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1. INTRODUCTION

The geometrization of physics, which views physical
phenomena through the prism of geometry and topology,
has left a lasting imprint on many areas of physics, from
Einstein’s revolutionary adoption of Riemannian geome-
try to build his theories of relativity, to the rapidly
multiplying zoo of topological phases in quantum physics.
It is therefore not surprising that newer areas of
condensed matter research, particularly synthetic and
biological soft liquid crystalline matter and related
materials, are best explored using the tools of low-dimen-
sional geometry and topology. This realization is not new.

Twenty years ago, Elisabeth Dubois-Violette and
Brigitte Pansu, both then at the Laboratoire de Physi-
que des Solides at Orsay, organized a seminal meeting
in Aussois, ‘Geometry and Interfaces’, which brought
together physicists, chemists, biologists and mathemati-
cians and resulted in a useful volume that summarized
the state of things in 1990 [1]. The Orsay group had
an impeccable pedigree in condensed materials research
(including, for example, liquid crystal research that led
to the award of the Physics Nobel Prize to de Gennes).
Their scientific culture recognized the importance of
crossing traditional disciplinary borders, and the
enrichment of conventional condensed matter physics
drawn from studies in other areas, from biology to
pure mathematics. That approach now pervades many
aspects of contemporary physics research into
materials, where it is recognized that biology and
materials chemistry offers fertile domains for explora-
tion. Another approach to materials research remains
however less developed: the exploration of the funda-
mental science of biomaterial self-assembly and
function using the tools of low-dimensional geometry
and topology. Few biologists concern themselves with

more complex aspects of geometry, despite the earliest
forays by D’Arcy Wentworth Thompson in his seminal
book ‘On growth and form’ [2]. One notable exception
was Yves Bouligand, a biologist whose close links with
Orsay and personal interest and knowledge of geometry
led to the important recognition of the relevance of the
liquid crystalline state to many biological assemblies,
such as the cholesterol character of the arrangement
of chitin fibres in crab shells (http://people.physics.
anu.edu.au/sth110/bouligand_papers.html/). Surely
Bouligand is one of the very few biologists who
have made significant contributions to the physics of
liquid crystals?

In an attempt to redress that imbalance, we orga-
nized a successor to the Aussois meeting in October
2011 at Primošten, Croatia (http://www.geometry-of-
interfaces.org/). The aim was to gauge developments
since 1990, and to highlight the continued relevance and
importance of geometry and topology to condensed
materials, whether hard or soft, synthetic or biological.
Wewere fortunate to have the company of two of the semi-
nal figures in the field, Alan Schoen and Kåre Larsson,
whose contributions to minimal surface theory and the
role of those surfaces in biological membrane folding and
liquid crystalline mesophases, respectively, continue to
influence research. This theme issue is focused on
active research in material structure, with papers from a
cross-section of participants.

2. BETWEEN ORDER AND DISORDER

Periodic minimal surfaces remain a leitmotiv of
research, as this volume shows. The notion of curvature,
which underlies minimal surface studies, remains an
important principle in the field. However, other con-
cepts are, in our view, equally important and relevant
to future research. For example, biologists have long
recognized phyllotaxis as an optimal organizing princi-
pal governing aggregation and growth. It explains the
celebrated spiral patterns of seeds in, e.g. sunflowers
and pine cones [3]. Indeed, it was noted by Thompson
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in his seminal book On growth and form (and removed
from later editions) [2]. This geometrical principle is
an example par excellence of the importance of geo-
metrical principles in understanding biological
materials at length scales beyond the quantum regime.

The paper by Charvolin & Sadoc in this issue [4]
combines phyllotaxis and curvature to explain the packing
of collagen fibrils in three dimensions. The work is entirely
in the spirit of—indeedmotivated by—their late colleague,
Yves Bouligand. Their findings are significant and far from
trivial, as they explain for the first time the very complex
diffraction patterns of collagen fibres, including the diffuse
signal, too often dismissed as ‘background’, but shown here
to be due to the inherent packing frustration of phyllotactic
fibre arrays. Evidently, the organizing principle of phyllo-
taxis is a general one, of relevance to helical fibre
packings as much as to arrangements of point-like
seeds. A characteristic feature of fibres in biology, from
DNA to collagen, is their chirality. Here too, a dialogue
between pure mathematicians and biologists has led to sig-
nificant advances in our understanding of chiral filaments.
Initial observations of apparently knotted (circular) bac-
terial DNA spawned a host of investigations by knot
theorists, microscopists andmore recently simulation theo-
reticians. The challenge here was to understand and
characterize the replication process, given that mutually
twisted cycles inevitably result in threaded links after repli-
cation. Further, how is ‘twist’ accommodated in a strand
that must be fed into the replication machinery in a fixed
orientation? The article by Barbi et al. [5] in this issue pro-
vides a comprehensive overview of this area from the
perspective of differential geometric characterisation of
DNA fibre twist, simulations and experiments. A new
‘reversome’ form for DNA is proposed that involves plastic
deformation from the ground state, a kink-like deformation
that simulations suggest traverses the fibre at high speed.
This intriguing finding is consistent with recent measure-
ments. Surely this topic remains a fertile area for
continuing dialogue between geometry and biology.

