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Trading spaces: building
three-dimensional nets from

two-dimensional tilings
Toen Castle, Myfanwy E. Evans, Stephen T. Hyde*,

Stuart Ramsden and Vanessa Robins

Department of Applied Mathematics, Research School of Physics and Engineering,
The Australian National University, Canberra, Australian Captial Territory 0200, Australia

We construct some examples of finite and infinite crystalline three-dimensional nets derived
from symmetric reticulations of homogeneous two-dimensional spaces: elliptic (S2), Euclidean
(E2) and hyperbolic (H2) space. Those reticulations are edges and vertices of simple spherical,
planar and hyperbolic tilings. We show that various projections of the simplest symmetric
tilings of those spaces into three-dimensional Euclidean space lead to topologically and geo-
metrically complex patterns, including multiple interwoven nets and tangled nets that are
otherwise difficult to generate ab initio in three dimensions.

Keywords: two-dimensional nets; three-dimensional tiling; symmetry

1. INTRODUCTION

This paper surveys three-dimensional net-like structures
derived from symmetric reticulations of two-
dimensional surfaces. Our focus is on the arrangements
of edges and vertices in intersection-free tiled surfaces,
or polyhedra, which can assume surprisingly convoluted
arrangements. We consider polyhedra that are unions of
contiguous, non-overlapping faces, made up of vertices
and edges. Both edges and faces are free to curve and
the polygons comprising faces can be infinite. The
examples resulting from this more liberal definition of
polyhedra—beyond the more common view of poly-
hedra as plane-faced convex solids—are remarkably
rich in variety, despite our focus on polyhedra as tiled
surfaces rather than volumes.

Given the endless possible shapes of tilings, it is
useful to group them into manageable sets, called equiv-
ariant tilings, that conflate all tilings which share
common symmetry and topology into a single class.
We describe symmetry using the concept of orbifolds,
and topology with Schläfli symbols, both introduced
in the next section. Thanks to the advances in combina-
torial tiling theory owing to Dress [1], Huson [2] and
Delgado-Friedrichs [3], systematic enumeration of
equivariant classes of tilings is feasible up to an arbi-
trary degree of complexity for all two-dimensional
geometries.

Our goal is to construct nets—patterns of edges in
three-dimensional Euclidean space (E3). We approach
E3 via a circuitous path that allows us to remain in
two-dimensional space, and enumerate two-dimensional

nets as edges of two-dimensional tilings; a task that
is considerably simpler than three-dimensional con-
structions. Once this construction is in place, these
two-dimensional structures are mapped into three-
dimensional nets as a final step. That relies on the
embedding of the two-dimensional manifold that is
reticulated by the two-dimensional tiling. We shall see
that although we choose only the simplest embeddings
of relevant surfaces, the resulting three-dimensional
nets can have very complex structures, more complex
than could have been systematically generated ab
initio in three dimensions.

We look first at the most symmetric polyhedra that
emerge from tilings of the sphere (S2), then explore
generalized polyhedral forms that result from tilings of
the Euclidean (E2) and hyperbolic planes (H2).

2. TILINGS OF S2: PLATONIC POLYHEDRA

The beauty of simpler symmetric convex polyhedra has
surely been appreciated for millenia. The most regular
polyhedra with flat faces and rectilinear edges—the
tetrahedron, cube, octahedron, dodecahedron and ico-
sahedron—are described in Plato’s Republic [4]. Proof
that these polyhedral Platonic solids exhaust the list
of regular polyhedra is perhaps the simplest illustration
of the power of accessing three-dimensional space via a
two-dimensional surface.

A convex polyhedron can be ‘inflated’, so that its
faces are all equally curved and lie on a sphere, which
is the simpler non-Euclidean space in two dimensions
(S2). This process is illustrated for the cube in
figure 1. Each face is now a spherical polygon, bounded
by edges that are portions of great circles on S2 (i.e.
geodesics). Such a pattern is a tiling of the sphere; it
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is characterized by non-overlapping tiles that meet
edge-to-edge and cover the entire surface.

The topology of two-dimensional tilings is captured
by integers that measure (i) the number of edges
around each tile (polygon size) and (ii) the number of
tiles sharing a common vertex. A honeycomb tiling,
for example, as in figure 3a, is composed of hexagonal
tiles and has Schläfli symbol f6,3g, since the values of
indices (i) and (ii) are identical for all tiles and vertices.
Figure 1 shows that the tiling of S2 derived from the
cube has Schläfli symbol f4,3g.

Platonic polyhedra are very symmetric in three-
dimensional space. The vertices, edges and faces are
transitive: they are mapped into each other by reflec-
tions in the suite of mirror planes that intersect at the
polyhedral centres. These symmetries define the point
groups. The corresponding two-dimensional symmetries
are generated by reflections along mirror lines that lie
along edges of elementary triangles called flags. A flag
of a two-dimensional tiling has one point on a vertex
of the tiling, a second on the mid-point of an adjacent
edge and a third point at the centre of an adjacent tile.

