Classical Mechanics Questions for C01 exam, June 2001

Q1. [20 marks total]

Consider a system with two degrees of freedom described by the generalized coordinates \(q_1 \) and \(q_2 \). Suppose the kinetic and potential energies are given by

\[
T = \frac{1}{2} (\dot{q}_1^2 + \dot{q}_2^2), \quad V = f(q_1 - q_2)
\]

where \(f \) is a given function.

(a) Write down a Lagrangian and Hamiltonian for the system.

(b) Find the configuration-space and phase-space equations of motion and determine the general solutions for \(q_1 \) and \(q_2 \) as functions of \(t \) if \(f(x) = x^2 \).

(c) Is the system autonomous? Is there a corresponding constant of the motion (and what is it)?

(d) Find a continuous symmetry of the system (other than time-translation invariance) and use Noether’s theorem to find the corresponding conserved quantity.

(e) By choosing suitable new coordinates, \(q_1' \) and \(q_2' \), find a new Lagrangian that is decoupled into a sum of Lagrangians for two independent one-degree-of-freedom subsystems.

Q2. [20 marks total]

(a) Write down the Lagrangian in cylindrical polar coordinates \((r, \varphi, z)\), \(r \equiv (x^2 + y^2)^{1/2} \), for a particle of charge \(e \) and mass \(m \) moving in an arbitrary scalar potential \(\Phi \) and a vector potential \(A = e_z A_z \), where \(e_z \) is the unit vector in the \(z \)-direction.

(b) Hence or otherwise show that the corresponding Hamiltonian is

\[
H = \frac{p_r^2}{2m} + \frac{p_\varphi^2}{2mr^2} + \frac{(p_z - eA_z)^2}{2m} + e\Phi.
\]

(c) Given that the potentials are independent of \(\varphi \) and \(z \), write down two constants of the motion. Show that the particle motion in \(r \) can be described using a one-dimensional Hamiltonian with an effective potential \(V_{\text{eff}}(r) \). Given that the potentials are time-independent, write down another integral of the motion. Write down the one-dimensional Hamiltonian equations of motion and discuss the \(r \)-motion of the particle qualitatively assuming \(V_{\text{eff}}(r) \) goes to positive infinity as \(r \) approaches 0, and considering the two cases \(V_{\text{eff}}(r) \to \pm \infty \) as \(r \to \infty \). Sketch a phase-space diagram for the motions in the two cases.