An equally surprising phenomenon has emerged from
studies of synthetic materials, from a variety of thermo-
tropic liquid crystals to mesoporous silica. In contrast to
biological fibres, these materials spontaneously form
chiral patterns of various types, without chiral building
blocks. In addition, right- and left-handed enantiomers
are equally likely to form, nevertheless, chirality is appar-
ent. Here simulations offer a powerful tool to decide a
minimal set of interactions required to effect this surpris-
ing phenomenon. In this issue, Prybytak et al. [6] reveal
the emergence of chiral fibres at non-zero temperature
for a particularly simple model of amphiphilic disc-like
objects in solvent that imposes interactions which
favour exposure of the disc edges to solvent in preference
to their faces. Over a range of effective temperatures, this
results in the assembly of uniformly twisted fibresmade of
nested helices. This intriguing finding is immediately rel-
evant to understanding the emergence of chirality in
intrinsically achiral synthetic materials. It is also of
possible relevance to chiral superstructures in materials
involving chiral components, such as the intriguing
silica-DNA ‘impellors’ discussed below, that switch
from one enantiomer to the other in the presence of
certain ions [7].

The formation of single enantiomers is a feature of
biological materials. Another is the presence of dis-
order, often disposed, paradoxically in an apparently
orderly fashion. This notion was first raised by Luzzati
et al. [8], and is a useful one. For example, the guiding
hand of phyllotaxis in fibre packing appears to inevitably
result in the presence of ‘disorder’ (characterized by
diffuse scattering visible in diffraction patterns from
collagen fibres).

This principle illustrates an important issue, which we
suspect will develop further in the next 20 years: namely,
non-crystalline patterns that are nevertheless optimal
according to some—frequently local—organizing princip-
les. Condensed matter research has too often shoehorned
structures into the two extremes of either ideal transla-
tionally periodic crystals, or structureless amorphous goo,
devoid of any inherent geometric ordering. Certainly
there is a (multi-dimensional) continuum spanning
those poles. That realization is now seeping into
the mainstream, exemplified by the announcement of the
Chemistry Nobel Prize in 2011 to Schechtmann for his
discovery of quasi-crystals, now recognized in hard and
soft materials at many length scales.

A key confirmation of the relevance of quasi-crystals
was the recognition of two-dimensional quasi-crystalline
tiling patterns in mikto-arm copolymers by Hayashida
et al. [9]. The exploration of self-assemblies, from diblock
or amphiphilic molecules to multiple-component
star-shaped molecules such as mikto-arm copolymers, is
one that is likely to yield a new wealth of mesostructures
in soft materials. A number of experimental and theoreti-
cal realizations of novel liquid crystalline materials
composed of these and related molecules appear in this
volume, discussed further below.

Despite the possible importance of aperiodic patterns
to many complex self-assembled materials, classical
translationally periodic (liquid) crystalline patterns
remain the focus of many applications of surface geome-
try and topology in mesostructured materials, both
biological and synthetic. Given the old adage that ‘crys-
tallization is death’, it is not surprising that, apart from
thework of Bouligand and Larsson and colleagues, many
biologists have remained ignorant of the relevance of
liquid crystalline patterns to biological morphology
in vivo. However, many instances are known.

For example, while it is likely true that lipid
membranes do not order into liquid crystals at the
supramolecular scale under generic conditions, there is
now abundant evidence that three-dimensional transla-
tional periodicity occurs under many extreme
conditions across all kingdoms of life [10], likely induced
by high levels of expression of particular lipids and pro-
teins [11]. No ordering is present at the molecular or
atomic scales, and the dictum quoted earlier remains
valid! This liquid crystalline ordering, forming so-
called ‘cubic membranes’, occurs at the supramolecular
level, typically forming crystals with lattice parameters
of the order of 100 nm, though a range of length scales
have been seen. No explanation is forthcoming yet for
the extraordinarily large crystals in these biomolecular
assemblies. Given that nanotechnology is now waning
as a buzz word, supplanted now by ‘mesoscopic
materials’ (http://meso2012.com), perhaps intellectual
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fashion will finally swing in this direction in the
near future.