The Platonic tilings with Schläfli symbol fn,zg have
only a single flag type: a spherical triangle whose geodesic
arcs meet at p/2,p/n,p/z. An elementary theorem of
spherical geometry relates the area of a triangle Ad on
a sphere of radius r to the sum of its vertex angles

Ad ¼
1
2
þ 1
n
þ 1

z
# 1

! "
pr2 ð2:1Þ

and we know the total surface area of a sphere is 4pr2.
Since the flags of a Platonic polyhedron tile the

sphere once, we can derive a condition for the number
of flags, Nd:

Nd ¼
8nz

2ðn þ zÞ # nz
: ð2:2Þ

These equations allow the enumeration of the Pla-
tonic polyhedra as flag-transitive tilings of S2. Integer
solutions of equation (2.2) are listed in table 1. Sol-
utions with n . 2 can be embedded in E3 as the five
Platonic polyhedra, whose point groups symmetries
have orders 24, 48, 120, 48 and 120, respectively
(i.e. Nd). So Plato’s list exhausts all plane-faced

convex regular polyhedra, but an infinite number of
‘lunar’ polyhedra, necessarily containing curved edges
and faces, are similarly regular.

3. ORBIFOLDS

The Platonic polyhedra can be viewed as kaleidoscopic
tilings of S2: in each case, the flags are bounded by
mirror lines. There are a number of different systems
for describing and naming two-dimensional symmetry
groups. We adopt the language of orbifolds [5,6], as it
affords a unified notation system for all three
two-dimensional spaces of constant curvature. For our
purposes, an orbifold is the two-dimensional asym-
metric domain of a pattern in the relevant space (S2,
H2 or E2). The kaleidoscopic regular tilings of S2, for
example, have symmetry *2nz. Here, the asterisk
(*) denotes a mirror boundary, with 2, n and z mirror
lines intersecting at the flag vertices. We call all such
orbifolds bounded entirely by mirror lines Coxeter orbi-
folds; their symbols are of the form *ijk . . ., where i, j,
etc. are integers necessarily greater than 1. Allowed
Coxeter orbifolds in S2 are rather limited: *jj, *22j
and *23k, where j [ f2, 3, . . .g and k [ f3, 4, 5g. It is
important to note that these orbifolds act on the two-
dimensional surface of the sphere S2 only. Embedding
the sphere in three-space allows translation of these
two-dimensional symmetries to the usual point group
notations (*jj translates to Schoenflies symbols Cjv;
*22j are equivalent to Djh and *23k are equivalent to
the Schoenflies names Td, Oh and Ih when k ¼ 3,4,5,
respectively).

Other orbifolds are possible in S2, and lift to the
usual point groups. Here, we mention just two further
classes of orbifolds, stellate and hat orbifolds. These
names come from the shape of these orbifolds, which
resemble stellated spheres and generic, occasionally
multi-pointed, hats (with a single bounding edge, to
sit on the wearer’s head). Stellate examples are charac-
terized by the presence of rotational symmetries only.
So, for example, the chiral point groups I, O and T
result from embeddings in three-space of patterns on
S2 with orbifolds 235, 234 and 233, respectively. Stellate
orbifolds have symbols of the form IJK . . ., where the
integers I, etc. denote the order of rotational symmetry.
Hat orbifolds combine rotations (not on mirror lines)
with mirror boundaries, and have the generic symbol
IJK . . . *ijk . . .. For example, the three-dimensional
point groups Djd arise from orbifolds of types 2*j,
while those with Schoenflies symbol CKh emerge from

Figure 1. Projection of a cube onto a sphere, so that all faces
become spherical polygons bounded by great-circular edges.
This defines a tiling of the sphere. A single ‘flag’ of the
tiling is marked (black triangle).

Table 1. Flag-transitive tilings of S2, with Schläfli symbol
fn,zg and Nd flags.

fn,zg Nd polyhedron

f2,kg 4k ‘lunar’ polyhedra
f3,3g 24 tetrahedron
f3,4g 48 octahedron
f3,5g 120 icosahedron
f4,3g 48 cube
f5,3g 120 dodecahedron
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three-space embeddings of patterns on S2 whose
orbifolds are of the form K*.

4. TWO-PERIODIC TILINGS OF E2

Consider next tilings of the Euclidean plane, E2. We
restrict our attention to two-periodic examples that
contain a pair of translations as a subgroup. Allowed
symmetries are the 17 plane groups, well-known to crys-
tallographers. All of these symmetries can be generated
from ‘flat’ orbifolds, which include Coxeter, stellate and
hat examples: e.g. *236 (or, in the nomenclature of
plane groups, p6mm), 244 ( p4) and 2*22 (cmm)
respectively.

