandrov et al., 2011; Eon et al., 2012). They
are also found in bicontinuous liquid crystalline mesophases
and related mesoporous tricontinuous inorganic derivatives
(Han et al., 2009). Novel ‘polycontinuous’ open foam-like
patterns have also been formed starting from multiple nets
(Hyde & Ramsden, 2000a; Hyde et al., 2009; Schröder-Turk et
al., 2013).

We adopt the following definitions. First, a graph is a
topological object without geometry, defined by points and
their mutual connections via edges; simple graphs have no
more than one edge between any vertex pair. We discuss here
mostly infinite graphs, with an unbounded number of vertices
and edges. An embedding of a graph is a geometric realization
of that graph in a space, with assigned geometry (e.g. coordi-
nates) for vertices and all edge points. The number of inde-
pendent translation vectors of the graph embedding defines its
periodicity: we are concerned here with 1-, 2- and 3-periodic
graph embeddings. The number of edges that share a vertex
characterizes the degree of that vertex; if all vertices have

equal degree (e.g. z), the graph and its embeddings have
degree z. In concordance with graph theory, we understand a
k-connected graph to mean that at least k vertices and their
associated edges must be deleted from the graph to split it into
more than a single disjoint graph. Nets are simple 3-connected
graph embeddings (Beukemann & Klee, 1992; Klee, 2004).

In order to classify discrete groups of hyperbolic space, we
adopt the orbifold concept, developed by Thurston (1980),
which essentially describes all symmetry operations acting on
a single asymmetric domain [a concept equally useful to two-
dimensional plane groups in E2 (Conway & Huson, 2002)]. We
use Conway’s (1992) orbifold nomenclature to describe the
groups. For convenience, we classify orbifolds into classes
determined by their symmetry operators (or, equivalently, the
orbifold topology). Here we deal only with three classes.
Coxeter orbifolds have a single mirror-line boundary and no
internal centres of rotation symmetry (denoted by ‘?’
symbols). Stellate orbifolds are free of reflection isometries
and characterized by centres of rotation symmetry (whose
orders build the orbifold symbol). Hat orbifolds contain
features of both previous classes, with mirrors and rotation
centres (not on mirror lines). (Like Euclidean space, hyper-
bolic space can also be symmetrically decorated with patterns
containing translation and glide reflection isometries, denoted
‘!’ and ‘"’, respectively.)

This paper and its companion (Evans et al., 2013) are
focused on (en)tangled graph embeddings, which are typically
constituted of a number of disjoint components, wound
around each other with varying degrees of mutual threading.
A robust signature of entanglement is unsolved in general,
though we develop in this paper an algorithmic approach that
sheds some light on the issue. Identifying entanglement is
related to the issue of identifying equivalent knots, a central
concern of knot theory (Adams, 2004), though more complex.
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Knots are (possibly) tangled embeddings of a topological loop;
here we are interested in embeddings of a far broader class of
graphs. We consider any pair of embeddings to be equivalent
if they share the same entanglements (notwithstanding the
associated difficulties in characterization of that entangle-
ment). In mathematical language, that implies the embeddings
are ambient isotopic, i.e. capable of being continuously trans-
formed from one to the other such that distinct edges never
share a common point in space, precluding edges from passing
through each other. Embeddings that are not ambient
isotopic, and have distinct entanglements, are distinct isotopes
(Castle et al., 2011).

This paper and its companion (Evans et al., 2013) share a
common approach to enumeration of entangled graph
embeddings. Our technique relies on the possibility of
embedding any graph in a two-dimensional (curved) surface
(Lindsay, 1959). If that surface is a triply periodic minimal
surface (TPMS), conventional Delaney–Dress tiling theory
can be used to enumerate (crystalline) nets as reticulations of
the TPMS to an arbitrary degree of complexity. This method
simplifies somewhat the enumeration of nets embedded in
three-dimensional Euclidean space (E3), translating that
problem to the enumeration of TPMS tilings. The latter
problem is solved by first finding symmetric tilings of the
universal cover of the TPMS, namely the hyperbolic plane
(H2). In order to project the H2 pattern to the TPMS,
admissible hyperbolic patterns have isometries that are also
isometries of the surface (i.e. symmetries of H2, rather than
E3) (Sadoc & Charvolin, 1989). We restrict allowed isometries
to those that retain the full translational symmetries of the
TPMS, thereby guaranteeing the construction of 3-periodic
nets in E3 (Robins et al., 2004a). This amounts to deducing all
orbifolds whose associated groups are subgroups of ?246 and
supergroups of ! ! !. Admissible groups are listed in Robins et
al. (2004a); we adopt the same numbering scheme for groups
as listed there.

Patterns in the hyperbolic plane cannot be represented on a
flat page without some distortion. We choose to draw H2 using
the Poincaré disc model of H2 (Hilbert & Cohn-Vossen, 1952;
Coxeter, 1947; Beardon, 1995).1

The simplest TPMSs are the so-called genus-3 TPMSs
(Hyde et al., 1997). Among those, the cubic examples,
Schwarz’ primitive (P) surface, Schwarz’ diamond (D) surface
and Schoen’s gyroid (G) surface (Schoen, 1970) are the most
symmetric in both E3 and H2 (Fig. 1). The two-dimensional
asymmetric patch of the P, D and G surfaces is a hyperbolic
triangle, bounded by mirror lines (Molnar, 2002; Hyde,
Ramsden et al., 2003). This patch tiles bothH2, as shown in Fig.
1(a), and the three simplest TPMSs, illustrated in Figs. 1(b),
1(c), 1(d). The symmetry group of the tiling is ?246.

An online enumeration of conventional tilings commensu-
rate with the P, D and G surfaces and their corresponding
TPMS reticulations is located at Hyde et al. (2010), and details
of the process are given in Hyde et al. (2006). A complete
description of kaleidoscopic tilings, whose asymmetric
domains and orbifolds are bounded by mirror lines, is given in
Ramsden et al. (2009). That study considered only tilings ofH2

that are composed entirely of tiles topologically equivalent to
a compact disc, a constraint that is consistent with the usual
implementation of Delaney–Dress tiling theory. The resulting
patterns in E3 are embedded single-component, 3-periodic
nets.

This restriction is convenient and mathematically useful,
though limiting, since Euclidean and hyperbolic spaces can be
tiled by a broader class of tiles also. In this paper and its
partner publication, we explore patterns that emerge from
hyperbolic tilings whose tiles are infinite, rather than compact,
and we term these tilings free tilings. These examples signifi-
cantly broaden the catalogue of resulting patterns in E3, since
multiple interwoven patterns are generally (though not
always) formed with more than one disjoint component.

In this paper we explore free tilings whose hyperbolic tiles
are infinite ribbon-like strips with boundaries composed of
finite edge segments that meet at vertices of degree 3 or more.
Switching focus from the tiles to the edges, we see that these
edges form ‘forests’ (i.e. collections of trees). These have been
explored to a limited extent previously (Hyde & Ramsden,
1999; Hyde & Oguey, 2000; Hyde & Ramsden, 2000b,c; Hyde,
Larsson et al., 2003; Hyde, Ramsden et al., 2003; Hyde &
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Figure 1
(a) ?246 tiling on the Poincaré disc model of H2. The cubic genus-3
TPMSs, (b) P surface, (c) D surface and (d) G surface. All are covered by
the same triangular tiling, and an orientation preserving subgroup of
?246. The blue and purple colours show the two distinct channels of the
surfaces.

1 This conformal (i.e. angle-preserving) model maps H2 onto the interior of a
unit circle, with ever-increasing length shrinkage from the centre to the
boundary, so that the boundary of the circle in fact represents points at infinity
inH2 (Hilbert & Cohn-Vossen, 1952). A hyperbolic geodesic – the analogue of
a Euclidean straight line – is represented in the disc by a circular arc that meets
the boundary circle at right angles. Parallel geodesics in H2 are presented by
circular arcs that just meet at the disc boundary; hyperparallel geodesics map
to circular arcs that have no points in common.
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Ramsden, 2003). After projection onto a TPMS, these forests
become periodic arrays of multi-component nets with varying
degrees of entanglement.

To date, ab initio enumeration of multiple nets has been
elusive. Here we describe in some detail the simplest examples
of multiple nets. The analysis draws on earlier work (Hyde &
Oguey, 2000), now extended. The paper deals in detail with the
simplest cases, namely multiple regular degree-3 nets, gener-
ated from regular ribbon tilings using an extension of
Delaney–Dress tiling theory. First, we sketch a route to
enumeration of free tilings. Second, we extend tilings beyond
the kaleidoscopic cases due to Coxeter orbifolds, to include
examples of stellate orbifolds of H2, where the symmetry of
the tiling is composed solely of rotations. These examples
admit a two-parameter family of embeddings of the tilings in
H2 and the TPMSs, analogous to embedding parallelograms in
the two-dimensional Euclidean plane. Those tools are then
used to construct a catalogue of degree-3 regular ribbon tilings
on the P, D and G surfaces, and their associated embeddings
in E3 as multiple nets. We also describe some examples of
multiple degree-4 and degree-6 nets from regular ribbon
tilings, providing a template for exhaustive enumeration of
other cases.

A characteristic of the Euclidean patterns that result from
these tilings is their various entangled forms. We discuss
various measures of entanglement and introduce a numerical
tightening algorithm, suitable for tangled nets, that offers a
partial resolution of the vexed issue of distinguishing various
entanglements of multiple nets.

2. Accommodating free tilings within Delaney–Dress
tiling theory

Combinatorial tiling theory allows exhaustive enumeration of
symmetric tilings of (in principle) any simply connected space
by finite, simply connected tiles. It has been developed in
detail for H2, E2, S2 and E3 (Huson, 1993; Delgado-Friedrichs
& Huson, 1999; Delgado-Friedrichs, 2001). Its constructive
key is a finite Delaney–Dress tiling symbol (or ‘D-symbol’),
that provides a canonical and finite encoding of the topology
and symmetry of the tiling (Dress, 1987). The D-symbol for a
tiling is formed by triangulating tiles of the periodic tiling into
chambers, where the three vertices of the chamber lie at a
vertex, edge and face of the tiling. Symmetrically distinct

chambers are assigned a distinct label and the D-symbol
encodes the combinatorics of involutions between chambers.
The number of symmetrically distinct faces, edges and vertices
of the tiling defines its ‘transitivity’; thus the most symmetric
(‘regular’) tilings are vertex-, edge- and face-1-transitive.
A unique ordering of complexity may be obtained from a
D-symbol, allowing exhaustive enumeration of tilings by their
complexity (Delgado-Friedrichs, 2003). A fuller application of
this approach to tilings of H2 and TPMSs can be found in
Ramsden et al. (2009).