3. SOFT LIQUID CRYSTALLINE
STRUCTURES AND TEMPLATING
OF HARD MESOCRYSTALLINE
MATERIALS: BIOMEMBRANES AND
MESOPOROUS MATERIALS

Curiously, the earliest recognition of supramolecular
periodicity in vivo was reported by Gunning [12], a
plant physiologist who detected both cubic crystalline
patterns and more complex radially symmetric pat-
terns, reminiscent of quasi-crystals, in the prolamellar
bodies of etiolated plants [13]. Those findings remain
largely unexplored, though more recent studies of the
genesis of the cubic geometries suggest some interest
in these important membrane configurations by
conventional biologists [14–16].

Earlier work of Larsson and his student Landh is now
continued by Deng, who continues to provide data and
interpretations of cubic membrane states in a variety of
systems. Together with her colleagues, she has explored
optical features of a particularly beautifully example of
cubic membranes in the eye of a tree shrew [17], first
identified as such by Landh [18]. This example demon-
strates the possible role of complex multiple folding in
these phases, resulting in multilayer stacks, with up to
12 bilayers, folded to form ordered sponges, rather than
the more usual case, where lipid–protein bilayers do
not condense into multilayer stacks. Images suggest
that multilayer–single layer transitions are reversible in

these intracellular assemblies (see, for example, fig. 1 in
Almsherqi et al. [17]).

The biochemical origin of this intriguing condensation
phenomenon is likely due to specific lipid and/or protein
types [14]. It is worth pointing out, however, that the
characteristic structural signature of a single bilayer to
multilayer transition has also been observed in a syn-
thetic surfactant–water–alkane microemulsion; so it is
likely a general phenomenon in lyotropic soft materials
[19,20]. It is clear that the complex architecture of
these cubic membranes is well approximated by the con-
voluted hyperbolic forms of the (topologically) simpler
three-periodic minimal surfaces (TPMS), namely the
(cubic) gyroid, D and P surfaces [11,18]. In that respect,
cubic biomembranes mimic the structure of bicontinuous
cubic liquid crystalline mesophases of amphiphilic-water
systems in vitro, though far more water swollen.

An important class of hard materials are those that
are formed within a template that is itself a soft material.
A number of examples, biological and synthetic, are of
interest. In the biological realm, detailed studies of the
growth of wing-scales in butterfly pupae by Ghiradella
confirm that the topologically complex chitin matrix
seen in mature wing scales is formed by gradual polymer-
ization of chitin oligomers within a water matrix defined
by the bounding lipid membrane [21]. Here, the lipid
membrane spontaneously forms the gyroid structure.
The consolidated chitin sponge is therefore itself also a
cubic crystal, with a lattice parameter of ca 300 nm
(cf. figure 1). Two papers in this volume reveal the
breadth of interest in these structures, offering some
important data and conclusions from a materials
perspective [22,23].

50 µm

10 µm

3 µm 200 nm 0.5 µm

1 µm

3 µm

Figure 1. Topologically complex porous chitin structure in the wing scales of the butterfly Callophrys Rubi. Light microscopy of
the ventral (upper) side of the wings illustrates the arrangement of individual scales on the wings (each several hundreds of micro-
metres in length). Electron microscopy reveals the structure of the wing-scales to consist of two layers of parallel ribs that cover a
poly-crystalline porous chitin matrix structured according to a single srs net of symmetry I4132. The lattice parameter of the srs
net is approximately 310 nm, an order of magnitude larger than in synthetic lipid QII

230 phases but commensurable with the lattice
parameter of biological gyroid membranes. (Images courtesy of Michael Thiel, Karlsruhe Institute of Technology).
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The recognition of the chitin matrix as a consoli-
dated three-dimensional cubic pattern rather than a
two-dimensional film lining the gyroid is important.
In particular, the spectacular optical features of these
wing scales, certainly due in part to the cubic structure
of the chitin, are dependent on this structural feature.
In these organisms, nature has conspired to use a geo-
metry that results from bilayer self-assembly at the
supramolecular scale to construct a photonic crystal.
In this context, the work of Pouya & Vukusic [23] on
P. sesostris reported here is noteworthy. They have
used this geometry to build replica synthetic materials
via three-dimensional printing whose longer length
scale induce photonic crystal effects in the microwave
regime. (Note also the related optical experiments on
replicas of the same structure produced by nanofabrica-
tion [24].) Thus, butterfly wings offer a solution for the
formation of photonic crystals! Further, they argue that
the porosity of the chitin matrices in the wing scales of
this species is tuned to optimize optical effects in vivo,
possibly an impressive example of the efficacy of natural
selection, rather than simply a coincidental by-product
of the self-assembly process.