S2 can only be embedded in three-dimensional space
in one way: the two-dimensional sphere. In contrast,
there are many simple embeddings of E2 into three-
dimensional space. The simplest is the usual embedding
of the plane in E3, extending without limit in two inde-
pendent directions (figure 2a). Alternatively, one or

both of the two translations can be factored out, by
wrapping the plane an infinite number of times
around a cylinder or a torus. These cases give planar,
cylindrical and toroidal polyhedra.

A cylindrical polyhedron can be constructed by map-
ping a lattice vector to an equatorial line of the cylinder,
as illustrated in figure 2b,c. However, any lattice vector
can be mapped to an equator of the cylinder, giving
both chiral and achiral examples of reticulated cylinders
with various radii. This construction is reminiscent of
that used to describe carbon nanotubes in terms of
the planar graphene (f6,3g) lattice [7]. Note that only
a single lattice vector has been ‘lost’ by cylinder for-
mation; so these cylindrical tilings are one-periodic in
three-dimensional space.

The remaining lattice vector can also be used to
map the cylinder back onto itself, to generate a
tiling of the donut-like torus, shown in figure 2d—a
toroidal polyhedron. This construction deserves
deeper scrutiny, as it exemplifies some of the subtleties

(a) (b)

Figure 3. (a) The two-periodic f6,3g net in E2 with primitive lattice vectors a and b (full grey lines) can be wrapped onto a torus
using the vectors 2a and 2a þ 2b (dashed lines). (b) The resulting f6,3g reticulation of the torus.

(a) (b)

(c) (d)

Figure 2. (a) The two-periodic f4,4g net in E2, with arbitrary unit cells delineated by blue and red lines. (b) Excision of a single
unit cell. (c) If all points separated by one of the lattice vectors are identified with each other, a one-periodic reticulation of
a cylinder results. (d) A toroidal reticulation is formed if all points separated by the second lattice vector are also glued.
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of embedding two-dimensional patterns in three-
dimensional space.

4.1. Toroidal nets

First, the abstract two-dimensional space formed by
identifying all points in E2 separated by a pair of lattice
vectors (a and b) is flat (Euclidean), since it inherits
exactly the same metric structure as the plane itself.
That is not true, however, for the torus embedded in
E3. The torus is saddle-shaped (and hyperbolic) in the
vicinity of the inner hole, but bowl-shaped (elliptic)
on the outer regions making it on average flat, but
with significant variations of curvature (figure 4).

Second, any pair of independent lattice vectors (ia þ
jb and ka þ lb, say, where i and j are integers) can be
used to form a toroidal tiling from the single f6,3g
tiling of E2; choosing different pairs gives toroidal til-
ings of distinct winding character on the torus. The
area of the parallelogram determines the number of dis-
tinct vertices in the resulting toroidal net. For example,
the f6,3g net, with two vertices per unit cell and a and
b as shown in figure 3, forms a toroidal net with 2(il –
jk) vertices in the torus.

The example in figure 3 uses vectors 2a and 2a þ 2b
and has eight vertices. More complex examples, formed
by gluing the lattice vectors 4a and 2a þ b, are shown
in figure 5. These too have eight vertices and differ
only in the gluing locations relative to the embedded
torus. Seams can be on either the inner or outer equa-
tors of the torus and the gluing order is flexible,
allowing the construction of ‘inside-out’ versions of
toroidal nets.

4.2. Net isotopes

Remarkably, all of the toroidal nets in figures 3 and 5
are topologically equivalent as graphs—they have the
same underlying combinatorial structure. For example,
they each contain eight vertices of degree-3 and six fun-
damental cycles, each of length four. Comparison of
projections of these toroidal cubes with that of the
normal cube (figure 6) lays bare their common topolo-
gies. However, the nets are embedded in E3 differently
and cannot be deformed from one to the other without
cutting edges. Evidently, the conventional embedding
(figure 1) is untangled and the examples of figures 3

and 5 are tangled. We therefore need some method to
recognize distinct entanglements of these cube graphs.

The question of tangled nets is a very complex one
that remains largely unexplored. A simpler phenom-
enon—better explored mathematically—is knots. A
mathematical knot, though tangled, is topologically
equivalent to a simple loop (S1). Equivalent knots are
ambient isotopic; i.e. they can be deformed into each
other without cutting and retying. We call two
embedded (possibly tangled) nets that can be morphed
into each other via ambient isotopy isotopes. A major
concern of knot theory is the question of when two
embeddings of S1 represent equivalent knots, i.e.
whether they are ambient isotopic. Even this problem
is still not completely resolved; the analogous question
for tangled graphs—namely to decide if two nets are
equivalent or distinct isotopes—is even more complex.
One approach is to examine the set of knots and links
generated by all cycles in the net, leading to the invar-
iants of Kauffman [8]. Two nets with the same graph
structure and distinct knots and links must be distinct
isotopes, so Kauffman’s invariants that afford necessary
conditions for two embeddings to be distinct isotopes.
This approach proves that the cube isotopes illustrated
in figures 1, 3 and 5 are distinct isotopes of the cube
graph.

