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FOR THE BUILT DESIGN?

I explore the terrain that lies between

architecture and geometry, from the per-

spective of a structural scientist with no

professional architectural expertise. The

divide between these disciplines perhaps

stems from an ancient dichotomy between

the art versus engineering schools of archi-

tecture, fertilised by the current dogma that

art and science can never meet. Architects

stand to gain much from study of the

spectacular advances in geometry in recent

decades, such as the growing understanding

of cellular patterns in space, tiles, nets and

curved surfaces. Some examples of those

advances are discussed in detail. I conclude

that both architecture and geometry would

benefit from a renewed mutual interest.

ISSN 1326-4826 print/ISSN 1755-0475 online
ª 2010 Taylor & Francis
DOI: 10.1080/13264826.2010.495402



Introduction

I am neither a theoretician nor a practitioner of

architecture. I am an amateur whose only

qualification is an interest in architecture, that

perhaps began as a young child, looking in awe

at the scaffolded half-built shells of the Sydney

Opera House rising over the water from the

deck of a Californian passenger liner as it sailed

into Sydney Harbour. As an adolescent in the

1960s, I became an aficionado of the built

design, visiting vast tracts of bare subdivisions in

beachside Perth with my family, impatiently

waiting for our own house to be built. Out of

that dazzling summer sand sprang streets,

shopping centres and all manner of residential

constructions. I took great pride in judging the

quality of each design, from the A.V. Jennings

box, to the outlandish announcements of WA

Nickel Boom wealth, mentally comparing all of

them with the clean, modern lines of our own

emerging house.

Slowly, I became aware of the technical subtleties

of architecture. A building must stand up as well

as excite the eye. It should offer both shade and

light. As a teenager, my favourite buildings were

now-forgotten Modernist Perth suburban

houses. As a young university science student, I

came across the engineering masterpieces of

Robert Maillart’s bridges, and my inner meter of

architectural purity swung towards the calcu-

lated beauty of Maillart.

The nineteenth century French engineer,

Rondelet—who among other accomplish-

ments saved Soufflot’s Panthéon dome from

collapse—expressed succinctly one aspect of

this dichotomy:

Architecture is not an art like painting or

sculpture . . . It is a science whose essen-

tial aim is to construct solid buildings

which deploy the finest of forms and the

aptest of dimensions to unite all the parts

necessary for their purpose.1

The complementary view is equally prevalent.

For example, Richard Meier is unequivocal in

his view of architecture:

A work of architecture is . . . a work of

art.2

Surely an architect must be both artist and

engineer; those two faces of architecture have

pushed and pulled architecture regularly over

the past centuries. Every minute I spend in Jean

Nouvel’s dynamically-shuttered Institut du

Monde Arabe in Paris thrills me, no more or

less than my view through the open window as

I write now, across the faded rooftops of the

Albaicı́n district in Granada, Andalucı́a, to the

hillside opposite, on which sits the jewel-like

Alhambra Palace.

Nowadays I inevitably view architecture and

engineering from the perspective of a practis-

ing scientist. I am a physicist by training, and

spend most of my professional time exploring

the links between pure geometry and the

shapes adopted by atoms and molecules in

crystals and liquid crystals. My own work is

driven by the wealth of new discoveries and

creations of modern geometers, crystallogra-

phers, physicists, chemists and materials scien-

tists. We now routinely speak of ‘‘molecular

architecture’’ and ‘‘materials design’’ to describe

our own efforts to build structures and

patterns of ever-increasing complexity in the

microscopic world. At the same time, much of

our work is driven by the acute awareness that

the architecture of nature remains the pinnacle

of materials design. The extraordinary structur-

al complexity and economy of construction of

materials in living systems, such as the silica
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skeleton of marine diatoms (Fig. 1(a)), or a

wing scale in a butterfly (Fig. 1(b)), remains an

ideal for modern materials design that scientists

have yet to approach.

My view is that a third approach—Science—

can be added to the Architectural and

Engineering schools of design. This is surely

shared by many architects and represents a

point of contact between the sciences and

architecture and engineering. It seems that one

of the great scientists in my own area, D’Arcy

Wentworth Thompson (who pioneered the

understanding of natural materials and mathe-

matical form in his magisterial book, On Growth

and Form3), is also a hero to many architects.