Wilts et al. [22] reveal another example of ingenious
optical optimization in the wing scales of P. sesostris:
here the addition of pigment suppresses anisotropic
reflectance of coloured light from the scale, induced
by the chitin photonic crystal.

Some subtleties in the direct templating model
deserve closer scrutiny. In particular, a number of
studies confirm that the chitin matrix in these wing
scales has cubic space group symmetry I4132, the
chiral symmetry of one channel threading the gyroid
morphology [25–27]. (The gyroid surface partitions
space into a pair of channels, one left- and one right-
handed, forming an achiral structure, with symmetry
Ia3d, cf. figure 2.) Apparently then, the chitin is depos-
ited preferentially in just one of the labyrinths. Is this
due to the chirality of the chain molecule? If so, just
one enantiomer would be seen. A report of both enan-
tiomers would rule out such a model. Saranathan
et al. [26] reported the presence of both enantiomers,
though this claim requires further study, now in pro-
gress. It is clear that more detailed experimental
studies of the biomineralization process in butterfly
wing scales is needed to elucidate the formation
mechanism. For example, it is worth exploring whether
the membrane itself does not ‘collapse’ to the shape of
a single labyrinth of the gyroid, rather than one of
the two labyrinths being ‘filled’ by selective deposition
of chitin.

As an aside, note that the question of enantiopurity
(existence of only one of the two enantiomers) of the
butterfly chitin gyroid structure is not only interesting
from the perspective of structural symmetry breaking,
but has potentially practical implications for photo-
nic properties. It has been shown, both theoretically
and experimentally, that the single I4132 gyroid dis-
criminates between left- and right-circularly polarized
light in terms of transmission rates [24,28]. The bio-
logical relevance of circular polarization phenomena
are biologically relevant in butterflies is unclear, but
certainly worth further investigation.

This phenomenon of collapse to give just a single enan-
tiomeric network is not specific to the biological realm. A
recent study revealed the same pattern in a hard porous
silica material, templated by a synthetic soft matrix,
namely a block copolymer melt [29]. Indeed, the phenom-
enon has been reported for atomically crystalline
platinum, templated from the (hard) MCM-48 mesopor-
ous silica phase [30]. The latter material is an achiral
gyroid-like film [31], with symmetry Ia3d. Electron dif-
fraction and TEM imaging revealed a chiral (I4132) Pt
network formed in the achiral silica template. In both syn-
thetic syntheses, all starting materials were achiral, and
presumably both enantiomers form in equal proportion.
Evidently then, chirality is not necessarily responsible
for this poorly understood phenomenon of ‘collapse’.
(It is noteworthy that the presumably similar chitinous
material in the green scales of the weevil L. augustus
forms a related but achiral structure based on a single
cubic Diamond lattice [32], also observed in the weevils
Entimus imperialis [33] and Eupholus magnificus [34].)

This mode of structural templating may explain the
formation of other chitin microstructures at comparable
length scales in certain species of birds (feathers), beetles
(carapaces) and other butterfly species (wing scales) also.
Prum et al. [35] have suggested, however, that the disor-
dered patterns observed in bird feathers result from a
process of spinodal separation during growth, very differ-
ent to the direct templating model observed by Ghiradella
[21]. However, we note that the structures observed
in feathers by Prum et al. are also found in synthetic
lyotropic amphiphiles, namely in disordered sponge meso-
phases and micellar or ‘droplet’ microemulsions [36].
Perhaps then, the disordered microstructures observed
in feathers are sculpted by lipid–protein assemblies,
rather than by spinodal segregation.

Prima facie, there are many features of chitin consoli-
dation within lipid–protein matrices in vivo and the
growth of mesoporous silica in the presence of amphi-
philes or block copolymers in vitro, the different length
scales notwithstanding. In the former case, the hard
porous chitin wing-scale material is templated by an
extant soft lipid–protein matrix. The formation mechan-
ism for mesoporous silicates is, however, more perplexing.
For example, no signal of a pre-existing bicontinuous
cubic liquid crystalline mesophase is seen prior to silica
mineralization forming the MCM-48 mesophase. How-
ever, the structural similarities between mesoporous
silica phases and lyotropic liquid crystals are inescapable,
with lamellar, discrete cubic and bicontinuous cubic and
hexagonal mesophases most commonly formed. These
correspond without exception to the most common
mesophases formed in amphiphilic lyotropes, identified
typically via small-angle scattering (SAXS) studies.
Each of those have counterparts in amphiphilic liquid
crystals, and amphiphiles are present in the reaction
mixture during silica mineralization.