An alternative numerical approach to Kauffman’s
invariants is under development, which, if sufficiently
convergent and accurate, offers a strictly geometric,
though numerical, route to answering whether nets
are distinct isotopes. The idea is adapted from the
SONO algorithm [9], developed to give canonical, or
‘tight’, embeddings of knots in E3, starting from any
given embedding. The knot is modelled by an infi-
nitely flexible and frictionless rope of a given
diameter (D), and the rope is forbidden to intersect
itself (i.e. points in nearby sections of the knot trajec-
tory must not be closer than D units). The energy of
the knot conformation is gauged by the ratio of rope
length to diameter, which is minimized for the tight
embedding.

The SONO algorithm has been extended to admit
tight embeddings of finite and periodic graphs [10].
It has been tested on a number of examples with suc-
cess, affording a numerical estimate of a ‘canonical’
embedding of net isotopes. For example, tight embed-
dings of the toroidal cube isotopes shown in figures 3
and 5 are shown in figure 7. These are very different
geometrically, as expected for different isotopes,
which supports the notion of finding a canonical
embedding for isotopes. In general, however, global
minimizers of the modified SONO energy may not be
geometrically unique [10].

Enumeration of tangled versions of polyhedral nets
via two-periodic tilings of E2 is possible using the
above approach. We will publish elsewhere a systematic
derivation of toroidal nets that are topologically equiv-
alent to the net of edges of the simpler Platonic
polyhedra, namely the tetrahedron, octahedron and
cube [11]. An earlier partial enumeration of tangled
cubes offers an introduction to this approach [12].
These toroidal examples represent the simplest
examples of tangled polyhedral nets; more complex

Figure 4. Embedding of the Euclidean torus in E3, coloured by
the curvature distortions induced by the embedding. The cur-
vature ranges from negative (blue) to positive (red), though it
is on average zero (yellow).
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cases can be deduced by extending this process to reti-
culations of two-dimensional surfaces of higher genus.

An important characteristic of toroidal entangle-
ments of polyhedra whose untangled forms reticulate
S2 is the emergence of chirality. Whereas only two of
the 18 Platonic and Archimedean polyhedral nets are
(geometrically) chiral, all toroidal entanglements are
likely to be (topologically) chiral [13]!

4.3. Free tilings

Before moving to hyperbolic space, we introduce an
enlarged class of tilings, beyond those considered by
Dress et al. [1,2]. The broader class includes examples
whose orbifolds have finite area, but whose tiles are
no longer finite. We call these cases free tilings. A
formal extension of combinatorial tiling theory to
include free tilings is in progress. Given the finite
nature of S2, free tilings cannot form in that space;
they can however, be realized in E2 and H2.

The symmetry groups of E2 that admit free tilings
within the Coxeter, hat and stellate classes of orbifolds
are *2222, 2222, 2*22 and 22*. Consider the simplest
example of a free tiling, made of ribbons bounded by

parallel straight edges (*2222). Define two lattice vec-
tors within the free tiling that define a single (or pair)
of gluings to form cylindrical (or toroidal) polyhedra
in E3. The orientation of these vectors determines the
pitch of the resulting cylindrical helices forming tile
edges. The number of interwoven cylindrical helices is
also flexible, and depends on the gluing vector
(figure 8c,e). Similarly, gluing the cylinder to form a
torus decorated by parallel lines typically results in
woven three-dimensional patterns with multiple
components (figure 8d,f).

Figure 6. Projections of the cube isotopes in figures 1, 3 and 5
respectively.

(a) (b)

(c) (d)

Figure 7. Tight embeddings of toroidal cube isotopes, found
by the adapted SONO algorithm, which minimizes the total
edge length in E3 for unit diameter (non-overlapping) edges.
(a) The tight embedding of the embedded graph shown in
figure 3 whose skeleton is illustrated in (c). (b,d) Tight embed-
ding and the edge skeleton of the toroidal isotope illustrated in
figure 5.

(a) (b)

(c) (d)

Figure 5. A more oblique pair of lattice vectors than those of figure 3 generates more highly wound nets. All four embeddings
shown here are generated by gluing vectors 4a and 2a þ b. They differ only in the position of the seams of the gluing on the
torus: (a) has 4a running along the inner equatorial line, (b) along the outer equatorial line, while (c) has 2a þ b mapped to
the equator. (d) The net embedding in space formed by the toroidal tiling of (a).
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Euclidean free tilings, though uninteresting in detail,
illustrate a powerful aspect of our enumeration pro-
cedure: two-dimensional free tilings generally induce
multi-component interwoven three-dimensional patterns.