The combinatorial approach can be used to characterize (or
conversely to construct) an example of a regular tiling of H2

with symmetry group ?2223. The tiling contains vertices at ?3
sites (the site where three mirrors intersect) and edges along
both mirror edges of the ?2223 orbifold linking ?3 and ?2 sites,
forming a tessellation of H2 of degree-6 by quadrangles (a
f4; 6g regular tiling, Fig. 2). We fragment a single tile into
constituent chambers and label chamber vertices 0; 1; 2
according to their location on tiling vertices, edges and faces,
respectively. Edges are labelled by the label of the opposite
vertex. Two distinct chambers, A and B, result. The D-symbol
is built as follows. First, the symmetry of the tiling is encoded
by determining the effect of involutions in all three edges of
each chamber. Involutions are denoted s0; s1; s2, where the
subscript determines the edge through which the chamber is
mapped. For example, chamber A is mapped to chamber B
through the chamber edge connecting the ?3 site (a ‘0’ vertex)
and the opposite ?2 site that lies within a face (and is therefore
a ‘2’ vertex). The s1 involution therefore maps A to B. The
complete combinatorics make up the symmetric encoding of
the tiling’s D-symbol. Its topology (f4; 6g) is encoded by
integer entries for the order of the cyclic AB permutation
around vertices and faces (m12 and m01, respectively). The
resulting D-symbol is tabulated in Fig. 2, where the symmetry
group of the tiling is ?2223.

The key to generating free tilings with infinite tiles is the
recognition that free tilings transform to conventional tilings
(containing finite tiles) by the addition of a finite number of
symmetrically distinct edges. We therefore extend the con-
ventional combinatorial approach to infinite tiles by deleting
edges from a conventional tiling while preserving the original
Delaney–Dress triangulation. By associating each free tiling
with a conventional tiling, free tilings inherit the enumerable
structure of D-symbols. These free tilings are denoted by

the original Delaney–Dress encoding
with an additional signifier, namely a
1-vertex rather than the standard
1-vertex, on the chambers that now
contain a ‘ghosted’ edge. The symbol
may be tabulated identically to regular
tilings; however the chambers con-
taining real edges are given in bold font
and the chambers with ghosted edges in
regular font. We note that the develop-
ment of free tiling theory is still in
progress. However, for the purposes of
this paper, the approach proves useful.
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Figure 2
The Delaney–Dress representation of a regular f4; 6g tiling on the ?2223 orbifold. The edge passes
along the mirror boundary from the ?3 site to the ?2 site. See the text for further details.
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This encoding is complicated by the fact that most free
tilings may be constructed from multiple distinct conventional
tilings: if two conventional tilings differ only by a single edge
(and have different Delaney–Dress encodings), and this
particular edge is ghosted, the same free tiling will result and
will be classified by two distinct encodings. The unique
encoding of a free tiling is chosen to be the simplest among all
possible encodings, as defined by the number of chambers
within the triangulation of a single orbifold domain. Where
there exist multiple simplest encodings of a single free tiling,
the unique encoding is chosen to be that which has the least
complexity according to the D-symbol ordering (Delgado-
Friedrichs, 2003).

The free tilings considered in this paper are regular ribbon
tilings of H2. Recall that regular tilings are vertex-, edge- and
face-1-transitive. A Euclidean ribbon is a strip whose
‘skeleton’ – the central axis that is maximally distant from the
ribbon edges – is an unbranched line. Similarly, a hyperbolic
ribbon is characterized by an unbranched line-shaped
skeleton. Unlike Euclidean ribbons however, hyperbolic
ribbons are bounded by finite edges and contain an infinite
number of vertices. The edges and vertices belong to hyper-
bolic trees (Hyde & Oguey, 2000). The edges of degree-3
ribbon tilings form degree-3 trees. Like their Euclidean
cousins, regular hyperbolic ribbon tiles exhibit translational
symmetry, by translations along the ribbon’s skeleton. The
most symmetric ribbon tilings are of special importance
among the hierarchy of free tilings, since their edges form
close-packed trees in H2, whose vertex density in the hyper-
bolic plane is maximal (Hyde & Oguey, 2000). We call these
close-packed examples ‘dense’ tilings. While this notion of
close packing does not carry over to the resulting Euclidean

embeddings of ribbon tilings, the resulting patterns are
nevertheless densely arrayed on the TPMS.

A simple example of a dense, regular degree-3 ribbon tiling
is shown in Fig. 3. The infinite tile is bounded on both sides by
edges of a regular tree and its skeleton is a hyperbolic
geodesic.

Possible symmetries of regular degree-3 dense ribbon tilings
can be readily deduced from their 1-transitivity. Edge transi-
tivity implies that the degree-3 vertex of the tile boundary
must have threefold rotational symmetry, so its site symmetry
is either 3 (a threefold rotation centre) or ?3. Further, since all
vertices are equivalent, edge midpoints must have site
symmetry 2 or ?2. Their translational symmetry within indi-
vidual ribbons may be due to some combination of ?2
symmetries, twofold rotations, ‘!’ or ‘"’. Among the admis-
sible groups that are commensurate with the cubic TPMSs
(Robins et al., 2004a), four fit these criteria: ?2223 (group 124),
2?23 (group 129), 2223 (group 118) and 23" (group 121).
Regular ribbon tilings from the 23" orbifold display addi-
tional symmetry, so that these examples adopt a symmetry
group of 2?23 (a supergroup of 23"). We therefore analyse
regular ribbon tilings with symmetry groups ?2223, 2?23 and
2223, belonging to the Coxeter, hat and stellate orbifold
classes, respectively.

The Coxeter class allows a single, regular degree-3 ribbon
tiling. The tile edge runs from the ?3 sites along the mirror
boundary to a ?2 site. The decoration has boundary vertices at
the ?3 site, edge midpoints at the ?2 site and an infinite
translation generated by the parallel mirrors of the remaining
two ?2 sites. This decoration is shown in Fig. 4 along with a
table representing its Delaney–Dress encoding. We name this
tiling for convenience ‘124RT’: R for ‘regular’, T for the ‘tree-
like’ topology of the tile boundaries and symmetry of group
124.

The single degree-3 regular ribbon tiling (129RT) from the
hat class ð2?23Þ contains an edge passing from the ?3 site
along the mirror boundary to the ?2 site (Fig. 5).

Lastly, a stellate regular ribbon tiling is possible ð2223Þ. The
orbifold is decorated by an edge passing from the centre of
threefold rotation to a centre of twofold rotation. Fig. 6 shows
the regular ribbon tiling tabular representation along with an
image of the decorated orbifold. This tiling is referred to as
118RT.

3. Embedding abstract tilings in two dimensions

The D-symbol is an encoding of the topology and symmetry of
a tiling. It encodes a decoration of an orbifold and distinct

research papers

244 Evans, Robins and Hyde # Periodic entanglement I Acta Cryst. (2013). A69, 241–261

Figure 3
A close-packed array of regular degree-3 trees (full edges) in the
hyperbolic plane, separated by geodesic lines that define the skeleton of
the tile (dashed). The shaded polygon represents a portion of an infinite
ribbon tile, that extends infinitely along the skeleton.

Figure 4
The Delaney–Dress representation of a regular ribbon tiling on the ?2223
orbifold: 124RT. The edge passes along the mirror boundary from the ?3
site to the ?2 site.

Figure 5
The regular ribbon tiling of the 2?23 orbifold. The decoration passes from
the ?3 site, along the mirror boundary, to the ?2 site. This tiling is referred
to by the label 129RT.
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embeddings of the tiling can be constructed that share the
same orbifold. Fig. 1, for example, shows four different
surfaces that share the ?246 orbifold. To generate an
embedded tiling, the set of generators for the group corre-
sponding to the orbifold must be specified within the
embedding space.

The two-dimensional asymmetric patch (or fundamental
domain) of the P, D and G surfaces is a triangle bounded by
in-surface mirror (curvilinear) lines meeting at angles of !=2,
!=4 and !=6 at the corners of the patch – a ?246 triangle. That
follows from the differential geometry of these TPMSs, but it
is not readily apparent from a Euclidean perspective. In fact,
those two-dimensional mirrors can coincide with mirror
planes, twofold axes of rotational symmetry, or no Euclidean
isometries at all in E3, depending on the TPMS (Ramsden et
al., 2009).

The asymmetric patch of any ?246 tiling corresponds to a
single ?246 triangle bounded by (hyperbolic) lines with equal
vertex angles to those on the cubic TPMSs. In contrast to the
three-dimensional examples, this triangle is unique in H2. Its
three edges define mirror lines in H2 induced by the symme-
tries of ?246: R1, R2 and R3. The reflection R1 maps across the
line passing from the ?6 site through the ?2 site, R2 from the ?2
site through the ?4 site and R3 from the ?6 site through the ?4
site (Robins et al., 2004a; Molnar, 2002). The infinite ?246
pattern is shown in Fig. 1(a).

In order to form tilings on the cubic TPMSs, we require
embeddings of ?2223, 2?23 and 2223 orbifolds as subgroups
of ?246. That constrains the orbifold geometries to be
commensurate with the parent ?246 geometry so that
symmetry sites of the orbifold must coincide with symmetry
elements of the ?246 group.

3.1. Embedding ?2223

The regular degree-3 Coxeter ribbon tiling, with symmetry
group ?2223, has a unique embedding in the ?246 tiling
pattern (Robins et al., 2004a). (Here we refer to the tiling
formed by ?246 triangles as the ‘?246 tiling’.) This embedded
orbifold is composed of exactly two ?246 triangles, glued
along R3 (the mirror passing from the ?6 site to the ?4 site).
This amalgamated domain has two ?2 sites from the original
two triangles, an additional ?2 site from a gluing of two ?4 sites
and a ?3 site from a gluing of two ?6 sites. One fundamental
domain of the ?2223 orbifold embedded in the ?246 is shown

in Fig. 7(a). The ?2223 orbifold has an abstract symmetry
(automorphism) along the axis passing from the ?3 site to the
opposite ?2 site. Once the orbifold is embedded, however, this
abstract symmetry aligns with the R3 reflection of the ?246
tiling: the automorphism of the orbifold corresponds to a
conjugacy of the ?246map, so we need only consider one form
(Ramsden et al., 2009). The embedded regular ribbon tiling
from Fig. 4, denoted ?246124RTðcosh&1ð3ÞÞ, is shown in Fig.
7(b), where cosh&1ð3Þ denotes the edge length of the trees in
H2. We label the cases as ?246NRTðlÞ, where N denotes the
group number (cf.Robins et al., 2004a) and l is the edge length.