One striking exception to this rule is the so-called tri-
continuous silica mesoporous material IBN-9, which
forms a hexagonal mesocrystal [37]. Is it possible that tri-
continuous liquid crystals of amphiphiles also exist, as
suggested earlier [19]? Given the similarities between
structures found in hard mesoporous and those in soft
lyotropic materials, it is tempting to conclude that the
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hexagonal tricontinuous pattern realized in silica will be
found in amphiphilic systems, or related copolymeric
assemblies.

Have we already detected the full spectrum of liquid
crystalline mesophases formed by amphiphiles in sol-
ution? It is likely that more careful analysis of
mesostructures by various techniques will allow firmer
resolution of this question and yield better understanding
of the relation between hard and soft mesostructured
materials. Impéror-Clerc [38] discusses in some detail in
this volume the application of small-angle scattering to
identification of mesostructures. Electron crystallogra-
phy, developed by Terasaki, offers a complementary
approach to probing mesoscale structures. The structural
resolution claimed by Terasaki is sufficient to form
detailed models of the curvature of the silica walls, dis-
cussed in some detail in [39]. These studies suggest
subtle differences in structure between amphiphilic lyo-
tropes and mesoporous silicates, in particular in the
pore structures in some cases. These differences may
hold clues to the vexed issue of the growth mechanism
of mesoporous inorganic materials, and possible analogies
with the biological realm. Currently, this technique is
possible only for hard mesoporous materials; direct ima-
ging of liquid crystalline materials is currently not
feasible, with the notable exception of freeze-fracture elec-
tron microscopy [40]. Hopefully, this approach will be
extended to soft materials in the future.

This issue also highlights a new approach to silica
structuring at the mesoscale, induced by DNA [7].
This technique surely has no direct analogue in vivo,
though the complex impellor arrays of silica, and the
dependence of their chirality on the presence of
additional species in solution, surely mirrors the sensi-
tivity of DNA self-assembly in solution. Here too, the

formation of hard silica allows for direct imaging of
these chiral arrays, and their structural complexity
offers further hints of the likely wealth of mesostruc-
tures that can form also in the accompanying soft
assemblies of DNA and associated species.

4. MINIMAL SURFACES: BISECTIONS
OF SPACE

The gyroid, and related surface geometries, remains the
most ubiquitous minimal surface detected within
materials to date (figure 2). From a mathematical per-
spective, it is a very elusive structure, whose discovery
by Alan Schoen in the 1960s is described in some
detail here [41]. The lesson of Schoen’s efforts is an
important one: persistence and the willingness to
engage laterally across conventional discipline bound-
aries can produce spectacular results, and our
knowledge of geometry remains vastly uncharted. Mini-
mal surfaces, and TPMS, had already been explored by
some of the greatest mathematicians of the nineteenth
century, namely Riemann and Schwarz, as well as a
number of distinguished twentieth century pure mathe-
maticians. Despite their studies of these complex
structures, the richest find—at least for experimental
science—remained undiscovered until Schoen’s studies.
His discovery arose from a practical knowledge of three-
dimensional nets, developed from the 1950s by Alan
Wells, a solid-state chemist [42]. (This odd state of
affairs continues to this day. A couple of years ago a
‘new’ three-dimensional net was announced in the
pure mathematics literature, accompanied by much
supporting discussion in the best science journals and
supported by the American Mathematical Society

[111]

[111] [100]

[100]

Figure 2. Various views of the gyroid minimal surface. Within each of the two network domains bounded by the gyroid, there are
two chiral elements of opposite rotation sense: threefold screw axes along the [111] and, of opposite rotation sense, fourfold screw
axes along the [100] axes. The centred skeletal graph is the srs network with three-valent vertices. (See electronic supplementary
material for an animated version of this sequence.)
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[43]. The pattern is, in fact, precisely that of one
labyrinth of the gyroid surface, known to Wells and
Schoen as the ‘(10,3)–a’ net, leading to a hasty cor-
rection [44]. The pre-eminence of solid-state chemists
in exploration of nets continues, with the substan-
tial corpus of results and analyses due to O’Keeffe
and his colleagues [45], who have renamed this net
with the convenient three-letter code srs [46].)