5. TILINGS OF H2

Two-dimensional hyperbolic space, H2, shares many
of the features already encountered in the other homo-
geneous two-dimensional spaces: flat (E2) and elliptic
(S2). Its intrinsic structure, however, allows a far greater
wealth of structural types than in the other more familiar
spaces. In turn, we find that mapping symmetric hyper-
bolic tilings with low flag transitivity into E3 leads to a
rich vein of highly symmetric Euclidean infinite polyhe-
dra, whose edges form three-periodic (crystalline) nets,
and intricate three-dimensional weavings.

We represent the geometry of H2 using a model
discovered by Poincaré that maps the entire space
into the unit disc in such a way that angles between
hyperbolic space lines are preserved. Lengths, however,
are significantly distorted, so that regular patterns in
H2 may appear less so in the Poincaré disc. For
example, H2 can be tiled with identical geodesic tri-
angular tiles whose vertices have angles p/2,p/4,p/6,
illustrated in figure 9. Geodesics (straight lines) in H2

map to circular arcs that meet the boundary of the
disc orthogonally in the model. If we ignore colour,
the triangle edges are mirror lines and the pattern
forms from the Coxeter orbifold *246. (The coloured
pattern requires the stellate orbifold 246.)

In contrast to the other two-dimensional elliptic and
Euclidean spaces that sit comfortably within E3, any
embedding of H2 is necessarily frustrated. For example,
the triangular tiling shown in figure 9 illustrates one
possible embedding, that is evidently heavily distorted,
since the triangles are increasingly diminished away
from the disc centre. Hilbert proved that H2 cannot
be embedded in E3 as a surface with constant negative
curvature without singularities. An example that does
indeed contain a singular edge, is the pseudosphere,
described historically in Stillwell [14]. An alternative

way to embed H2 within E3, that avoids cusps, is to
wrap it onto a finite or a periodic surface, introducing
local curvature variations. This approach is analogous
to the maps from E2 onto the torus and cylinder.

We look for embeddings that induce symmetric curva-
ture variations that are as small as possible. Just as in the
Euclidean case, we restrict attention to discrete groups of
isometries that have a subgroup of translations. There
are only 17 of these in E2, but infinitely many hyperbolic
crystallographic groups. These are described by their
orbifold symbol, and can be ranked by their hyperbolic
area. The smallest-area hyperbolic orbifold (and the
most symmetric discrete group inH2) is *237. No embed-
ding into E3 is known that conserves this symmetry; an
unsurprising result given the incompatibility of order-
seven isometries with extended three-dimensional
space. The most symmetric known embedding of H2 in
E3 is based on the *246 orbifold. This is the intrinsic

(a)

(d) (e) ( f )

(b) (c)

Figure 8. (a) A portion of a two-dimensional Euclidean free tiling (brown parallel lines), with an overlayed quadrilateral (in green)
indicating a *2222 orbifold of the tiling. If glued along one of the pair of parallel edges formed by the larger red quadrilaterals in
(b), the tiling covers the cylinder in a one-periodic double-helical pattern (c), which can be glued along the pairs of edges to pro-
duce a torus reticulated by a pair of interwoven loops (d). Alternatively, a different gluing pattern generates the triple-helical
pattern of (e) which can be glued to produce the three-link pattern in ( f ).

Figure 9. Representation of H2 in the Poincaré disc model,
tiled here with identical right triangles, whose vertices have
angles of p/2,p/4,p/6. The apparent shrinkage of the tiles
with increasing distance from the centre is an artefact of the
model; all tiles are identical in H2 .
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symmetry of the P,D andGyroid three-periodic minimal
surfaces (TPMS). All three TPMS are shown in
figure 10. (Some two-dimensional symmetries of the
Gyroid do not lift to three-dimensional isometries of
E3, so that the asymmetric domain of this embedding
in E3 consists of a pair of *246 orbifolds, corresponding
to the stellate 246 orbifold.)

Notice that all p/2,p/4,p/6 triangles are now equal
in the P and D surfaces and that there are two distinct
triangles in the Gyroid. The ‘coarse-graining’ of H2 with
this symmetry leads to embeddings with no loss of
integrity at this resolution, when embedded in E3,
though curvature distortions of H2 occur within the tri-
angular patches corresponding to single *246 domains,
as shown in figure 11. (Other TPMS offer useful,
though more distorted, embeddings of H2 into E3.)

5.1. Crystalline three-dimensional nets from H2

The map from H2 into E3 using TPMS is reminiscent of
that from E2 onto a cylinder, discussed in §4. Recall
that in the latter case, one of the pair of lattice vectors
in a two-periodic planar pattern becomes a gluing
vector defining the equator of the cylinder, while the
other remains free, resulting in a one-periodic cylinder
reticulation (figure 2b,c).