3.2. Embedding 2?23

The hat orbifold, 2?23, also has an embedding, which can be
demonstrated as follows. Consider the orbifold formed by
gluing a pair of 2?23 orbifolds around the twofold rotation
site. This forms a ?2323 (Coxeter) orbifold, which uniquely
embeds (Fig. 8a). As in the previous Coxeter case, the auto-
morphism of the 2?23 orbifold (an abstract mirror symmetry
on the axes passing from the ?3 site to the twofold rotation) is
a conjugacy of the ?246 tiling, so we need only consider a
single automorphic embedding of the orbifold. Fig. 8(b) shows
the embedding of the regular ribbon tiling with symmetry
group 2?23, ?246129RTðcosh&1ð5ÞÞ.

Acta Cryst. (2013). A69, 241–261 Evans, Robins and Hyde # Periodic entanglement I 245
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Figure 7
(a) The embedding of the ?2223 orbifold in the ?246 tiling of H2: two
?246 triangles fused along an R3 boundary. (b) ?246124RTðcosh&1ð3ÞÞ, the
embedded regular ribbon tiling of ?2223.

Figure 8
(a) The unique embedding of the 2?23 orbifold into the ?246 tiling of H2.
(b) ?246129RTðcosh&1ð5ÞÞ, the embedded regular ribbon tiling with
symmetry group 2?23 (Fig. 5).

Figure 6
Representation of the regular ribbon tiling on the 2223 orbifold, 118RT.
The twofold sites are labelled QA, QB and QC , the threefold site is at QT .
The edge is from QT to QC.
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3.3. Embedding 2223

In contrast to the Coxeter and hat cases, stellate orbifolds,
which contain rotation centres, have an unlimited number of
embeddings within ?246. In short, the stellate case leads to a
two-parameter family of orbifold domains. Possible locations
of the rotation centres of a single orbifold domain are confined
to a Euclidean subset of discrete locations in H2, indexed by
the two integer indices in Z" Z. As a result of this ordered
Euclidean subdomain of H2, we may index all possible quad-
rilateral domains of the 2223 orbifold exactly by the indices of
vertices of parallelograms of unit area. (Full details of this
derivation are given in Appendix A. Fig. 37 shows the Z" Z
grid within a !=3 sector of the discretization of H2 by 2223.)

Each distinct embedding of a 2223 stellate orbifold into the
?246 tiling ofH2 leads to a distinct embedded free tiling ofH2,
following the prescription for tile edges given in Fig. 6. Recall
that the 2223 regular free tiling is formed by decorating the
orbifold by a single edge (Fig. 6). For convenience, we need
only specify the generator defining the midpoint of this edge
(i.e. the coprime pair located at Q0

C, cf. Appendix A) to
determine our embedded pattern. We list the free tilings by
twice the length of this asymmetric unit (since the edge unit

shown in Fig. 6 is half of the distance between ?3 sites, the full
edge length), as the reference frame definitions are not
unique, but the length of the edge will remain fixed in all
incarnations. We therefore enumerate all coprime integer
pairs and calculate resulting edge lengths from standard
hyperbolic geometry to specify all examples of regular
degree-3 free tilings. This also allows us to order all examples
in a one-parameter family, by increasing edge length. Hyper-
bolic trigonometry gives exact integer solutions for most
lower-order cases. This is not possible for one example, edge
length cosh&1ð675Þ, which is approximated from a numerical
computation of the edge length as cosh&1ð675:002Þ.

The shortest-edge members of this stellate family in fact lift
to higher symmetries, owing to their regular shape. The
simplest example, formed when Q0

C (the edge midpoint) is
located at the f0; 1g site, or equivalently f1; 0g (Fig. 37), has
symmetry group ?2223. The next member, with Q0

C located at
f1; 1g, also has extra symmetry (2?23). All subsequent
members have symmetry group 2223. Exhaustive enumera-
tion of all stellate examples therefore also yields the Coxeter
and hat cases discussed above.

The first exact members of the family of degree-3, regular,
dense free tilings commensurate with ?246 are tabulated and

research papers

246 Evans, Robins and Hyde # Periodic entanglement I Acta Cryst. (2013). A69, 241–261

Figure 9
Images of the eight simplest embedded degree-3 regular ribbon tilings, with names given below the images.
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illustrated in Fig. 9. The family converges to a simple tiling
with edges of infinite length, containing a single degree-3
vertex.

4. Degree-3 interpenetrating networks

Just as planar 2-periodic patterns in the Euclidean plane can
be ‘rolled up’ to form 1-periodic patterns on the surface of a
cylinder, these regular (6-periodic) free tilings of H2 can be
projected onto the surfaces of the P, D and gyroid via a
covering map, to give 3-periodic free tilings of these TPMSs.
This process is described in detail in Ramsden et al. (2009) and
Evans (2011). The edges and vertices of these tilings define
TPMS reticulations. The reticulation is embedded both on the
TPMS and in E3; the latter embedding defines a pattern of
nets in E3. To construct these reticulations, we map the
decorated asymmetric domain (corresponding to a single
orbifold) of H2 (via the related domain of S2) to an asym-
metric (orbifold) domain of the TPMS, using the integral
Weierstrass–Enneper equations that define the surface
embedding in E3 (Fogden & Hyde, 1992).

The isometries of the surface orbifold build the infinite
surface; these (hyperbolic) isometries correspond – in most
cases – to three-dimensional Euclidean isometries, so that an
orbifold on a surface is equivalent to a three-dimensional
space group. This correspondence is weakened on the gyroid,
since – in contrast to the P and D surfaces – the hyperbolic
reflections (?2 and ?3 isometries etc.) are not realized on this
surface as Euclidean isometries. Therefore all Coxeter and hat
tilings on the G (such as the ?2223 and 2?23 free tilings)
embed with Euclidean symmetries given by the related stellate
orbifold, formed by retaining only the rotation centres (2223).
The correspondence between the H2 orbifold symmetry and
the related space groups for the simpler TPMSs will be
published in detail elsewhere (Hyde et al., 2013). A summary
of the space groups corresponding to the orbifolds used in this
paper is given in Appendix B.
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Figure 10
The vertices and edges of a free tiling contained within one fundamental
domain in H2 are transferred to the corresponding patch on each TPMS.
The correspondence between a patch in H2 and a patch on each of the
surfaces is shown for the stellate symmetry group 2223.

Figure 11
(Top) The Coxeter (?2223) ?246124RTðcosh&1ð3ÞÞ regular, dense degree-3
ribbon tiling of H2. (Middle) The projection of this tiling to (from left to
right) the P, D and G (gyroid) surfaces. (Bottom) Resulting network
structures in E3: from left to right P124RTðcosh&1ð3ÞÞ, D124RTðcosh&1ð3ÞÞ
and G124RTðcosh&1ð3ÞÞ. Details of these structures are found in Tables 1, 2
and 3.

Figure 12
(Top) The hat (2?23) ?246129RT ðcosh&1ð5ÞÞ regular, dense degree-3
ribbon tiling of H2. (Middle) The projection of this tiling to (from left
to right) the P, D and G surfaces. (Bottom) Resulting network
structures in E3: from left to right P129RTðcosh&1ð5ÞÞ, D129RTðcosh&1ð5ÞÞ
and G129RT ðcosh&1ð5ÞÞ. Details of these structures are found in Tables 1, 2
and 3.
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The correspondence between a single copy of the 2223
orbifold in H2 and the related patch on each of the TPMSs is
shown in Fig. 10. The other symmetry groups can be inferred
from this, e.g. ?2223 occupies half of a 2223 domain.

The covering map for the gyroid is a special case, owing to
the fact that the surface contains no (Euclidean) reflection
symmetries corresponding to the hyperbolic reflections of the
?246 group. For this surface, there are two distinct covering
maps of the surface for tilings in H2 that are commensurate

with ?246 (Robins et al., 2005). Tilings in H2 that are achiral
(unchanged under any of the ?246 reflections, apart from
possible rotations or translations) will render two identical
structures on the surface and hence in E3, and tilings that do
not have this inherent symmetry will have two distinct
embeddings. Since the Coxeter and hat tilings are achiral, just
one Euclidean pattern is generated for each tiling on the
gyroid; however, all the stellate hyperbolic tilings give a pair of
patterns in E3. These two covering maps can be distinguished
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Table 1
Multiple nets that result from dense ribbon tilings on the P surface.

‘# comp.’ is the number of connected components, n' designates infinitely many 2-periodic layers with n orientations. The net topologies are labelled as follows: h is
the theta graph; tet, cub denote the polyhedral graphs of tetrahedron and cube edges; hcb is the 2-periodic hexagonal net; srs is the 3-periodic regular degree-3 net
(names adopted from O’Keeffe et al., 2008). Listings of link types and counts (e.g. 92 Hopf links) are generated by analysis using the TOPOS package (Blatov,
2006), m-m-rings refers to the pairwise interaction of rings of length m.

Structure Figure # comp. Topology Notes

P124RT ðcosh&1ð3ÞÞ Fig. 11 1 cub No catenation between disjoint nets
P129RT ðcosh&1ð5ÞÞ Fig. 12 8 srs Chiral (all nets like-handed), class IIIb, 10-10-rings: 92 Hopf links
P118RT ðcosh&1ð15ÞÞ Fig. 13 4' hcb h111i orientations, 6-6-rings: 18 Hopf links
P118RT ðcosh&1ð53ÞÞ Fig. 14 8 srs Chiral, class IIIb, 10-10-rings: 168 Hopf links, 16 higher-order links
P118RT ðcosh&1ð99ÞÞ Fig. 14 64 srs Chiral, class Ib, 10-10-rings: 832 Hopf links and 25 higher-order links
P118RT ðcosh&1ð195ÞÞ Fig. 14 1 cub Hopf links
P118RT ðcosh&1ð675ÞÞ Fig. 14 64 srs Chiral, class Ib, 10-10-rings: 1442 Hopf links and 181 higher-order links
P118RT ðcosh&1ð725ÞÞ Fig. 14 8 srs Chiral, class IIIb, 10-10-rings: 118 Hopf links and 93 higher-order links

Table 2
Multiple nets that result from dense ribbon tilings on the D surface.