The gyroid was only proved to exist to the satisfaction
of mathematicians in the 1990s, following a careful
analysis by Grosse-Brauckmann. This work exemplifies
the mini-renaissance of mathematical studies of minimal
surfaces, driven by a number of developments in the
1980s. Among those were the announcement of the
first new complete minimal surface for a century
(Costa’s surface, [47]) as well as the plethora of new
TPMS that emerged from Fischer and Koch’s [48] crys-
tallographic investigations, coupled with a growing
awareness of the relevance of TPMS to materials
[49,50]. The current state of mathematical studies of
TPMS, and companion constant mean curvature
(CMC) surfaces is outlined in Grosse-Brauckmann’s
article in this issue [51]. Many questions remain open
in this area, and those questions are of broader relevance,
beyond the rarefied world of pure geometry.

Explicit analytic expressions for minimal surfaces are
generally difficult, if not impossible, to write down. How-
ever, effort in that direction remains worthwhile. For
example, the article by Matsumoto et al. [52] proves that
each member of the family of one-periodic (i.e. smectic-
like, with a single lattice vector) minimal surfaces known
as Riemann’s minimal surfaces, is a pair of better-known
(and also one-periodic) minimal surfaces, combining
left- and right-handed helicoids. This is a particularly
useful fact, allowing for simple estimates of the relative
energies of Riemann surfaces as models for disclinations
adjoining adjacent sheets in smectic liquid crystals.

Structural investigations of TPMS as well as CMC
relatives are now routinely possible using the numerical
SURFACE EVOLVER software developed by Brakke [53]
(www.susqu.edu/brakke/evolver) without resorting to
the heavy complex analytical machinery of mathemat-
ics required to establish existence of minimal and
related surfaces. The convenience of these numerical
constructions has considerably broadened the study of
hyperbolic patterns. However, for some purposes, such
as detailed analysis of the intrinsic (curvature) and
extrinsic spatial homogeneity of TPMS, the exact
characterization of the surfaces via the Weierstrass-
Enepper integral equations is more useful [54,55].
Such characterization of structural homogeneity is
needed as it relates to the relative energies of soft
liquid crystalline mesophases that fold onto TPMS,
that depend on local bending energy [56,57] and
global energy contributions. The global energy contri-
butions can be quantified by variations of the
diameter of the channels within the TPMS [58].

The homogeneity analyses appear to settle a critical
observation. Why are the lowest genus (per unit cell)
TPMS, exclusively observed to date in materials? And
why the cubic P, D and most commonly gyroid mem-
bers only, because there are other genus-three TPMS?
Most likely, the answer lies in the particularly high

local and global homogeneity of those patterns. All
three TPMS have identical local energies within any
reasonable formalism, because they share identical cur-
vature variations, and are isometric (if the length scales
are given by the Bonnet transform, which is indeed
approximately the case in lipid systems that form
more than one of these phases [59,60]).1 The P, D and
G surfaces are also the most symmetric embeddings
within our three-dimensional euclidean space of the
ideal surface with constant and negative (Gaussian)
curvature, namely the two-dimensional hyperbolic
plane. Curiously then, a local tendency to form an
equally curved saddle shape in space inevitably results
in the sheet winding over itself to result in sponges
with an infinitely complex labyrinth structure that are
cubic and crystalline! Other TPMS, indeed other hyper-
bolic shapes, are inevitably more frustrated in our space
and therefore energetically less favourable. This obser-
vation suggests that crystals with very large lattice
parameters, in some cases comparable with optical
wavelengths, can emerge in the presence of local inter-
actions only, active over much smaller lengths.

If the film is polydisperse, with a range of spon-
taneous curvatures, less homogeneous patterns are
preferred. That scenario is relevant to many materials,
such as membranes whose copolymeric or amphiphilic
constituents have a range of molecular weights.
In those cases, other TPMS, or disordered hyperbolic
surfaces are preferred. Unfortunately, these alternative
possibilities cannot be analysed in detail. Indeed, the
existence of ‘disordered’ minimal surfaces of unbounded
genus without translational order remains unsolved.
(Nevertheless, an intriguing construction of such an
example combining surface modules from the P and D
surfaces has been discussed [62].) In general, there is a
trend of increasing curvature variations with increasing
genus of the TPMS, but is there a window where these
additional variations are better accommodated by a
higher genus (or lower symmetry) TPMS rather than
a molten structure? We do not yet know, and further
studies of minimal surfaces, periodic or aperiodic, are
needed. Certainly, biological and synthetic materials
are in general less ‘pure’ than those explored to date;
so the study of less homogeneous partitions is pertinent
and likely to yield useful answers.