Thompson pioneered the idea of natural

structure, such as bone, as a ‘‘diagram of

forces’’ (see Fig. 2), a concept that Maillart

would have felt comfortable with.

The Architect and Engineer as Artist

While some architects apparently embrace the

findings of scientists, I sense a reluctance

among other architects—even engineers—to

delve into the more mathematical aspects of

science. Modern science is specialised and

comes with its own jargon. Those untrained in

science are often unable to comment on the

developments of pure scientific research, since

its creations are often written in languages that

can only be read after some learning. That

situation is in stark contrast to architecture

which perhaps suffers the opposite fate. Unlike

science, even the uninitiated—from Prince

Charles4 to this scientist—assume the right

to comment on the relative skills of the

architect.

I suspect that many designers feel a funda-

mental distinction between design and the

mathematical sciences. The painter and friend

of Frank Gehry, Ed Ruscha, expresses this

sense all too clearly while describing Gehry’s

work in Sydney Pollack’s documentary on

Gehry:

He mixes the free-wheelingness of art

with something that is really concrete and

unforgiving, which is the laws of physics.5

Figure 1. Natural form in living systems. A diatom skeleton, reproduced with kind permission of Hallegraeff (a);
and reconstruction from electron microscopic tomography of the chitin wing scale structure in the Callophrys rubi

(b). The net within the voids of the structure indicate edges of the ideal net that describes the complex 3D
arrangement of channels in this sponge-like structure. The (leftmost) smoothed structure represents a
mathematical idealisation of the structural data (rougher, rightmost): an ideal mathematical form known as a triply
periodic minimal surface. Source: Gustaaf Hallegraeff, Plankton. A Critical Creation, Sandy Bay, Tas., University of
Tasmania, 2006, p. 49.
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While that view is perhaps understandable

coming from a visual artist, it appears to

permeate through to even the most quantita-

tive extremes of design, including civil engineers.

Tristram Carfrae, the engineer responsible for

the Water Cube in Beijing (Fig. 3), has spoken

of a transformation of the discipline of

engineering from a form of applied mathe-

matics, to one where the engineer is ‘‘happily

wallowing in complexity’’ claiming that with the

increased sophistication of today’s tools, under-

standing of the details of their innards is no

longer possible. Nowadays, engineers have to

be comfortable with ‘‘using stuff you don’t

understand’’ on structures and processes that

‘‘you can’t draw; a comfort with informational

processes upon which they deploy critical

judgements’’, forcing the practitioner to be-

come ‘‘more judgemental, less absolute’’.6

It is certain that, as in science, computers and

the web have transformed engineering and

architecture in dramatic fashion. The Water

Cube arose after Carfrae ‘‘found everything I

needed on the net in a week’’.7 Frank Gehry’s

spectacular curvilinear forms are refined on the

Figure 2. An image of a sectioned human femur (a) and D’Arcy Wentworth Thompson’s diagram of forces acting
on the bone (b).

Figure 3. The Water Cube, engineered by Tristram Carfrae, constructed for the 2008 Beijing Olympics. Maquette
of the space frame (a). External view of the construction (b). (All images by Arupþ PTWþCCDI and are
reproduced with the kind permission of Tristram Carfrae).
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computer and his modelling team are a vital

part of the practice. In the Pollack documen-

tary, Gehry describes how his frustration with

the design of the external staircase of the Vitra

Design Museum led to computational design:

I started playing with the spiral stair ; I

loved the way that curve read against the

rectilinear. I tried to draw it with

descriptive geometry, but when the guy

built it there is a kink in it. . . . That was

when I got frustrated and asked the guys

in the office: ‘‘isn’t there a better way to

describe these things, cos I’d like to play

with curved shapes. If I could just

describe them.’’ That’s what led us to

the computer.8

Despite Gehry’s heavy reliance on the com-

puter to quantify designs, he remains reliant on

physical models: according to Pollack’s film, his

design work is grounded in model building,

often realised by gluing and bending sheets of

cardboard, folded, cut and glued to yield a

form that pleases. Gehry clearly views the

computer as a black-box, from which the

computer specialist, the magician, can extract

the rabbit of quantitative design. Carfrae is

more in tune with the scientific view that a

computer is a powerful design medium in its

own right, to be harnessed first-hand to realise

novel three-dimensional (3D) designs.