See Table 1 for details.

Structure Figure # comp. Topology Notes

D124RT ðcosh&1ð3ÞÞ Fig. 11 4 srs Chiral, class Ib, 10-10-rings: 36 Hopf links
D129RT ðcosh&1ð5ÞÞ Fig. 12 1 tet No catenation between disjoint nets
D118RT ðcosh&1ð15ÞÞ Fig. 13 4' hcb h111i orientations, 6-6-rings: 12 Hopf links
D118RT ðcosh&1ð53ÞÞ Fig. 15 32 srs Chiral, class IIIb, 10-10-rings: 426 Hopf links, 16 higher-order links
D118RT ðcosh&1ð99ÞÞ Fig. 15 4 srs Chiral, class Ib, 10-10-rings: 90 Hopf links, 24 higher-order links
D118RT ðcosh&1ð195ÞÞ Fig. 15 4 srs Chiral, class Ib, 10-10-rings: 472 Hopf links, 62 higher-order links
D118RT ðcosh&1ð675ÞÞ Fig. 15 4 srs Chiral, class Ib, 10-10-rings: 84 Hopf links, 30 higher-order links
D118RT ðcosh&1ð725ÞÞ Fig. 15 4 srs Chiral, class IIIb, 10-10-rings: 896 Hopf links, 242 higher-order links

Table 3
Multiple nets that result from dense ribbon tilings on the G surface.

See Table 1 for details.

Structure Figure # comp. Topology Notes

G124RT ðcosh&1ð3ÞÞ Fig. 11 2 srs Chiral, class Ia, 10-10-rings: 18 Hopf links, 1 higher-order link
G129RT ðcosh&1ð5ÞÞ Fig. 12 2 srs Chiral, class IIa, 10-10-rings: 23 Hopf links, 3 higher-order links
Gþ

118RT ðcosh&1ð15ÞÞ Fig. 13 4' hcb h111i orientations, 6-6-rings: 30 Hopf links
G&

118RT ðcosh&1ð15ÞÞ Fig. 13 1 h No catenation between disjoint nets
Gþ

118RT ðcosh&1ð53ÞÞ Fig. 16 54 srs Chiral, class IIIb (3 " 3 " 3) " 2, 10-10-rings: 725 Hopf links, 19 higher-order links
G&

118RT ðcosh&1ð53ÞÞ Fig. 16 2 srs Chiral, class IIa, 10-10-rings: 25 Hopf links, 17 higher-order links
Gþ

118RT ðcosh&1ð99ÞÞ Fig. 16 54 srs Chiral, class Ib (6 " 3 " 3), 10-10-rings: 728 Hopf links, 25 higher-order links
G&

118RT ðcosh&1ð99ÞÞ Fig. 16 2 srs Chiral, class Ia, 10-10-rings: 30 Hopf links, 17 higher-order links
Gþ

118RT ðcosh&1ð195ÞÞ Fig. 16 2 srs Chiral, class Ia, 10-10-rings: 598 Hopf links, 61 higher-order links
G&

118RT ðcosh&1ð195ÞÞ Fig. 16 2 srs Chiral, class Ia, 10-10-rings: 102 Hopf links, 23 higher-order links
Gþ

118RT ðcosh&1ð675ÞÞ Fig. 16 54 srs Chiral, class Ib (6 " 3 " 3), 10-10-rings: 1092 Hopf links, 140 higher-order links
G&

118RT ðcosh&1ð675ÞÞ Fig. 16 2 srs Chiral, class Ia, 10-10-rings: 116 Hopf links, 37 higher-order links
Gþ

118RT ðcosh&1ð725ÞÞ Fig. 16 54 srs Chiral, class IIIb (3 " 3 " 3) " 2, 10-10-rings: 1139 Hopf links, 246 higher-order links
G&

118RT ðcosh&1ð725ÞÞ Fig. 16 2 srs Chiral, class IIa, 10-10-rings: 168 Hopf links, 56 higher-order links
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in Fig. 10 by placing the hyperbolic
pattern on the outward-facing (green)
or the inward-facing (purple) of the
highlighted surface domain, respec-
tively.

In general, the infinite collection of
disjoint degree-3 trees in H2 (the
hyperbolic forest) projects to a collec-
tion of interpenetrating nets in E3. Since
all the trees in the forest are symme-
trically identical, and the placement of
each tree is identical in the TPMS, the
patterns in E3 must be made up of
identical disjoint component nets. What
are these possible nets? Regular, free
degree-3 ribbon tilings with symmetry
groups ?2223, 2?23 and 2223 have
vertices at all ?6 sites. Those sites are
the singular ‘flat points’ of the minimal
surfaces; Hopf’s index theorem implies
that there are eight of these per
primitive unit cell of the oriented
TPMS (Hyde, 1989; Fischer & Koch,
1987). Since the tilings are regular
(1-transitive), they have symmetrically
identical edges and vertices both in H2

and on the TPMS. The curvilinear
‘e-nets’ (Ramsden et al., 2009) induced
by the surface reticulations are there-
fore regular. Straightening edges to form a barycentric
embedding can never increase the transitivity, since this
process symmetrizes the net embedding in E3 as far as possible
(Delgado-Friedrichs & O’Keeffe, 2003). The nets in E3 are
therefore also regular. Regular degree-3 nets in E3 are the
3-periodic srs net (Delgado Friedrichs et al., 2003), the
2-periodic hcb (f6; 3g) net (O’Keeffe et al., 2008), a 1-periodic
chain multi-graph, with three edges between successive
vertices and the 0-periodic (finite) graphs of tetrahedron (tet),
cube (cub) and dodecahedron edges. The dodecahedron edge
graph cannot result from these regular forests, since a
maximum of eight vertices per unit cell are allowed. One
further finite graph is possible, the theta graph (h), with just
two degree-3 vertices. (Though the non-simple theta graph is
technically not a net, for convenience here we label it as such.)

The regular degree-3 ribbon tilings therefore afford a
systematic technique to enumerate the simplest entangle-
ments of h, tet, cub, hcb and srs nets. The resulting patterns are
described in the following section.

4.1. Structure of the Euclidean degree-3 nets

Recall that these regular free tilings necessarily form
Euclidean intergrowths of identical nets. So these patterns are
characterized topologically by the component net type and
number of disjoint components. This information is obtained
using either GAVROG (Delgado-Freidrichs, 2012) or TOPOS
(Blatov, 2006) software that affords identification of net

topology with reference to a library of structures (excluding
the finite graphs, which we identify by eye from three-
dimensional representations of the structures). For our
entangled structures, edges are permitted to curve as they
trace from one vertex to another. An input file for either
GAVROG or TOPOS has vertices connected by straight
edges, thus it is necessary for us to introduce additional
degree-2 vertices along the curved edges in order to maintain
the entanglement. As a consequence, GAVROG fails to
identify these exact structures as e.g. srs. However, TOPOS
can be used to identify net topology, provided essential added
degree-2 vertices are not included in the analysis. The
supplementary material contains crystallographic data
suitable for TOPOS input for all structures presented in this
paper: we include one set of data with a minimal number of
additional degree-2 vertices necessary to maintain the entan-
glement, and another set with many additional degree-2
vertices to show the complete edge geometry.2

Quantitative analysis of these structures requires descrip-
tors for the entanglement between nets. (And potentially
within individual nets, as discussed in x7 below.) Here we
provide the measures developed by Blatov, Proserpio et al. to
characterize intergrown nets identified in atomic and mole-
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Figure 13
(Top) The shortest-edge member of the stellate (2223) ?246118RTðcosh&1ð15ÞÞ regular, dense
degree-3 ribbon tiling ofH2. (Middle) The projection of this tiling to (from left to right) the P,D and
G surfaces (both covering maps). (Bottom) Resulting network structures in E3: from left to right
P118RTðcosh&1ð15ÞÞ, D118RTðcosh&1ð15ÞÞ, Gþ

118RT ðcosh&1ð15ÞÞ and G&
118RTðcosh&1ð15ÞÞ. Details of these

structures are found in Tables 1, 2 and 3.

2 Supplementary material for this paper is available from the IUCr electronic
archives (Reference: EO5019). Services for accessing these data are described
at the back of the journal.

electronic reprint



cular crystals (Carlucci et al., 2003; Blatov, 2006) and available
as output from TOPOS (Blatov, 2006). These are:

(i) The number of connected components.
(ii) Symmetry relations between distinct components. For

the structures referred to in this paper, the classes can be listed
as follows. Class I has only translations: Ia has one translation
and Ib has two independent translations. Class II has only
rotations: IIa has one distinct rotation and IIb has two distinct
rotations. Class III has both translations and rotations: IIIa has
a single translation and single rotation, IIIb has multiple
translations and a single rotation, IIIc has a single translation
and multiple rotations, and IIId has multiple translations and
rotations.

(iii) Entanglement of all cycles of a given size. The entan-
glements are characterized as either Hopf links (Adams, 2004)
or higher-order links, which encompasses all links with a
higher crossing number. The number of links considers a
single cycle of the structure, and counts the number and types
of links passing through this cycle. This measure is a useful
guide to distinguishing between distinct entanglements that
necessarily have different numbers.

We summarize the resulting structures in Tables 1, 2 and 3,
and provide images for these in Figs. 11–16. The structures are
labelled with the tiling name (cf. x3) as well as the TPMS. For
example, the Euclidean pattern that results from projection of
the '246118RTðcosh&1ð15ÞÞ tiling to the P surface is labelled
P118RTðcosh&1ð15ÞÞ. Owing to the pair of distinct Euclidean
patterns that arise on the gyroid from chiral hyperbolic tilings
(from the stellate cases only, i.e. G118RT), a superscript þ or &
is appended to specify which member of the two possible
covering maps of the surface is used (Robins et al., 2005).
(Where this is absent, the þ and & structures are identical.)