In the two-dimensional hyperbolic case, patterns
with *246 symmetry contain an unlimited number
of translational subgroups. There is one particular
translational subgroup generated by six independent
translations that permits a *246-preserving embedding
onto all three of the P, D and Gyroid surfaces [15].
For each surface, three hyperbolic translations map to
the three independent direction vectors of E3, and the
other three independent hyperbolic translations

become ‘gluings’. The choice of which hyperbolic trans-
lations become gluings versus Euclidean translations is
somewhat flexible; hence the three globally distinct
embeddings (figure 10) for a single hyperbolic pattern.
Embeddings of *246 onto other (two- or three-periodic)
surfaces are possible, but are less homogenous and are
not considered further here.

Given a symmetry group (*246) and a placement of
the surface in space, we look for hyperbolic patterns (til-
ings) whose symmetries are a subgroup of *246 and a
supergroup of these translations. This constraint is arbi-
trary, and has been imposed to limit the enumeration to
a manageable process, determined by combinatorial
tiling theory. The hyperbolic tilings are mapped onto
the TPMS; resulting polygonal faces and edges on the
TPMS form infinite polyhedra. Just three of these map
to plane-faced regular infinite polyhedra, discovered

(a) (b) (c)

Figure 10. Embedded TPMS with two-dimensional symmetries *246. Asymmetric triangular domains corresponding to single
orbifolds are alternately coloured and uncoloured. (a) The P surface. (b) The D surface. (c) The Gyroid.

(a) (b) (c)

Figure 11. Conventional unit cells of TPMS coloured according to their curvature (flat points are blue, more negatively curved
domains are red.) (a) The P surface, (b) the D surface and (c) the Gyroid (cf. figure 4).

Table 2. Regular hyperbolic nets formed from flag-transitive
tilings of H2 mapped onto the P, D or Gyroid surfaces, with
Schläfli symbol fn,zg.

fn,zg surface net name (Epinet [17] and RCSR [18])

f4,6g P sqc1 pcu
D sqc947 hxg
G sqc4991 bcs

f6,4g P sqc970 sod
D sqc35 nbo
G sqc5579 lcs

f6,6g P sqc947 hxg
D sqc889 crs
G sqc1 pcu
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somewhat remarkably in the twentieth century by Eng-
lish schoolboys, 2000 years after Plato [16]! As for the
regular polyhedra in S2, we search for fp,qg tilings
with just one flag, generated via *2pq (equivalent to
*2qp) orbifolds. The plane-faced examples are flattened
versions of the generic infinite polyhedra with sym-
metries *246 (f4,6g and f6,4g on the P surface), and
*266 (f6,6g on the D surface); analogous to the Platonic
polyhedra as flattened spherical tilings.

However, further examples are regular two-
dimensional tilings of three-periodic hyperbolic
surfaces, and are realized in three-dimensional space

as flag-transitive tilings. We find the additional regular
polyhedra (with non-planar faces) corresponding to
f4,6g and f6,4g on the Gyroid, f6,6g on the P and
Gyroid and f4,6g and f6,4g on the D surface. Our
prime focus, however, is on the formation of infinite
three-periodic embedded in E3, derived from edges
and vertices of these polyhedra.

The resulting patterns provide a rich sample of three-
periodic Euclidean nets. Nets derived from the extended
family of infinite regular polyhedra on the P, D and
Gyroid surfaces are listed in table 2. Nets can be classi-
fied as equivalent according to various criteria. We are

(a) (b) (c)

Figure 12. (a) Distinct hyperbolic tilings, of different orbifolds (*2626 and *26), (b) mapped onto different TPMS (P and D)
generate the same s-net ((c) sqc12).

Figure 13. A pair of equivariant hyperbolic tilings, sharing orbifold *2224 but occurring in different subgroups on the P, leading
to distinct nets.
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interested in two distinct equivalence classes, according
to their topology or isotopy, as discussed in §4.2.

Identification of topologically equivalent three-
dimensional nets is possible using the concept of
equilibrium placement, developed by Delgado-Frie-
drichs & O’Keeffe [19]. This offers a signature for
topologically equivalent nets, and an effective canonical
geometrical embedding of the net with maximal sym-
metry in E3. For example, this technique confirms the
topological equivalence of the three-dimensional
embeddings of multiple distinct two-dimensional hyper-
bolic tilings illustrated in figure 12. Likewise pairs of
regular polyhedra listed in table 2 result in topologically
equivalent nets, hence carry the same net names.