A Role for Geometrical Science?

Despite the sheer beauty of their realised

designs, I feel some disappointment with both

Gehry’s and Carfrae’s attitudes to modern

geometry. Given that both Gehry’s helicoidal

stair at Vitra and Carfrae’s tetrahedral space

frame in Beijing are structures long known to

certain scientists, many aspects of their design

work could have been done with just a modest

dose of geometrical training, rather than

relying on computational black-boxes.

Sadly, this ‘‘tyranny of discipline’’ can be found

among scientists too. A disturbing divide

between practitioners of pure mathematics

and materials science is also evident.9

In Rondelet’s day, the Ecole des Beaux Arts in

Paris had four professors: one each for history,

theory, construction and mathematics.10 At the

time of Rondelet’s pronouncement on archi-

tecture quoted above, he was the incumbent

of the construction post. The explicit inclusion

of mathematics as an integral part of architec-

ture education in nineteenth century France

was not surprising given the legacy of Napo-

leonic France, concerned above all with

building an empire to rival that of the Romans,

characterised by bridges, roads and other

monuments to the boundless potential of

rational thought. Is the built environment of

the twenty-first century a very different place?

Bridging distinct cultures, whether mathematics

and physics or chemistry, or architecture and

engineering and mathematics, is a big ask. Yet

no matter how fast and powerful our compu-

ters become, they cannot produce forms from

thin air, only refine forms according to human

instructions. Given the explosion of new forms

in the past few decades in geometry and

materials science, architects and engineers

should perhaps revisit the philosophy of

Rondelet; a wealth of novel forms and

concepts are to be found in the sciences.

What can modern science offer the aspiring

architect? We are now living in a golden age of

geometry, with a number of advances that

signal the most significant evolution in geo-

metric thinking since the ancient Greeks,

whose codification of geometry set the stage

HYDE

114



for the past two millennia. I have only the

room here to mention a few of these advances,

necessarily selected from my own areas of

interest.

The quantum leap in geometrical thinking

that we are currently digesting springs from a

truly radical source: non-Euclidean geometry.

Though now almost 200 years old, its

applications to scientific thinking were until

recently confined largely to the rarified

echelons of theoretical physics. Nowadays, it

is permeating less ethereal areas of science.

For example, in my own work an explicitly

non-Euclidean approach is routinely used to

generate, classify and relate various spatial

patterns of all sorts, from complex 3D

weavings and knots in space, to novel cellular

decompositions (Fig. 4). We are interested

in these structures, that arise from the

abstract universe of hyperbolic two-dimen-

sional (2D) geometry, in order to understand

how atoms and molecules arrange them-

selves into crystals and liquid crystals at the

microscopic scale, visible only at very high

magnifications.

Non-Euclidean geometry offers an increasingly

interesting aspect of design to our own 3D

Euclidean world: curvature. (Non-Euclidean

geometry has a lot more to say than that,

but this essential core is a theme that allows us

to view structure itself in novel ways.) Freed

from the Euclidean constraint of flatness, the

vocabulary of form now available far exceeds

that available to the classical Greeks and their

Figure 4. Some patterns that we have explored and designed using ideas and approaches from non-Euclidean
geometry.
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followers. And that vocabulary allows us to

think about the shapes that preoccupy de-

signers, from Gehry to Carfrae, in a practical,

quantitative fashion. The mathematical details

are to be found elsewhere; here I illustrate that

approach with some concrete examples of

forms, taken largely from our own interests:

tilings, nets and space partitions.

Tiling theory looks at the shapes that can be

replicated to fill a space without any overlaps

or gaps between those shapes. One of the

most fundamental rules of tiling is surely

known to all designers: if we are to cover a

flat wall with equal and regular polygons:

only those with three, four or six sides will

tile (Fig. 5).

Artisans have long known that we can go a lot

further once we allow the edges bounding the

tile to curve. Supremely beautiful examples are

to be seen in the Alhambra, such as illustrated

in Figure 6.