Additional characteristics of curved patterns beyond
curvature variations are needed to deduce the physical
behaviour of patterned materials. For example, the
interface tensor qij /

Ð
S ðni nj " dij=3Þ da, where S is

the interfacial surface formed in a mixture of immiscible
liquids and ni the components of the surface normal
vector, has been shown to relate to the dynamics and
rheology of such mixtures [63]; similarly, it is also rel-
evant to cellular liquid foams [64]. The Doi–Ohta
interface tensor qij is a measure of the anisotropy of
the orientational distribution of the surface patches of
a given interface. As such, it is closely related to a
larger class of structural anisotropy measures, known
as Minkowski tensors, which quantify a range of

1In terms of the inevitably variable local channel diameters, the
gyroid appears to be significantly more uniform than the P or D
surface [58], and more uniform than all of its known tetragonal or
rhombohedral relatives [61].
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different aspects of anisotropy, including surface orien-
tation, curvatures and mass. The paper in this volume
by Mickel et al. [65] demonstrates how the Minkowski
tensor approach can yield insight into the anisotropy
of negatively curved interfaces of relevance to self-
assembly, such as non-cubic TPMS which provide
transformation pathways between the D and gyroid
cubic phases (QD

II and QG
II ).

5. OTHER MULTI-SECTIONS OF SPACE

The discovery of a tricontinuous mesoporous material
IBN-9, discussed earlier, expands significantly the dic-
tionary of mathematical patterns of relevance to the
natural world. The structure had been described earlier
as a generalization of TPMS whose faces are minimal
surfaces, arranged in a branched fashion, with threefold
branch lines along with three faces meet. The resulting
cellular pattern partitions space into three hexagonal
labyrinths, forming a tricontinuous morphology [66],
in contrast to non-intersecting TPMS.

Intersection-free TPMS partition space into a pair of
three-dimensional labyrinths; indeed, the identification
of TPMS via their pair of self-dual labyrinth nets was
the key to Schoen’s discovery of the gyroid. If more
than two (non-intersecting) nets thread space, they
define labyrinths of polycontinuous patterns. (Note that
we use this term in a more restricted sense than has
been adopted in the past.) Here too, Wells considered
this long before it was reanalysed. He describes examples
of three, four, eight or more interpenetrating srs nets in

his monograph [42]. A very different approach to identify-
ing multiple interwoven nets emerged from extended
studies of tilings of two-dimensional hyperbolic space
[67]. We were startled to find on rereading his monograph
recently that among the simplest examples formed from
very symmetric ‘free tilings’ of the hyperbolic plane are
precisely the examples of Wells. Indeed, Schoen in fact
describes briefly two examples of ‘integral varifolds’
that are composed of minimal surface patches; these are
the first tricontinuous and tetracontinuous examples
(both rediscovered and reported in [19,68]). (Following
the schema introduced in [66], these are 3etc(187) and
4srs*(24), respectively. Figure 3 illustrates the chiral tet-
racontinuous 4srs*(24) structure, as well as the similar
but achiral 4srs(5) structure.)

A number of distinct tricontinuous examples have
been determined numerically, whose faces are minimal
surfaces. Just as for TPMS, the simpler cases are
made of minimal surfaces that are bounded by straight
lines. In tricontinuous examples, some of those lines are
axes of threefold rotational symmetry (giving rise to
branching), in contrast to TPMS, whose straight lines
are necessarily twofold axes [66].

The geometrical studies that revealed polycontinuous
patterns from hyperbolic tilings were motivated by a dis-
cussion with Hasegawa and Hashimoto at Kyoto
University. They had collected TEM and calorimetry
data from a copolymer melt sample, that was suggestive
of three identical three-dimensional microdomains (still
unresolved). The sample was the first example of a
mikto-arm copolymer, with three mutually immiscible
arms joined to a common centre [70]. Melts of those

(a) (b)

(c) (d)