The regular infinite nets are the simplest examples of
three-dimensional nets that emerge from systematic
enumeration of tilings of H2 that can be projected
onto the simplest TPMS. Construction of those nets is
a long-term project that continues; to date, the Coxeter
tilings have been enumerated for all nets containing up

to two symmetrically distinct vertex types per orbifold;
stellates are now in progress. Results are extensively cat-
alogued on-line in the Epinet database [17]. The group
theory and geometry involved in forming these nets are
described (in some detail for Coxeter orbifolds)
elsewhere [20].

The technique has a number of subtleties, principally
owing to the many-to-many character of the mapping of
tilings from H2 to nets in E3. This means that a single
hyperbolic tiling can induce a number of topologically
distinct three-periodic nets in E3. This variety emerges
as a natural consequence of the multiple possible fold-
ings of H2 onto either distinct, or indeed the same
compatible TPMS. Additional degrees of freedom in
mapping a single tiling onto a given TPMS arise as fol-
lows. First, multiple subgroups of *246 can exist sharing
the same orbifold, so that equivariant tilings in H2 can
form distinct nets when mapped onto a TPMS
(figure 13). Second, the geometry of a TPMS may
break symmetries present in a given hyperbolic tiling

Figure 14. Mappings of the same hyperbolic tiling onto an identical domain of the P with different embeddings, forming distinct
three-dimensional nets.

QC 2691 UQC 6053 UQC 6054

Figure 15. A *2626 tiling which generates two U-tilings related by transposition of the sixfold symmetry points, giving rise to the
same pair of nets on the P and D, but distinct nets on the Gyroid.
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leading to distinct embeddings of the same tiling within
each TPMS (figure 14). Third, two distinct embeddings
into E3 via decorations of the Gyroid emerge when the
two-dimensional tiling contains no mirror lines [21]
(figure 15).

The multiplicity of three-dimensional nets from a
single two-dimensional hyperbolic tiling is a fruitful fea-
ture of this approach to net enumeration. The situation
is further complicated by the possibility of distinct
two-dimensional tilings leading to equivalent three-
dimensional nets, as for two of the nets listed in table 2.

We have shown above that distinct isotopes of toroi-
dal nets can be constructed from different tilings of E2.
Similarly, distinct entanglements of topologically equiv-
alent three-periodic nets can be formed from various
tilings of H2. The SONO algorithm, introduced in §4.2
offers a route to form a canonical geometry for net iso-
topes. Examples can be found in the next section.

5.2. Free tilings of H2

Free tilings of H2 offer a far richer variety of patterns
than their cousins that inhabit E2 (and related cylindri-
cal and toroidal patterns), owing to the existence of
multiple parallel geodesics in hyperbolic space. The
Euclidean case allows free tilings of ribbon-shaped
tiles; hyperbolic examples include ribbon and

branched-ribbon tiles, or combinations thereof [10].
Hyperbolic ‘ribbon’ and ‘branched ribbon’ tiles may
have boundary morphologies that are tree-shaped or
infinite geodesic lines. Ribbon-shaped tiles have exactly
two boundary edges (either both tree-shapes or a com-
bination of a tree and a line), and branched-ribbons are
bounded by an infinite number of either hyperparallel
lines, trees or a combination of the two. Free ribbon
tilings have been referred to elsewhere as ‘close
packed’ structures in H2 [22]. Figure 16a–d illustrates

(a) (b) (c) (d)

(e) ( f ) (g) (h)

Figure 16. (a,b) Regular free tilings with symmetry *2223 containing (a) ribbon tiles and (b) branched ribbons. (c,d) Regular
ribbon and branched ribbon tilings with symmetry 2*23. (e,g) Embedding in E3 of the regular ribbon tilings (a,c) via the
Gyroid. ( f,h) Embedding in E3 of the branched ribbon tilings (b,d) via the Gyroid, giving helical packings, shown in their
tight configurations.

Figure 17. A regular ribbon tiling with symmetry 2223, embedded into E3 via the P surface, forming the inclined catenation [24]
of hcb nets in four distinct orientations, and significantly interwoven.

Figure 18. Tight embeddings of the interwoven nets formed
from the free tilings on the Gyroid illustrated in figure 16e,g.
Both examples are pairs of twofold interpenetrated
(like-handed) srs nets; distinct tight embeddings are due to
differences in the mutual srs entanglements.
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some examples that are ‘regular’ (one type of tile, edge
and vertex).

Hyperbolic free tilings embed in E3 to form arrays of
nets or filaments, and combinations thereof, depending
on the combination of boundary morphologies present
in the original free tiling. Figure 16e–h shows some par-
ticularly interesting embeddings of free tilings via the
Gyroid, some consisting of multiple three-periodic
nets, and others solely of filaments. Two examples of
free tilings that contain only branched ribbons with
geodesic tile boundaries are shown, and both of these
form (via the Gyroid and periodic SONO algorithm)
canonical tight embeddings in E3 that are arrays of
mutually inclined helical filaments, figure 16f,h. When
these filaments are straightened (isotopically), the
arrays form crystallographic rod packings [23]. Other
free tilings with branched ribbons and geodesic bound-
aries give three-dimensional arrays of interwoven loops,
forming three-dimensional ‘chain-mail’ structures.