There are many simple tiling questions that

until very recently remained not only unan-

swered, but fundamentally unable to be

answered. That situation has changed radically

in recent years: we can now systematically

explore tilings at will. A group of mathemati-

cians in Bielefeld, Germany, have in the past

two decades constructed a complete con-

structive theory of tilings that can and is being

used to build tilings. Delaney–Dress tiling

theory, developed by Andreas Dress11 with

Figure 5. Planar tilings with Platonic polygons: (a) triangles {3,6}, (b) squares {4,4} and (c) hexagons {6,3}.
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Daniel Huson12 and Olaf Delgado Friedrichs,13

is spectacularly useful. It allows us to construct

tilings up to an arbitrary degree of complexity

in spaces of any dimension or curvature! Olaf

Delgado Friedrichs’ tiling software is freely

available from the web;14 it can be used to

build an endless variety of 2D or 3D tilings with

just a modest dose of training.

Look for example, at 3D tiles that can tesselate

flat volumes (i.e. Euclidean 3D space), one

dimension richer than tessellations of flat walls.

Some examples spring to mind immediately.

For example, space can be tiled by cubes (Fig.

7). Many other tilings of space by polyhedral

cells with straight edges and flat faces—

consistent with the Greek notion of polyhe-

dra—are possible. For the first time we

are able to construct catalogues of tilings,

opening the door to systematic searches of all

possible structures up to a given level of

complexity.

If we allow the faces of these 3D tiles to be

curved rather than just flat—just as for the

edges of the Alhambra 2D tiles—the variety of

3D tilings explodes, and a number of new tiles

emerge. Some of these tiles were in fact

already known in the 1970s: the US architect

Peter Pearce wrote a seminal book15—perhaps

better known to scientists than architects!

Indeed, Pearce lamented in 2006:

I have received much more acknowl-

edgement and citations from the scien-

tific community than from the design/

architecture community. . . . This is parti-

cularly perplexing, even troubling, to the

extent the fundamental content of the

book was driven by design intentions, not

scientific discoveries and insights.16

Pearce makes some pointed comments on the

conservatism of architects in looking towards

novel designs for sustainable buildings. In

particular, he writes:

Although there were ‘‘moments of glory’’

along the way, and certainly an amazingly

useful ‘‘learning curve’’, in the end I was

not able to get beyond the fundamental

conservatism that dominates protocol,

methodologies, and the limited design

visions that constrain the design of

buildings in our culture.

One of Pearce’s examples is a splendid four-

faced saddle polyhedron, formed from a

Figure 6. Some decorations in the Alhambra, Granada. The richness of these ornaments is due, in part, to the
presence of curvature. A {3,6} tiling (cf. Fig. 5), transformed by colouring and curvature (a). Ignore the six-pointed
stars and the hexagons and a variation of the {6,3} tiling (cf. Fig. 5) is seen (b).
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regular tetrahedron by kinking all the edges at

their midpoints. The faces of his 3D tiles are

curved, bounded by skew hexagons. All angles

between edges in this tile are exactly tetra-

hedral, as shown in Fig. 8.

Delgado Friedrichs and Michael O’Keeffe have

developed this tiling concept in a direction that

is of immediate use to our understanding of

atomic and molecular crystals. These crystals

are usefully described as 3D crystalline net-

works, or, for short, ‘‘nets’’, whose edges are

the chemical bonds within the crystal. Such

nets, composed only of edges and nodes, are

known to architects as space frames, such as

the skeleton of the Water Cube (Fig. 3). For

example, a tiling of space with Pearce’s saddle

polyhedra results in a net of edges well known

to all solid state scientists as the structure of

diamond. In the diamond crystal, carbon atoms

are located at each vertex, each bonded to

four neighbouring atoms along tetrahedral

directions, illustrated in Fig. 9. Thus the

diamond net is a tetrahedral space frame.

This technique of generating nets has led to

some important fundamental structural ideas.

For the first time, a rigorous classification of

the simplest nets has now been done, in some

senses on a par with the classical Greek

enumeration of Platonic (regular) and Archi-

medean (semi-regular) polyhedra.17 There are

five and only five regular nets according to this

classification, just as there are five Platonic

polyhedra (Fig. 10).

Indeed, the regular nets share properties of the

Platonic polyhedra: the latter can be viewed as

regular nets on the sphere. A student of design

will be familiar with these regular nets, since

they deserve to be as well known as the

regular (Platonic) polyhedra! An excellent

website is now online (hosted by the Australian

National University) that describes these

structures in detail.18

We have developed an alternative path to

enumerating nets. Our approach is concep-

tually simple. First we recognise the seminal

result of non-Euclidean geometry: there are

three generic 2D homogeneous geometries,

defined as spaces of constant curvature. These

are elliptic, Euclidean and hyperbolic 2D space.