The multiple nets that emerge from this construction are
mostly entangled srs patterns. Each surface reticulation gives a
single example of a (non-threaded) lattice of finite nets, as well
as one 2-periodic entangled (hcb) example. All other cases
within this finite enumeration contain entangled equivalent
enantiomers of multiple srs nets, from two components to 54.
Remarkably, all examples of multiple srs nets have distinct
entanglement modes according to the link counts of TOPOS.
The enumeration reveals for example six distinct entangle-
ments of pairs of enantiomeric srs nets, all regular ribbon
tilings on the gyroid.

research papers

250 Evans, Robins and Hyde # Periodic entanglement I Acta Cryst. (2013). A69, 241–261

Figure 14
The stellate (2223) ?246118RT regular, dense degree-3 ribbon tiling family,
each on a unit cell of P surface. Below each surface reticulation are views
of a single component of the net embeddings in E3. (The names of the
structures are shown below each image.) Details of these structures are
found in Table 1.

Figure 15
The stellate (2223) ?246118RT regular, dense ribbon degree-3 tiling family,
each on a unit cell of the D surface. Below each surface reticulation are
views of a single component of the net embeddings in E3. (The names of
the structures are shown below each image.) Details of these structures
are found in Table 2.
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It is clear from Tables 1, 2 and 3 that the number of
threaded components is not directly correlated with the free
tiling edge length. The degree of entanglement can be gauged
in part by the link counts listed in Tables 1, 2 and 3: the
multiple nets with large numbers of links are more tangled.
Those numbers do not increase monotonically for successive
members of the stellate family, indicating that entanglement is
not simply a function of the edge length of the component
trees. That is also clear from Figs. 14, 15 and 16 which show

that the homotopy, or degree of winding
(curvature and torsion), of the edges of
component nets in E3 varies in a
complex manner as edge lengths grow.
These effects are too complex to analyse
in detail here.

5. Degree-4 examples

We have focused thus far on dense
degree-3 examples. The technique is,
however, more generally applicable. For
example, regular, dense degree-k ribbon
tilings exist in H2 for all integer values
of k exceeding 2, with solutions within
the Coxeter, hat and stellate classes,
namely ?222k, 2?2k and 222k. Some,
though not all, of those orbifolds are
found as commensurate translationally
periodic subgroups of the P, D, gyroid
and H TPMSs. We describe here some
aspects of degree-4 and degree-6
regular ribbon tilings, sufficient we hope
to guide the reader to the broader
universe of these patterns that we
cannot cover exhaustively here. These
patterns are formed by reticulating P, D
and G TPMSs (degree-4 and degree-6
ribbons) and the hexagonal H surface
(degree-6 ribbons).

The correspondences between two-
dimensional hyperbolic orbifolds on the
TPMSs and three-dimensional Eucli-
dean space groups are listed in
Appendix B. Since the degree-4 and 6
reticulations on the cubic TPMSs are
subgroups of the full hyperbolic
symmetries, they form tetragonal and
rhombohedral patterns, respectively.
(Though in some cases they can be
further symmetrized in E3 without
changing their entanglements, to form
cubic patterns.)

Consider degree-4 examples, which
result from free tilings on the P, D and
gyroid TPMSs. Fig. 17 shows the degree-
4 ribbon tilings in H2 that form from
Coxeter and stellate orbifolds [?2224

(group 123) and 2224 (group 114)].
The ?2224 orbifold contains three copies of the ?246

orbifold. Whereas the degree-3 Coxeter ribbon tiling has a
single embedding within the ?246 discretization of H2 due to
the automorphism of ?246 that exchanges the two edges
linking ?3 and ?2 sites, the degree-4 tiling has two possible
embeddings, given by the two edges linking ?4 and ?2 sites
that are not related by an automorphism. The two embeddings
of the decorated ?2224 orbifold into ?246 are illustrated in
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Figure 16
The stellate (2223) ?246118RT regular, dense degree-3 ribbon tiling family, each on a unit cell of the
G surface. Below each surface reticulation are views of a single component of the net embeddings in
E3. (The names of the structures are shown below each image.) Details of these structures are found
in Table 3.
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Fig. 17. In contrast to the degree-3 case, the hat
orbifold relevant to degree-4 tilings, 2?24, is
forbidden in our schema, as it does not preserve
the full set of translation symmetries of the cubic
TPMSs.

An infinite number of degree-4 stellate tilings
with orbifold 2224 are possible. That follows
from generalization of the 2223 cases discussed
in x3.3. The argument developed in Appendix A
holds for all 222k orbifolds, where k> 2. The
rotational symmetry at each k-fold vertex
(analogous to QC) confines the location of the
(Q0

C) generator to a restricted radial sector
{subtending an angle of 2!=k at QC, equivalent
to inserting ½ðk& 2Þ!*=k disclinations into the flat Euclidean
plane}. Hence any 222k discretization of H2 has vertices QC0

andQA0 located within a subdomain ofH2 that is equivalent to
the 2222 discretization of E2 within a 2!=k sector. We illus-
trate the first five in Fig. 17.

The embeddings of these orbifolds are illustrated in Fig. 18.
As in the degree-3 case, the two covering maps of the G
surface correspond to placing the hyperbolic pattern on the
front or back sides (green or purple side up) of the highlighted
surface domain.

A priori, these tilings must form patterns composed of
regular degree-4 nets, namely 3-periodic dia, 2-periodic sql

layer nets, 1-periodic 4-chains or finite oct (octahedral edge)
nets. As in the degree-3 case, generic patterns are entangled
3-periodic nets: here dia nets. The patterns formed in E3 are
listed in Table 4. In contrast to the degree-3 examples, finite
unentangled oct nets are not formed among the lower-order
members and a 1-periodic (4-chain) example is found.

For example, Fig. 19 shows two structures, each containing
four entangled dia nets, whose entanglements are distinct,
according to the TOPOS link count (Table 4).

In contrast to the degree-3 examples, the entanglements of
dia nets are not necessarily unique for each free tiling. Fig. 20
shows an example of a reticulation on the G surface of a pair

of catenated dia nets, which is likely
equivalent to entanglements on the
D and G surfaces with equivalent
topology: the TOPOS output for these
four examples is insufficient to establish
the equivalence of these entanglements,
since distinct ambient isotopic classes
may have identical output. Other
approaches are needed (and one
possible route is discussed below). In
these cases, however, it is clear that the
edges can, in all cases, be straightened
without edges passing through each
other to form what is, by inspection,
most likely a common entanglement of
two dia nets.

6. Degree-6 examples

Regular, dense ribbon tilings of H2 can
be constructed on ?2226, 2?26 and
2226 orbifolds. These cases are worth
cursory description as they can be
realized on both cubic TPMSs and the
hexagonal H surface. Tilings of the
latter TPMS have not been system-
atically developed to date. For example,
the online catalogue of tilings, Epinet,
has so far analysed only Coxeter tilings
of the P, D and G surfaces (Hyde et al.,
2010).
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Figure 17
(Left) Delaney–Dress representations of degree-4 regular ribbon tilings of (top) ?2224 and
(bottom) 2224 orbifold domains (bounded by blue polygons) with vertices and edges shown in
black (cf. Fig. 4). (Right) The free tilings of H2. The first row is the Coxeter embeddings, the second
illustrates the first three members of the infinite family of stellate examples.

Figure 18
The correspondence between a patch in H2 and a patch on each of the surfaces is shown, for the
stellate orbifold 2224 on the (left to right) P, D and G surfaces.

Table 4
Regular, dense degree-4 ribbon tilings.

See Table 1 for details.

Structure Figure # comp. Topology Notes

P123RT ðcosh&1ð5ÞÞ 1* sql Parallel array
P123RT ðcosh&1ð7ÞÞ 1 4-chains Parallel 1-periodic degree-4 chains
P114RT ðcosh&1ð11ÞÞ Fig. 19 4 dia Class IIIa, 6-6-rings: 18 Hopf links
P114RT ðcosh&1ð107ÞÞ Fig. 19 4 dia Class IIIa, 6-6-rings: 59 Hopf links,

3 higher-order links
D123RT ðcosh&1ð5ÞÞ 2 dia Class IIa, 6-6-rings: 6 Hopf links
D114RT ðcosh&1ð11ÞÞ 2 dia Class IIa, 6-6-rings: 6 Hopf links
G123RT ðcosh&1ð5ÞÞ Fig. 20 2 dia Class IIa, 6-6-rings: 6 Hopf links
G123RT ðcosh&1ð7ÞÞ 2 dia Class IIa, 6-6-rings: 6 Hopf links
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The hexagonal genus-3 TPMS, discovered by Schwarz and
known as the H surface (Schoen, 1970), has two-dimensional
orbifold ?2226, as shown in Fig. 21 (Hyde, Ramsden et al.,
2003). A list of two-dimensional groups that conserve all
translational isometries of the surface has been determined
(Robins et al., 2004b). In contrast to the cubic examples above,
the H surface embeds in E3 with a one-parameter family of
lattices, characterized for example by the ratio of c=a para-
meter for the hexagonal unit cell. This flexibility is found too
in the two-dimensional group, since the shape of the ?2226
orbifold itself has one degree of freedom (Hyde, Ramsden et
al., 2003).

In common with the degree-4 Coxeter example (?2224) on
the cubic TPMSs, two distinct degree-6 Coxeter ribbon tilings
can be constructed on the H surface with a symmetry group of
?2226 (Fig. 23). This orbifold cannot be realized on the cubic
TPMSs. Among the subgroups of the Coxeter ?2226 pattern
related to dense, regular ribbon tilings, analogous to the
degree-3 and 4 cases discussed above, the hat orbifold (2?26)
also contains all the full translation subgroups of the P, D and
G surfaces (Robins et al., 2004a), though it is not commen-
surate with translations of the H surface. The related stellate
orbifold (2226) maps onto the cubic and hexagonal surfaces,

affording a wealth of potential patterns
(Robins et al., 2004a,b). One possible
embedding of this orbifold in the cubic
and hexagonal surfaces is illustrated in
Fig. 22.