Free tilings whose tile boundaries are tree-shaped lead
to avarietyof embeddings inE3. Since the tile boundaries
are branched, the resulting E3 embeddings are also
branched, giving finite, two-periodic or three-periodic
net components, interwoven in a three-periodic pattern
[10]. Regular ribbon tilings must embed in E3 with sym-
metrically equivalent vertices and edges. For example,
embeddings of regular ribbon tilings whose edges form
degree-3 trees can have one of three possible geometries:
the u-graph (finite, with a pair of degree-three vertices),
the two-periodic hexagonal net hcb [20] and three-peri-
odic srs net. All have been found as embeddings of free
tilings: an hcb example is shown in figure 17.

Both free tilings illustrated in figure 16a,c embed in
E3 as a pair of interwoven srs nets, figure 16e,g. This
intergrowth has been classified as ‘twofold interpene-
trated’ [24]; however, their entanglements differ,

clearly demonstrated by their distinct tight embeddings,
determined using the SONO algorithm (figure 18). An
alternative approach to distinguish net intergrowth
modes is possible via the numerical TOPOS algorithm,
developed by Blatov et al. [25], which determines expli-
cit measures of entanglement of distinct cycles within
intergrown nets. TOPOS confirms the distinct entangle-
ments of srs nets in figure 16e,g: one contains 18 Hopf
links and one more complex link; the other has 23
Hopf links and three more complex links.

Evidently, embeddings in E3 of hyperbolic free til-
ings offer a variety of structural classes, as well as
entanglements. Numerous less regular examples can
be systematically enumerated using an extension to
standard combinatorial tiling theory. These examples
include combinations of tile types (ribbons or branched
ribbons) as well as tile boundaries that are distinct
in topology or a mix of tree-shapes and geodesics.
The corresponding structures in E3 contain the inter-
weaving of distinct species of nets and filaments. For
example, figure 19 shows a free tiling with two distinct
tree-shapes as tile boundaries which maps via the D
surface to a structure in E3 that has three-periodic
and two-periodic nets interwoven with one another.

6. CLOSING

This sketch of three-dimensional nets via two-dimen-
sional tilings offers an indication of the variety of net
types that emerge from the simplest possible tilings of
the two-dimensional homogeneous spaces. In particular,
it is clear that H2 is sufficiently complex to furnish a
wealth of examples whose systematic enumeration
within the confines of three-dimensional space is difficult.

(b)

(c) (d)

(a)

Figure 19. (a) A free tiling of H2 composed of two distinct tree boundaries (full and broken). (b) Embedding of the tiling via the D
surface gives four intergrown 3-periodic nets, which have no barycentric embedding owing to vertex collisions and are thus uni-
dentified, interwoven with layers of four 2-periodic hcb nets. (c) View of one of the three-periodic nets and (d) the hcb weaving.
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We do not claim exhaustive enumerations of three-
dimensional patterns. Rather, accessing three-
dimensional flat space (E3) via tilings of the sphere,
the torus and TPMS, which are generated by enumer-
ation of tilings of their covering spaces, S2, E2 and H2,
affords a useful sample of three-dimensional nets, from
the simplest examples related to Platonic polyhedra,
to multiple interwoven nets and tangled net isotopes.

In our view, possibly the most striking aspect of the
approach is the extraordinary relevance of very sym-
metric two-dimensional patterns to structurally useful
patterns of some importance in E3 [26]. For example,
two of the most common nets encountered in structural
chemistry, hcb and srs, result from the simplest (hyper-
bolic 2D) regular tree. A survey of nets encountered in
metal-organic frameworks (‘MOFs’) noted ‘that in the
largest categories, those of triangular, tetrahedral,
square, and octahedral geometries, the dominant nets
are four out of the five regular nets, namely, srs, dia,
nbo, and pcu’ [27]. Platonic degree-3, -4 and -6 trees
map via TPMS to three of these nets (srs, dia and
pcu). Further, nbo forms via the D surface from the
regular f6,4g tiling, while pcu is its two-dimensional
dual, namely f4,6g (projected via the P surface). Both
of the latter nets have orbifold symmetry *246, the
most symmetric two-dimensional hyperbolic symmetry
commensurate with three-dimensional space. A more
recent collation ranks dia, pcu, srs and ths as the
most prevalent nets in this class of materials [28]. A
hyperbolic description of ths remains unknown.

Clearly, our task remains unfinished. Nevertheless,
we are confident that this approach does afford a power-
ful route to enumeration of nets, both tangled and
intergrown.
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