These three spaces have respectively positive

curvature (as in the surface of a sphere), zero

curvature (for example the Euclidean flat

plane), or negative curvature (such as a

saddle). Fragments of each space are illustrated

in Fig. 11. Another way of describing these

spaces is to think of them as 2D surfaces, with

the important proviso that one does not think

of those surfaces as inhabiting some higher

dimensional space. Rather we must think of

these surfaces as spaces in themselves, much as

an ant would conceive the universe were it

confined to wander these surfaces without any

ability to look anywhere but along the surface.

Two-dimensional tilings, explored so elegantly

(and completely) in the patterns on the flat

Figure 7. Tiling of (Euclidian) 3D space by cubes.
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walls of the Alhambra, can be extended to

these curved spaces or surfaces, giving a far

richer variety than is found in Euclidean

geometry, and allowing tilings of curved

surfaces. For example, the constructive tiling

theory of Dress et al. can be applied to 2D

curved spaces. Examples of similar motifs

‘‘mutated’’ to form tilings of the simplest 2D

spaces, known to mathematicians as the elliptic,

Euclidean and hyperbolic planes are shown in

Fig. 12.

Hyperbolic 2D tilings have been explored

systematically only recently. Two-dimensional

hyperbolic space is so superficial, so area-rich,

that only very small fragments of it fit into our

3D space, unless we allow the 2D hyperbolic

plane to wrap onto itself, over and over, much

like the flat plane can be wrapped onto a

cylinder with endless windings. If we try to

place the hyperbolic plane in 3D Euclidean

space it displays a massive degree of crenella-

tion, much like seaweed (Fig. 13) and soon

crowds in on itself, so that only small fragments

can be ‘‘embedded’’ in our 3D space.

That is why the hyperbolic tilings in Fig. 12

appear to contain smaller and smaller tiles, In

actuality, all (like-coloured) tiles are identical. A

beautiful movie by Stuart Ramsden19 shows

how this space can be neatly folded within 3D

flat space to minimise those distortions. The

folding is done by wrapping the hyperbolic

plane onto sponge-like surfaces, known as

three-periodic minimal surfaces. If we choose

simple tilings of hyperbolic space and

then embed the edges of the tiling into 3D

Euclidean space via these three-periodic

Figure 8. A ‘‘saddle-polyhedron’’ with four identical saddle-shaped faces (a). Tiling of Euclidean 3D space by these
saddle polyhedra (b). The net of edges formed by the tiling describes a tetrahedral framework. This tiling was first
described by the architect Paul Pearce in the 1970s.15

Figure 9. The diamond net, formed by edges of
Pearce’s saddle polyhedral tiling.
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minimal surfaces, we generate nets. So, para-

doxically, we gain a privileged entree to 3D flat

space via 2D curved space! That concept has

allowed us to generate numerous interesting

patterns and 3D weavings that are otherwise

difficult to build geometrically. We have spent

almost a decade now mining that approach and

the results are slowly accumulating on the

‘‘EPINET’’ structural database, freely accessible

on the web.20

En route, we have also found some interesting

novel ways to partition space. Look first at the

three-periodic minimal surfaces. These surfaces

sub-divide space into two interwoven volumes.

Each volume forms an open, infinite, extended

3D tile that weaves through space. We

therefore have a tiling of space, where each

tile contains just a single curved face. And only

two are needed to fill space! An example is

shown in the left-hand image of Fig. 14. These

three-periodic minimal surfaces have been

known for many years. Even more complex

partitions are now emerging. For example, we

have found a number of ways to tile space with

just three open interwoven tiles, each contain-

ing a single face and an infinite number of

straight edges, leading to inter-growth of three

discrete volumes (inside, outside and some-

thing else . . .). An example of this structural

class can be seen in the right-hand image of

Fig. 14.

Closing

We hope that these examples give some idea

of the richness of structure that emerges once

Figure 10. Regular or Platonic polyhedra, described for millennia (top). Regular nets, according to the recent
definition of O’Keeffe et al. (bottom).18

Figure 11. The three 2D geometries: elliptic, Euclidean and hyperbolic (left to right).
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we move beyond Flatland, as well as the sense

that these studies remain very active areas of

research for many scientists. I suspect that the

work required for a designer to digest the

tools and results of modern geometry will be

amply repaid, and lead to a deeper exploration

Figure 13. Some fragments of 2D hyperbolic geometry in our own space: a crocheted portion of the hyperbolic
plane by D. Taimina (reproduced with permission) and seaweed.