Projection of these degree-6 tilings
must result in multiple regular nets of
degree-6 in E3, with exactly two vertices
per translational unit cell of each of
the TPMSs. Possible net topologies are
3-periodic pcu, 2-periodic hxl compo-
nents, arrays of 1-periodic chains of
degree-6 vertices (6-chains) or finite
(non-simple) graphs with two vertices of
degree-6. The nets that emerge are
listed in Table 5. The edge-length
calculations for the H surface tilings are
complicated by the degree of freedom
in the ?2226 domain, as this implies that
the edge lengths are not uniquely
defined. We work around this by giving

an edge length for the symmetrized ?2226 domain to be a
gluing of the ?24ð12Þ tiling (giving the quadrilateral domains
illustrated in Fig. 22), for which the edges are uniquely
defined. However, the symmetrization means that there are
often two distinct tilings with the same edge length, thus we
distinguish these with a further number 1 or 2.

As in the degree-3 and 4 cases, the predominant patterns
contain multiple 3-periodic nets; here consisting of pcu
components, though 2-periodic hxl nets and 1-periodic
6-chains are also generated, as shown in Fig. 23.

In contrast to the lower-degree tilings, the degree-6
ribbon tilings also yield examples of 3-periodic nets containing
just a single component (Fig. 24). These single-component
pcu structures [P93RTðcosh&1ð15ÞÞ, D93RTðcosh&1ð15ÞÞ and
Gþ

93RTðcosh&1ð15ÞÞ] are equivalent by ambient isotopy to the
usual (untangled) barycentric embedding of pcu. Other
regular tilings of the cubic surfaces consist of two inter-
penetrating pcu components that are equivalent entangle-
ments [P122RTðcosh&1ð17ÞÞ (Fig. 24), D122RTðcosh&1ð49ÞÞ and
G122RTðcosh&1ð17ÞÞ].

The D93RTðcosh&1ð63ÞÞ and G122RTðcosh&1ð49ÞÞ patterns
contain four pcu components and are also distinct entangle-
ments. The H surface structures [H31RTðcosh&1ð26:9ÞÞ and
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Figure 19
(Top) The stellate (2224) tiling P114RT ðcosh&1ð11ÞÞ that forms four catenated dia nets. (Bottom)
Another stellate pattern, P114RTðcosh&1ð107ÞÞ, also contains four interpenetrating components of
dia. Single adamantane cages of each disjoint component are also illustrated. These are not
equivalent entanglements.

Figure 20
The Coxeter (?2224) tiling G123RTðcosh&1ð5ÞÞ forms a pair of catenated
dia nets.

Figure 21
(Left) The Coxeter ?2226 tiling of H2 represented on the Poincaré disc
model. (Right) TheH minimal surface decorated by the same tiling. Each
tile defines an asymmetric patch on the surface and tile edges are mirror
lines.
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H31RTðcosh&1ð154:9Þ : 2Þ] form patterns containing three
interpenetrating pcu nets that are distinct entanglements,
illustrated in Fig. 25.

7. Towards canonical embeddings of entangled nets

The powerful concept of barycentric placement, developed by
Delgado-Friedrichs & O’Keeffe (2003), can be used to form a
geometric realization of a net – an embedding in E3 – from its
topology alone. That approach effectively ‘untangles’ any net
embedding formed on a TPMS, giving an embedding with
straight edges (Hyde & Delgado-Friedrichs, 2011; Castle et al.,
2011). In mathematical terms, the ambient isotopy class of the
net embedding on the TPMS is not necessarily the same as
that given by a barycentric embedding.3 In practical terms, this
means that an embedding via barycentric placement may have
different edge crossings than the original edge pattern on the
TPMS, and the process of straightening the edges requires
edges to pass through each other to form the relaxed

embedding induced by barycentric
placement. This standard embedding
therefore, while indispensable to char-
acterization of a net topology, does not
characterize (or preserve) entangle-
ment. Entanglement of many compo-
nents is a more subtle concept still.

A recent paper offers partial resolu-
tion of this issue for multiple nets,
allowing numerical signatures for
simpler entanglements, containing
links (Alexandrov et al., 2012). This
approach, while useful, is unable to
classify generic patterns whose entan-
glements are not necessarily induced by
links. We describe here a novel
approach that allows entanglement to
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Table 5
Regular, dense degree-6 ribbon tilings.

See Table 1 for details.

Structure Figure # comp. Topology Notes

H32RT ðcosh&1ð13:9Þ : 1Þ Fig. 23 1 6-chains Parallel 1-periodic 6-chains
H32RT ðcosh&1ð13:9Þ : 2Þ Fig. 23 1' hxl Parallel array
H31RT ðcosh&1ð26:9ÞÞ Fig. 25 3 pcu Class Ia 4-4-rings: 8 Hopf links. 4-6-cycles: 36 Hopf links. 6-6-cycles: 40 Hopf links
H31RT ðcosh&1ð154:9Þ : 2Þ Fig. 25 3 pcu Class Ia 4-4-rings: 20 Hopf links. 4-6-cycles: 90 Hopf links. 6-6-cycles: 86 Hopf links and

2 higher-order links
P122RT ðcosh&1ð17ÞÞ Fig. 24 2 pcu Class IIa 4-4-rings: 4 Hopf links. 4-6-cycles: 24 Hopf links. 6-6-cycles: 40 Hopf links
P93RT ðcosh&1ð15ÞÞ 1 pcu
D122RT ðcosh&1ð49ÞÞ 2 pcu Class IIa 4-4-rings: 4 Hopf links. 4-6-cycles: 24 Hopf links. 6-6-cycles: 40 Hopf links
D93RT ðcosh&1ð15ÞÞ 1 pcu
D93RT ðcosh&1ð63ÞÞ 4 pcu Class Ib 4-4-rings: 12 Hopf links. 4-6-cycles: 66 Hopf links. 6-6-cycles: 74 Hopf links and

1 higher-order link
G122RT ðcosh&1ð17ÞÞ 2 pcu Class IIa 4-4-rings: 4 Hopf links. 4-6-cycles: 24 Hopf links. 6-6-cycles: 40 Hopf links
G122RT ðcosh&1ð49ÞÞ Fig. 24 4 pcu Class IIIa 4-4-rings: 12 Hopf links. 4-6-rings: 72 Hopf links. 6-6-rings: 120 Hopf links
Gþ

93RT ðcosh&1ð15ÞÞ 1 pcu

Figure 22
The correspondence between a single copy of the stellate 2226 orbifold in H2 and a patch on the
TPMS. (Top, from left to right) P, D and G surfaces. (Bottom) H surface.

Figure 23
(Top) One Coxeter (?2226) H32RTðcosh&1ð13:9Þ : 1Þ degree-6 regular,
dense ribbon tiling in H2, on the H surface and in E3 (from left to right).
The Euclidean embedding consists of parallel 1-periodic 6-chains.
(Bottom) The second ?2226 H32RTðcosh&1ð13:9Þ : 2Þ tiling, which forms
parallel layers of 2-periodic hxl nets.

3 Any embedding of the abstract ‘barycentric placement’ is equivalent, since
the embeddings are all equivalent within an affine transformation (Delgado-
Friedrichs & O’Keeffe, 2003), which conserves ambient isotopy.
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be effectively geometrized, just as barycentric placement leads
to a useful geometrical realization of a net topology.

Our approach builds on the concept of a ‘tight embedding’
from knot theory that often – though by no means always –
affords a unique and therefore canonical embedding for
conventional knots and links (Stasiak et al., 1998). Tight or
‘ideal’ embeddings of knots are formed as follows. The algo-
rithm searches for knot conformations that minimize the knot
length for a given diameter (L=D). Assume all filaments have
a fixed diameter, D, that filaments can never overlap except
along lines or at isolated points (they touch tangentially) and
that they have infinite flexibility and zero friction. These
assumptions are easily implemented numerically. The ‘ideal’
or ‘tight’ configuration of the knot is that which minimizes the

ratio L=D. A fast and effective algo-
rithm for finding this minimum is the
SONO algorithm (Pieranski, 1998).

Here we extend this notion to find
ideal embeddings of (multiple) nets. To
do this, we generalize the SONO algo-
rithm to allow for periodic boundary
conditions and minimize L=D within
one unit cell. Some further extensions of
the SONO algorithm are required to
allow tightening of multiple nets, owing
to the presence of branched vertices.
This adapted algorithm is explored in
detail in Evans (2011) and we refer to it
as PB-SONO throughout this paper.
The PB-SONO algorithm forms
embeddings of simple knots that
are very similar to those found with
the simpler SONO algorithm, shown
by comparable L=D values (Evans,
2011). Further, tightening of arbitrary
(untangled) isotopes of regular single-
component nets by PB-SONO forms
high-symmetry patterns, as expected.
(Some discrepancies are unavoidable
due to the vertices, where edges
must overlap; however these can be
effectively removed by judicious
discretization of the net edges.) Some
examples are shown in Fig. 26. These
ideal embeddings correspond (within
the numerical uncertainty of the algo-
rithm) to the most symmetric embed-
dings of these regular nets (i.e.
symmetrically identical edges and
vertices).
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Figure 24
(Top) The hat (2?26) P122RTðcosh&1ð17ÞÞ degree-6 regular, dense ribbon
tiling shown in H2, on the P surface and in E3 (from left to right). The
Euclidean pattern consists of two interpenetrating components of pcu.
(Bottom) The G122RT ðcosh&1ð49ÞÞ tiling that forms four interpenetrating
pcu nets.

Figure 25
(Top) An H31RT ðcosh&1ð26:9ÞÞ regular, dense stellate (2226) ribbon tiling (2226) in H2, on the H
surface and in E3 (from left to right), where it forms three interpenetrating pcu nets. (Bottom) A
higher-order 2226 tiling [H31RT ðcosh&1ð154:9Þ : 2Þ] that also builds three interpenetrating pcu nets.
Single cub nets excized from each component are shown for each pattern, revealing distinct
entanglements, confirmed by TOPOS link analyses.

Figure 26
Ideal embeddings of untangled isotopes of the cub, srs, dia and pcu nets found numerically using the
PB-SONO algorithm. The diameter of edges of the ideal structure has been decreased in all cases to
illustrate their edge geometry: the true ideal embedding has maximally inflated edges.

Figure 27
Ideal embeddings of two tangled isotopes of the cub net.
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In contrast, tangled isotopes form
geometrically distinct embeddings in E3

after tightening with PB-SONO. Fig. 27
shows two ideal embeddings of tangled
cube isotopes, discussed in detail in
Hyde & Schröder-Turk (2007). Clearly,
these isotopes adopt distinct embed-
dings and differ from the untangled
isotope embedding.

