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Extremely High Degree of N-Soliton Pulse
Compression in an Optical Fiber

Nail N. Akhmediev and Nina V. Mitzkevich

Abstract—The process of pulse self-compression in an optical fiber is
theoretically investigated on the basis of exact N-soliton selutions of
the NLS. It is shown that the degree of compression can be approxi-
mately N times higher than in the previously considered case of N/cosh-
type initial conditions. The evolution of the spectra of N-soliton pulse
is also considered.

I. INTRODUCTION

NUMBER of papers has been presented in the literature

which deal with the problem of multisoliton pulse self-
compression in an optical fiber [1]-[5]. Mathematically, the
problem reduces to following the evolution of the N-soliton so-
lution of the nonlinear Schrodinger (NLS) equation for a given
initial condition. If the higher order dispersion, time delay, and
other effects are neglected in the fiber, the pulse envelope ¥
obeys

i\be +%\l/n+ I\blZw:O (1)

where £ is a dimensionless longitudinal coordinate, and 7 is a
dimensionless retarded time variable. The relations between
these quantities and physical variables can be found elsewhere
[1]1-[3]. Since the early work of Satsuma and Yajima [6], the
solution of the problem with initial condition

¥ = N/cosh (7) @

has been studied extensively. This is the most simple and con-
venient form of initial conditions which obeys the exact solu-
tion of the NLS in the case of integer N [6]. Equation (2) has
also been used for numerical simulations in cases more general
than (1) [7], when (2) does not obey the exact solution. But it
has been shown [8] that initial condition (2) is not the best one
if we wish to obtain the maximum degree of pulse self-compres-
sion.

The aim of the present work is to show the existence of initial
conditions which lead to both a higher degree of pulse compres-
sion and a larger fraction of energy contained in the main peak
than the yield of initial condition (2). It is known [6] that the
initial condition (2) obeys the exact N-soliton solution with the
amplitudes of partial solitons comprising the nonlinear super-
position which are equal to half-integers: 1/2, 3/2, 5/2, and
so on (N times). It can be shown as well that the phase of each
soliton in this superposition is opposite to the phase of the so-
liton with smaller amplitude, such that the phases of all solitons
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alternate. However, it is possible to construct a nonlinear su-
perposition of the solitons with the same amplitudes with coin-
cident (for definiteness, equal to zero) phases. In what follows,
we shall show that these kinds of solutions are optimal for self-
compression. Moreover, for large N, there also exist other phase
combinations more profitable for self compression [8] than the
case of [6].

For numerical simulation of multisoliton solutions, there ex-
ist explicit formulas [9]. However, we have found it more con-
venient to apply the Darboux transformation [10] in combina-
tion with numerical [11] methods for obtaining N-soliton
solutions of NLS. We have analyzed these solutions up to N =
10 inclusive. The construction of exact solutions enabled us to
derive the main relationships governing the process, to deter-
mine the dependencies of the compression factor and the energy
contained in the main peak of pulse and other characteristics of
N-soliton pulses on the value of N, and also to identify the ini-
tial conditions under which the process of self-compression pro-
ceeds in an optimal manner.

In the optimal case, the maximum amplitude of the com-
pressed pulse is equal to N 2 so that the maximum intensity is
N*. At large N, the degree of self-compression is approximately
N times higher than for initial condition (2). The fraction of the
energy carried by the main peak of the self-compression pulse
relative to the full energy approaches a certain constant =0.8,
50 that the maximum theoretical efficiency of the process is N'/?
times higher than in [6]. We have also investigated the appro-
priate phase chirps for pulses and the evolution of Fourier spec-
tra of the pulse compression process.

II. THE DARBOUX TRANSFORMATION FORMULAS AND
TRANSFORMATIONS DIAGRAM

The Darboux transformation formulas for a number of non-
linear equations including the NLS was obtained previously by
Sall’ [10]. These formulas connect two solutions of NLS (or
other nonlinear equation) and eigenfunctions of some set of lin-
ear differential equations corresponding to these solutions by
algebraic transformations. The eigenfunctions corresponding to
one of these solutions should be found solving the eigenvalue
problem. Practically, it can be done only for relatively simple
solutions of NLS. So, the method allows to obtain more com-
plicate solutions using the simple ones.

It is possible to construct more complex solutions of the NLS
successively using the connection between three or more solu-
tions and corresponding eigenfunctions. This connection con-
sists of several stages of Darboux transformation. But it is es-
sential that we can restrict ourselves by solving the eigenvalue
problem only once at the lowest level of transformations. All
other calculations can be done using solely algebraic transfor-
mations. Nevertheless, the full scheme consists of several trans-
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formations on each stage and requires special diagram of con-
nections between the solutions of the NLS and corresponding
eigenfunctions in addition to transformation formulas. Such a
diagram was developed and applied in [11] for constructing spe-
cial *‘N-modulated’” solutions of NLS. But the detailed descrip-
tion of this diagram was not given. We make up for that defi-
ciency in this paper.