Figure 3. Two different tetracontinuous space partitions based on four interthreaded srs graphs. (a,b) Four like-handed srs nets
can be intergrown into a chiral structure termed 4srs*(24) that has cubic symmetry P4232 if the nets are indistinguishable. (c,d)
Two right-handed (turquoise and purple) and two left-handed (dark blue and yellow) srs nets can be intergrown into an achiral
structure termed 4srs(5) that has tetragonal symmetry P42/nbc (for identical ‘uncoloured’ labyrinths). The interfacial surface
separating the four network components is a branched surface including branch lines along which three surface patches meet
and vertices with four adjacent domains. The homogeneity of both structures—likely a prerequisite for any relevance for possible
self-assembly processes—can be gauged from the fact that the networks can be decorated by non-overlapping CMC domains such
that up to approximately 70% of space is taken up by the network bodies [69] (images courtesy of Myfanwy Evans, Erlangen).
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molecules, since named ‘mikto-arm’ copolymers, display
a range of complex morphologies, characterized by three
microdomain types. Kirkensgaard [71] describes in this
volume a number of morphologies that can be viewed
as two-phase decorations within a gyroid-like film,
found from coarse-grained numerical simulations. Some
of those patterns resemble examples of free tilings (men-
tioned already) that lead to polycontinuous structures.
That is an intriguing finding, since it opens the possi-
bility of two-dimensional self-assembly within the
(quasi-uniform) hyperbolic space offered by the gyroid.
Apart from systematic enumeration of tilings on the
gyroid, little is known of possible packings within that
space. Simulations are therefore useful. Dotera et al.
[72] discuss simulations of entropic hard sphere ordering
on the gyroid in this volume, and reveal an ordered pat-
tern that corresponds to a quasi-regular tiling.

Although simulations are suggestive, experiments on
real materials are proof. In principle, mikto-arm copoly-
mers, or related (oligomeric) T- and X-shaped
(thermotropic) polyphiles [73], or (lyotropic) star poly-
philes [66] can form polycontinuous, or, more generally,
multi-coloured patterns. To date, tricontinuous mor-
phologies have not been found. However, an impressive
range of two-dimensional planar three-coloured tilings
have been realized in polymeric melts, including two-
dimensional quasi-crystalline patterns [9]. A related
phase has been identified in star polyphiles [74]. The
report by Tschierske et al. [73] in this volume presents
a spectacular array of two-dimensional patterns, as well
as more complex three-dimensional geometries. Clearly,
polyfunctional molecules, such as polyphiles or mikto-
arm copolymers, are capable of a wealth of spontaneous
assembly geometries and topologies. So far, the studies
are confined to synthetic materials, with strongly
mutually immiscible domains. It may be worth consider-
ing this concept within a biological concept too, given
the subtle range of interactions at work in vivo.

6. CLOSING

We hope that this volume helps to demonstrate that con-
cepts of undoubted efficacy in synthetic materials science,
such as self-assembly and geometric optimization, have a
role to play in biology too. Modern biological research has
much to learn from synthetic materials science. Although
the converse proposition guides much of modern
materials research, biologists remain less conscious of
developments within the synthetic materials community.

Beneath these specific issues and problems of interest
to materials research and biology lurks a deeper question,
that is rarely explicitly posed. Namely, how appropriate is
it to adopt common techniques and tools to explore
materials in vitro and in vivo? The papers in this
volume demonstrate again and again that many features
of ‘dead’ systems—namely synthetic abiotic materials—
are also at work in living organisms. This need not
imply that biological systems have no additional features
to those present in synthetic systems, and such a view is
surely too strident. However, the striking parallels
between bio- and synthetic materials surely indicate the
significant overlap between living and synthetic systems?

This theme issue developed from the 2011 meeting Geometry
of Interfaces, held in Primošten, Croatia. We are very grateful
to the Cluster of Excellence Engineering of Advanced
Materials at the Friedrich-Alexander University Erlangen-
Nürnberg, funded by the German Science Foundation
(DFG), for significant financial support that enabled the
meeting to take place.
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24 Turner, M. D., Schröder-Turk, G. E. & Gu, M. 2011
Fabrication and characterization of three-dimensional
biomimetic chiral composites. Optics Express 19,
10 001–10 008.(doi:10.1364/OE.19.010001)

25 Michielsen,K.&Stavenga,D.G. 2008Gyroid cuticular struc-
tures in butterfly wing scales: biological photonic crystals.
J. R. Soc. Interface 5, 85–94. (doi:10.1098/rsif.2007.1065)

26 Saranathan, V., Osuji, C. O., Mochrie, S. G. J., Noh, H.,
Narayanan, S., Sandy, A., Dufresne, E. R. & Prum,
R. O. 2010 Structure, function, and self-assembly of
single network gyroid (I4132) photonic crystals in butter-
fly wing scales. Proc. Natl Acad. Sci. USA 107, 11 676–
11 681. (doi:10.1073/pnas.0909616107)
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