Figure 12. The top row shows related tilings of (a) elliptic, (b) Euclidean and (c) hyperbolic 2D space. Each
examples contains two tile shapes. Both tile types are four-sided polygons in each case; the tiling morphs from
positive to zero and negatively curved space by changing the number of tiles sharing the star-shaped corners (3, 4
and 5 respectively). The bottom row shows Euclidean (d) and hyperbolic tilings (e, f) formed from hexagonal and
quadrilateral tiles. For convenience of representation only, the hyperbolic examples are projected onto a flat
circular disc leading to extreme distortions; in actuality these patterns afford tilings of saddle-shaped surfaces with
equal tiles, just as the elliptic example tiles the sphere surface.
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of form and function of the built environment.

Armed with this new perspective, I conclude

the paper with another look at the designs of

Gehry and Carfrae discussed above.

The Water Cube is surely an impressive

example of the potential for cross-fertilisation

between science and design. Carfrae states

that the Weaire–Phelan pattern he uses to

build this structure is structurally interesting in

that it is a network with tetrahedral edge

angles and is fundamentally novel. That is not

the case. There are many, many other

examples of tetrahedral nets (or space

frames), such as the diamond net, shown in

Fig. 9. Indeed, the edges of all closed-cell foams

formed by soap films also realise tetrahedral

angles at their junctions, as discovered by the

blind Belgian physicist, Plateau, in the nine-

teenth century and proven by Jean Taylor in

the 1980s (Fig. 15). So the variety is infinite! To

go further, the designer needs to delve into the

now mature area of net geometry, and

associated fields, such as foams research21

and the science of cellular materials.22

Gehry is an architect of curved surfaces par

excellence. Yet I cannot avoid the hunch that

he could go much further in his explorations of

form were he schooled in aspects of non-

Euclidean and curved surface (differential)

geometry. For example, a beautiful theorem

of differential geometry by Gauss implies that

the only shapes that can be constructed from

bent planes or sheets of cardboard are

developable surfaces (intrinsically flat, with zero

curvature). To generate intrinsically curved

structures, the planes must be warped, by

insertion or deletion of patches (such as ‘‘darts’’

Figure 14. A bicontinuous structure, with just two interwoven 3D tiles (that are each infinite), separated by the
three-periodic minimal surface known as the ‘gyroid’. The coloured nets indicate the convoluted channels of each
tile (a). A new tricontinuous pattern, with three infinite and interwoven 3D tiles, each bounded by minimal
surfaces. Each tile is equivalent, and can be interpreted as inflated diamond nets (b) (see also Fig. 9).

Figure 15. Image of a soap froth or foam. The stable
form of any froth follows Plateau’s Rules: three faces
meet along each edge at 1208 and four edges meet
at each node, forming tetrahedral junctions.
Compare this image with the space frame in Fig. 3.
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in dressmaking, used to make for example,

jupes à godets.23) Conversely, (doubly-) curved

forms cannot be realised with single curved

panels. Indeed, that particular design challenge

has produced novel and interesting geometry

and architecture,24 resulting in the Austrian

‘‘Architectural Geometers’’ school of Helmut

Pottmann and colleagues.25

Lastly, I see no reason why architects and

engineers cannot contribute to science as much

as science can contribute to design in general.

For example, the American architect Peter

Pearce in the 1970s investigated periodic

minimal surfaces and related structures for

their design possibilities. Perhaps Pearce was

ahead of his time; witness the fascinating design

of the Australian Wildlife Health Centre

(Healesville, Victoria) by Minifie Nixon from

2006, based on another (non-periodic) minimal

surface known to mathematicians as the Costa

minimal surface. Periodic minimal surfaces are

also reappearing in an architectural context via

the work of Pottmann and colleagues. This

work exemplifies a promising way ahead for

both architects and mathematical scientists,

whereby architecture and geometry inform

each other. The hoary divide between archi-

tecture and engineering—like that between art

and science—is a false dichotomy.
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