For completeness, we briefly review also the basic equations
in this section. The Darboux transformation method is based on
the ability to represent the NLS for a function ¥ (£, 7) in the
form of the compatibility condition of the following set of linear
equations: :

R, = UR + lJR,

=
I

(% +1U + V/2)R ©)

0 wj

U= ,
iy 0
L2 24 i 0

V= ., J = . @
-¥, ily] 0 —i

! is a constant (eigenvalue).

For each solution ¢ (¢, 7) of the NLS, there is a pair of func-
tions r and s (eigenfunction) which depend not only on I, but
also on two arbitrary integration constants (we shall call them
C and D). A set of these constants together with [ will be de-
noted by ¢ = {/, C, D}. If we know a certain (seedling) solution
of the NLS ¢ = ¢, (¢, 7), then in the first stage of the solution
process, the functions r,(0) and s,(0) can be found only by di-
rect solution of the set of (3). We shall assume that the set of
parameters in these functions is fixed so that ¢ = ¢,. Starting
from ¢, r,, and s,, we can obtain a new solution of the NLS
by means of the formula

where

20% = byrls,
Irol* + Tso[* 7

W& 1) =vE D+ (&)

The new solution , is determined not only by those param-
eters which influence y,,, but also by new parameters o,. The
power of the numerical methods used in the Darboux transfor-
mation approach is that the functions r, and s, for the next stage,
corresponding to the solution of (5), can be found without solv-
ing (3) but simply by using an operator M given below and
capable of yielding new functions R;, employing solely alge-
braic transformations

Ry(0\, 0,) = MI[R,(0)), R,(0,)] ©

where g,(n = 2, 3, - - -, N) are other fixed sets of parameters.
The number N is the highest order of solution we need in the
final stage. The full relationships represented by (6) can be writ-
ten as follows:

rio1, ap) = AU = 1)) 5,(0)) 7,(0)) 5,(a,)
+ U = 1) |ro(0)[* 7000,
+ Uy = 17) 55000 (0]

si(o1, 0,) = ALUT = 1) 5,(00) ro(01) 7, (0,)
+ (= 1) [8,(0) * 5,(0,)

+ (b = IV 11,00 5,(a,)] M
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where A = [|r,(a))|> + |s,(0)|?]"". Strictly speaking, just
these relations between the eigenfunctions R, and R, are called
[10] the Darboux transformations. In numerical calculations,
the factor A does not affect the form of the new solutions of the
NLS and it can be dropped.

This process can be continued and new set of N — A func-
tions Ry (0, **+ , 04, 0,) (k= A + 1, - - -, N) depending
on A + 1 parameters g, are obtained at each stage A (A = I,
lI, - -+, N — 1). The recurrence formula for this procedure is

Ry(oy, -+, op, 0y)

=M[Ry_ (o), ,04), Ry_y(0, * * +, Ga-1> 0],

k=A+1,-+--,N) 8

where instead of o, and o, in r and s functions in (7) we sub-
stitute the sets of parameters ¢, - - - , 0, and g, - * *
ay, respectively. Then, for A = I, (8) reduces to (6).

The new solution of the NLS found at each stage of the cal-
culations can be deduced from the formula

s Oa— 15

Z(I/T+I - IA+1)’X5A
[ral? + [5al?

Yani&, 1) = Ya(E, 1) + )

The schematic diagram for constructing of higher order so-
lutions is shown in Fig. 1. The designations in this figure are
the same as in the above formulas. The arrows on this diagram
show the sequence of actions at constructing the new solutions.
A pair of arrows pointing to some vector function R, (g, * * *
04, 0;) from the bottom denotes the operator M in (8) and de-
fines two vector functions of previous stage R, _ (0}, * * * 0, _1,
g;) used in this operator. A pair of arrows pointing to some
solution ¥, (o, * * * 0,) from the bottom denotes (9) and de-
fines the functions used in it for obtaining this solution.

Thus, we first should define the seeding solution , and the
highest order of solution N that we need. Then we should solve
the differential equation (3) for obtaining the eigenfunctions
R, (0) corresponding to this solution. Choosing the set of N pa-
rameters o,, we have the set of N eigenfunctions R,(g,). All of
them are used in formulas (7) for constructing the set of N — 1
eigenfunctions R;(o,, g,) of the second level, but only one
R,(a,) is used in formula (5) for constructing the first-order so-
lution ¥, (,). This step, as well as all subsequent ones, consists
of solely algebraic transformations. The further steps are clear
from the diagram.