These examples have unique tightest
configurations, thereby allowing cano-
nical embeddings of isotopes that
respect both their topology and entan-
glement. In general, uniqueness is not
assured (an unfortunate feature that is
also observed in classical links; Cantar-
ella et al., 2002). However, this approach
affords a very useful ‘canonical’
embedding for the multiple nets formed
from ribbon tilings.

Consider tightening multiple nets
from starting embeddings formed by the
TPMS reticulations. For example, ideal
embeddings of 4 and 8 srs nets from the
D124RTðcosh&1ð3ÞÞ and P129RTðcosh&1ð5ÞÞ
ribbon tilings are illustrated in Fig. 28.

These embeddings afford useful and
reasonable canonical configurations for
these entanglements of (untangled) srs
nets. For example, the srs nets in both of
these tight embeddings are regular,
adopting the familiar symmetrized
(barycentric) form of cubic srs.

Similarly, tight embeddings of
multiple pcu and dia (untangled)
isotopes converge to embeddings whose
individual component nets are also
regular, as shown in Fig. 29.

This may appear a very convoluted
route to embedding multiple nets.
Indeed, many of these multiple srs, dia
and pcu nets have already been
described by Wells (1977) and others,
and catalogued by O’Keeffe et al. (2008). However, these
examples, while not novel, illustrate the utility of the tigh-
tening approach in forming canonical embeddings of multiple
nets.

The approach is most powerful when analysing novel
entanglements, a situation that has not been considered to
date by structural chemists. Consider, for example, the pair of
srs nets that result from the G124RTðcosh&1ð3ÞÞ and
G129RTðcosh&1ð5ÞÞ ribbon tilings (shown in Figs. 11, 12). Tigh-
tening of those patterns using the PB-SONO algorithm results
in two very distinct embeddings, even though both patterns
consist of a pair of interwoven srs nets. The ideal embeddings
are shown in Fig. 30. Here the tightening algorithm offers two
useful results. First, the geometric differences between these

two tight embeddings confirm that they are distinct entan-
glements. Second, the algorithm gives a canonical embedding
of the new entangled pattern that emerges from the
G129RTðcosh&1ð5ÞÞ tiling. Interestingly, the crystallographic
data from a synthesized pair of srs nets with equivalent chir-
ality given in Kepert et al. (2000) give a conformation that
matches the ideal form of the G124RTðcosh&1ð3ÞÞ structure,
which suggests that these ideal conformations are relevant for
chemical frameworks.

The examples shown here are among the simpler patterns.
In many of these cases, a combination of the TOPOS and
GAVROG algorithms allows distinct patterns (with distinct
topologies and/or entanglements) to be distinguished.
However, since TOPOS can only analyse simpler entangle-
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Figure 28
Ideal embeddings of multiple (like-handed) srs nets. (Left to right) Four srs nets from the
D124RTðcosh&1ð3ÞÞ tiling and eight srs nets from the P129RTðcosh&1ð5ÞÞ tiling, shown both within one
unit cell to show detail and as a repeated pattern.

Figure 29
Ideal embeddings of untangled isotopes of multiple dia and pcu nets. (Left to right) Two dia nets
from theD123RT ðcosh&1ð5ÞÞ tiling; four dia nets from the P114RTðcosh&1ð11ÞÞ tiling; two pcu nets from
the P122RTðcosh&1ð17ÞÞ tiling; and four pcu nets from theG122RTðcosh&1ð49ÞÞ tiling. The upper images
show one unit cell of the pattern and the lower images the global pattern.

Figure 30
(Left to right) Ideal embeddings of untangled isotopes that form from the G124RTðcosh&1ð3ÞÞ and
G129RTðcosh&1ð5ÞÞ tilings. Both patterns contain a pair of (like-handed) srs nets.
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ments and GAVROG identifies net topology rather than
entanglement, generic patterns cannot be well characterized
by these approaches. The PB-SONO algorithm provides an
additional tool for the cases where the other algorithms fail.

7.1. Entangled embeddings of tangles

An additional phenomenon is possible in multiple nets and
present in some higher-order stellate ribbon tilings. That is the
possibility of entangled nets that are themselves tangled.
Recall that ‘untangled’ nets are ambient isotopic to a bary-
centric embedding (Castle et al., 2011). Self-entangled nets
(also known as self-catentated, self-penetrated or self-
knotted) can then be defined with respect to this untangled
‘ground state’, by analogy with the unknotted state of knots,
namely an embedding of a simple unthreaded loop in E3. Self-
entangled net embeddings cannot be transformed into the
untangled barycentric embedding without ‘phantom cross-
ings’, where edges pass through each other.4 For example,
both G&

118RTðcosh&1ð195ÞÞ and Gþ
118RTðcosh&1ð195ÞÞ patterns

contain two srs networks. If we take a single component of
these structures and relax using the PB-SONO algorithm, we
find that these single nets are tangled, since their ideal
embeddings (Fig. 31) are different from the untangled srs ideal
embedding (Fig. 26). Further, since both ideal embeddings are
geometrically distinct, these are distinct isotopes. Clearly,
entangled embeddings of nets that are themselves tangled are
possible, as well as the presence of more complex entangle-
ments beyond knotted and linked cycles, such as ravels (Castle
et al., 2008; Li et al., 2011).

8. Conclusion

We have constructed and characterized a number of inter-
grown regular nets. Our approach introduces the notion of
‘free tilings’ of two-dimensional hyperbolic space (H2) and
then maps those patterns into three-dimensional Euclidean
space (E3) to form a variety of patterns composed of multiply

entangled regular nets. Those maps are the so-called covering
maps from H2 to four genus-3 TPMSs, the (cubic) P, D, G and
(hexagonal) H surfaces. Here we have explored in some detail
one variety of free tilings, composed of ribbon tiles. The
Euclidean patterns that emerge are commonly made up of
3-periodic nets that arise frequently in synthetic chemical
frameworks (Batten & Robson, 1998; O’Keeffe et al., 2000).
We suspect that more complex examples of such nets will
emerge in the future in a variety of materials. We note, for
example, that the most common nets in MOFs include the trio
of 3-periodic nets – srs, dia and pcu – that are the predominant
components of regular ribbon tilings (Ockwig et al., 2005;
Blatov et al., 2004; Alexandrov et al., 2011). Furthermore,
intergrowths of those nets are very common in MOF materials
(Batten & Robson, 1998; Delgado Friedrichs et al., 2003;
Reineke et al., 2000; Wu et al., 2011). This paper has focused on
examples that emerge from regular hyperbolic free tilings,
yielding the most symmetric and simplest patterns accessible
by this technique.

The scope for further enumeration of structures of this kind
is large. The free tilings of H2 that have been considered here
are a fraction of all possible tilings of this kind. Three direc-
tions are immediately apparent: firstly, enlargement of the
current enumeration to include higher-order regular ribbon
tilings (in the stellate class); secondly, to move beyond
patterns that emerge from close-packed trees in H2; and
thirdly, to extend the analysis to less regular patterns onH2. In
addition, we have somewhat arbitrarily delimited our
enumeration to those cases that give 3-periodic patterns
whose translation groups are identical to those of the
P, D, G and H TPMSs. That constraint can be removed
without significant complication, if one is prepared to
accommodate the resulting combinatorial explosion. In addi-
tion, ribbon tilings commensurate with other TPMSs can be
constructed.

These hyperbolic ribbon tilings have natural dual patterns,
whose tiles are themselves tree-like, and are bounded by an
unbounded number of vertex-free (hyperbolic) lines. Those
tilings result in three-dimensional packing of one-dimensional
‘filaments’ in E3 (Evans & Hyde, 2011). Hybrid free tilings,
with both branched boundary components and infinite
geodesic boundary components, are also possible in H2. These
form intergrowths of nets and filaments in E3 (Castle et al.,
2011). The companion paper to this one is focused on filament
packings (Evans et al., 2013).

APPENDIX A
Embedding of stellate orbifolds

In contrast to the Coxeter and hat cases, stellate orbifolds,
which contain rotation centres, have an unlimited number of
embeddings within the ?246 setting. The stellate case leads to
a two-parameter family of orbifold domains. Possible locations
of the orbifold domain are confined to a Euclidean subset of
H2, discretized by Z" Z. We describe the reasons for that
here.
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Figure 31
The ideal embeddings of one component of each of the
G&

118RTðcosh&1ð195ÞÞ (left) and Gþ
118RTðcosh&1ð195ÞÞ (right) structures.

The ideal embeddings of both networks are distinct and different to the
untangled embedding of srs (Fig. 26). Therefore all three srs nets are
distinct isotopes and the two shown here are tangled.

4 This terminology is perhaps misleading, since everyday tangles, from rope to
earphone leads, are usually ambient isotopic to the untangled state, and
untangling does not require phantom crossings (or cuts), as the patient
fisherman knows. Our tangled nets are perhaps better described as ‘knotted’.
However, since all nets contain knots, we prefer the ‘tangled’ descriptor to
distinguish knots within nets from knotted nets.
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It is convenient here to consider all possible coverings of the
generic stellate orbifold of the form 222k into its universal
cover (E2 if k ¼ 2 and H2 if k> 2). We wish to systematically
generate all distinct coverings of the 222k orbifold into the
covering plane.

Consider first the 24 (2222) orbifold, which covers E2. The
covering is determined by the choice of the four distinct
twofold rotation sites that are the group generators. Fig. 32(a)
shows a covering where the generators are at the positions
f0; 0g, f1; 0g, f1; 1g and f0; 1g of E2. In this case, all rotation
centres of the infinite group are centred at integer coordinates.
Labelling the twofold rotation centres located at f0; 0g, f1; 0g,
f1; 1g and f0; 1g as QT, QA, QB and QC, respectively, the
presentation of the group given by the reference frame is

hfQT ;QA;QB;QCg : ðQAÞ
2 ¼ ðQBÞ

2 ¼ ðQCÞ
2 ¼ ðQT Þ

2 ¼ I;QT ¼ QAQBQCi:

Distinct presentations of the same group may be obtained by
defining new generators,Q0

T ,Q
0
A,Q

0
B andQ0

C, whose forms are
words of the simpler group (QT , QA, QB and QC) (Coxeter &
Moser, 1972).

A set of possible coverings may be represented through
parallelograms superimposed on the rectilinear Z" Z grid. To
preclude duplication of coverings, we consider only one
quadrant of E2 and fix the twofold rotation QT . We require
that the only isometries of the parallelograms are the twofold
rotations at their vertices consistent with the satellite orbifold.
Further, we impose a condition that will be needed for all non-
Euclidean cases (k 6¼ 2), namely that parallelograms must
have area 1 (i.e. equal in area to the initial reference embed-
ding). InH2, this condition is imposed by the fact that the area
of an orbifold 222k scales as ðk& 2Þ=k and is fixed for fixed k.
(Note that this quadrilateral domain enclosed by the four
distinct twofold rotations is a half of a single 2222 domain; the
full domain has area 2.) These restrictions on placement of
generators are equivalent to satisfying the group relations for
a covering. Fig. 32(b) shows an example of a unit area paral-
lelogram on Z" Z with corners f0; 0g, fr; sg, fpþ r; qþ sg and
fp; qg. Each grid point in the plane represents elements of the
infinite group, hence we may express the corner points of the
parallelogram (with respect to the reference frame) as

Q0
A ¼ QBQCQB; Q0

C ¼ QB;
Q0

B ¼ QBQCQBQAQBQCQB; Q0
T ¼ QT :

Since the new generators remain twofold rotation centres,
the group relations ðQ0

AÞ
2 ¼ ðQ0

BÞ
2 ¼ ðQ0

CÞ
2 ¼ ðQ0

TÞ
2 ¼ I are

satisfied. The other group relation, where Q0
AQ

0
BQ

0
C must be

equal to Q0
T, is also satisfied, hence the generators Q0

T, Q
0
A, Q

0
B

and Q0
C are a covering of the symmetry group of the 2222

orbifold. An analogous argument holds for all other paralle-
logram vertices satisfying the constraints listed above.

To ensure that no additional symmetry points are located on
the boundary of the parallelogram, the Q0

C vertex (fp; qg) of
the parallelogram is chosen such that fp; qg are coprime.
Coordinates of the opposite Q0

A vertex, fr; sg, are chosen such
that the parallelogram has unit area. The area constraint
implies that ps& rq ¼ 1, giving three degrees of freedom for
all coverings of 2222 into E2 (Castle et al., 2012).

This Euclidean case is readily generalized to hyperbolic
orbifolds of the form 222k (where k> 2). Those orbifolds tile
H2 rather than E2. Consider, for example, the k ¼ 3 case. As
above, we first choose a specific embedding of the orbifold,
our reference frame in H2, which consists of the four group
generators:QT ,QA,QB andQC (Fig. 33a). The group relations
for the 2223 symmetry group are given by

hfQT ;QA;QB;QCg : ðQAÞ
2 ¼ ðQBÞ

2 ¼ ðQCÞ
2 ¼ ðQT Þ

3 ¼ I;QT ¼ QAQBQCi:

Fig. 33(b) shows an alternative quadrilateral whose vertices
are elements of the infinite group 2223. To establish if these
vertices (Q0

A, Q
0
B, Q

0
C and Q0

T) are alternative rotation centres
that generate the same group, and hence if the new quad-
rilateral is a valid embedding of the group, we consider the
group relations. By analogy with the Euclidean case, these
vertices may be expressed in terms of the reference quad-
rilateral as follows:

Q0
A ¼ QBQCQB; Q0

C ¼ QB;
Q0

B ¼ QBQCQBQAQBQCQB; Q0
T ¼ QT :

Once again, it is straightforward to see that the group relations
ðQ0

AÞ
2 ¼ ðQ0

BÞ
2 ¼ ðQ0

CÞ
2 ¼ ðQ0

TÞ
3 ¼ I are satisfied for these

elements. The other group relation, where Q0
AQ

0
BQ

0
C must be

equal to Q0
T, is also satisfied; hence the quadrilateral shown
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Figure 33
(a) An embedding of the 2223 orbifold into H2. The corners of the
quadrilateral are a reference frame grid for other embeddings. (b) A
subsequent embedding of the 2223 orbifold into H2 relative to the
reference frame established previously. The regions shown illustrate the
four rotation centres that define the group generators, and the full
fundamental domains are double the size of these regions.

Figure 32
(a) An embedding of the 2222 orbifold in E2. The corners of the square
coincide with the points f0; 0g, f1; 0g, f1; 1g and f0; 1g, establishing a
reference frame of Z" Z for subsequent embeddings. (b) Another
embedding of 2222 relative to the established reference frame.
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leads to a valid covering of the 2223 orbifold in H2 given the
reference frame.

To enumerate coverings, we determine possible locations of
the Q0

C generator with respect to the reference frame: the
analogue of finding the coprime fp; qg vertex of the paralle-
logram. We fix the QT generator (our origin), and consider a
!=3 sector of the plane, as all others will be equivalent by
symmetry (as was the case for the !=2 sector of 2222 in E2).
Since a single asymmetric domain of the orbifold – the
quadrilateral – necessarily tessellates H2 by the group
isometries, the orbit of the quadrilateral edge from the origin
to Q0

C cannot include edges that intersect the edge at some
interior point.

Consider a threefold rotation site located at the origin (Q0
T),

~0, in Fig. 34(a), along with its image due to the twofold
operation at QC denoted ~1. Because of the twofold isometry

atQC, the edge fromQ0
T toQ0

C in the parallelogram of the new
covering must have three copies radiating from the site ~1, one
in each of the sectors W1, W2 and W3. Therefore if Q0

C lies
within the sector W3, as shown by the blue geodesic in Fig.
34(b), it necessarily intersects an image of itself radiating from
~1, signified by the red geodesic in Fig. 34(b). This prohibits
the placement of Q0

C in the sector W3.
Since the W3 sector cannot contain Q0

C, we can excize this
prohibited sector (to infinity) from H2 and fuse the pair of
boundary edges of sector W3 radiating from ~1, as in Fig.
35(a). [The operation inserts a positive (2!=3) disclination at
~1.] The modified domain, shown in Fig. 35(b), no longer has a
threefold rotation at ~1, which is now a twofold rotation, and
the threefold rotations ~2 and ~3 have been fused.

By the same argument, further W3 sectors of the plane can
be excized, and a 2!=3 disclination inserted at the fused ~2/3

site, and so on. The continued application of this process
results in an infinite line of twofold rotations located at the
former threefold sites. The symmetry of the remaining domain
of allowed locations of Q0

C is therefore 2222, an isometry of
the Euclidean plane. In other words, this sector of H2 is
completely decurved by the disclinations, forming a region of
E2. These prohibited sectors are shown on the 2223 discreti-
zation of H2 in Fig. 36.

Possible locations of Q0
C are therefore confined to discrete

sites in H2, discretized by Z" Z. By the same argument, Q0
A is

likewise limited to lying within a subset ofH2 whose domain is
described by the pair of indices from Z" Z that, if fused along
all boundary lines, forms a sector of E2. (Recall lastly, that the
location of Q0

B is completely determined by Q0
A and Q0

C.)
As a result of this Euclidean subdomain of H2, we may

index all possible quadrilateral domains of the 2223 orbifold
exactly by parallelograms of unit area in Z" Z. Fig. 37 shows
the Z" Z grid within a !=3 sector of the discretization of H2

by the 2223 reference frame covering.
In contrast to the Coxeter and hat orbifolds, the stellate

case therefore leads to a two-parameter family of orbifold
domains. Each distinct embedding of a 2223 stellate orbifold
into the ?246 tiling of H2 leads to a distinct embedded free
tiling of H2, following the prescription for tile edges given in
Fig. 6. To fix the 2223 coverings relative to the ?246 discre-
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Figure 34
(a) A diagram showing the threefold rotation at the origin (~0) and an
image (~1), due to the twofold operation at QC (small black lens), where
~1 divides H2 into three sectors,W1,W2 andW3. (b) If Q

0
C (the end of the

blue geodesic) is located in theW3 sector, the edge from the origin to Q0
C

(the blue geodesic) will certainly intersect an image of itself, as shown by
the red geodesic.

Figure 36
Prohibited sectors of the 2223 discretization of H2 are shown. There are
infinitely many prohibited sectors, located at every threefold rotation of
the discretization, but only three such sectors are shown here. The
remaining ‘allowed’ domain is a Euclidean subdomain of H2.

Figure 35
(a) The sectorW3 can be excized and the boundary sewn together to form
a boundary-free plane. (b) The result is a line of twofold rotations,
terminating at a new threefold rotation. Repeating the cutting process
further removes territory from where Q0

C is prohibited.

Figure 37
The positioning of the grid points of Z" Z in a !=3 sector of 2223
discretization of H2.
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tization, we locate the basis set of generators, QT , QA, QB and
QC as shown in Fig. 38. Note that the full fundamental domain
of the stellate orbifold, characterized by the vertices Q0

T, Q
0
A,

Q0
B and Q0

C, which is required to form the complete Delaney–
Dress representation of the abstract tilings, may be obtained
by doubling the quadrilateral joining the generators across the
line joining Q0

T and Q0
C.

APPENDIX B
Subgroups of ?246 and ?2226

See Tables 6 and 7.

We thank Stuart Ramsden for helpful discussions on many
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Table 6
Subgroups of ?246 commensurate with the P, D and G minimal surfaces
(Robins et al., 2004a).

The group number, orbifold symbol, group index and the corresponding space
groups on each of the P, D and G surfaces are given.

Group # Orbifold Index P surface D surface G surface

129 2?23 2 I432 Fd3m I4132
124 ?2223 2 Pm3m P4232 I4132
123 ?2224 3 I4=mmm P42=nnm I41=acd
122 2?26 4 R3m R3m R3c
118 2223 4 P432 F4132 I4132
114 2224 6 P4=nnc I41=acd I41=acd
93 2226 8 R3c R3c R3c

Table 7
Subgroups of ?2226 commensurate with the H minimal surface (Robins
et al., 2004b).

The group number, orbifold symbol, group index and the corresponding space
group on the H surface are given.

Group # Orbifold Index H surface

32 ?2226 1 P63=mmc
31 2226 2 P31c

Figure 38
The locations of the reference frame generators of the 2223 symmetry
group in the ?246 tiling of H2.
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