The selection of the seeding solution y, and of the constants
o, is determined by the actual physical problem to be solved as
well as by the initial and boundary conditions. For example,
seeding solution applied to obtain N-soliton solutions is ¥, =
0.

III. CONSTRUCTING THE N-SOLITON SOLUTION

To construct N-soliton solutions of the NLS, we shall use the
recurrence relations given above. Let us choose as a seeding
solution of the NLS the zero solution y,, = 0. Functions r, and
s, corresponding to this initial solution have the form

ro = exp [il(7 — 70)) + ilT(E — £op)]
So = exp [—ili(r — 7o) — il%(E — Eo)] (10

where [, 75, £y, are arbitrary parameters of the new soliton
solution, to be obtained by (10). The real part of /, defines the
velocity of a soliton. We shall seek solitons with zero velocity
(in our moving frame), so /; = ib, is purely imaginary. The
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Fig. 1. Darboux transformations diagram for constructing higher order so-
lutions.

real part of /, would be responsible for motion of a soliton. In
this case, using (6), we obtain a one-soliton solution

21b, exp [i2b1¢ — £l
ch2by(7 — 707)

v = (11

It is convenient to take the parameter b, to be equal to 0.5 to
obtain the ‘‘fundamental soliton’’ with N = 1. On the second
step of construction of the two-soliton solution, a new set of
parameters b,, 7q,, and £g, needs to be added. The values b,
and b, have to be unequal for this solution to exist. In our prob-
lem of optimal self-compression, the different solitons of the
nonlinear superposition must be placed on the same point of the
7-axis. Let us set 7o, = 0 and 74, = O for definiteness. The two-
soliton solution ¥ = y,; can be written in this case in the form

4i(b3) [bich@by7) — bych2by7) €] exp [iZb%(f = $o)l

= 10, but for N > 5, calculations need to be done with double
precision. The new pair of parameters b, and £,, (1 < n < N)
should be added in each step of the N-soliton pulse construc-
tion. The values 7, = 0 as we mentioned above.

In what follows, we shall point out the restrictions which the
parameters b, can satisfy without loss of generality. 1) Each
pair of b, must be unequal. In the opposite case, we shall not
increase the number of solitons in the following step. 2) The
negative value of some of the b, can be changed to positive
along with a corresponding simultaneous shifting of the param-
eter £,, in such a way that the full solution will not change as
a result. Hence, all b, can be chosen to be positive. 3) Inter-
changing of some pair of parameters (b,, b;) along with a simul-
taneous interchanging of pair (£,,, £,;) does not change the form

Vi = (by — b)) ch(by1 + 2b,7) + (by + by)? ch(2by7 — 2b;7) — 4b,b; cos ¢

where ¢ = 2b3(¢ — §02) — 2b7(¢ — o)), ch(r) = cosh (7). If

we plug b, = 0.5, b, = 1.5, and &, = 27 in (12), then we

obtain the following expression for the two-soliton solution:

_ ch37 + 3cht exp (i4f)
ch4r + 4ch271 + 3 cos 4¢

Vi exp (i£/2). (13)
This form of two-soliton solution, which is equal to (2) at £ =

0, has been obtained in [6].

HIGHER ORDER SOLUTIONS

Analytical solutions for multisoliton pulses in cases N > 2
are very cumbersome; so we shall construct these solutions only
numerically. Exact solutions can easily be constructed up to N

12)

of a solution. Therefore, we shall locate all values b, in increas-
ing sequence (0 < b, < by < -+ - < by). 4) In principle, all
parameters b, in this sequence are arbitrary. But the conse-
quence of the factorization of all b, corresponding to a solution
¥ (£, 7) by some real number g will be the following elementary
transformation of the solution:

V(& 1) = qb(d’ qn).

Therefore, it is convenient to choose b, = 0.5 such that the full
width of the N-soliton solution coincides with the width of the
“‘fundamental soliton.’’ 5) The choice of the other b, is defined
by the condition of periodicity of the function y along the £-axis.
In order for the period of the N-soliton solution to be equal to

(14)
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Fig. 2. N-soliton pulse amplitude |y (£, 7) | versus £ at the point 7 = O for
b,=Q@n - 1/2,N =3, a,={0,1,0} (solid curve); N = 4, o, = {0,
1, 0, 1} (dashed curve); and N = 5, a,, = {0, 1, 0, 1, 0} (dotted). These
parameters correspond to those in [6].

the period of two-soliton solution (which is equal to = /(b3 —
bY)), all of the b,’s must be half-integers.

The best results from the point of view of self-compression
can be achieved for b, = (2n — 1) /2 [8]. Hence, b, values are
the same as in the case considered in [6]. But the relative phases
of solitons comprising the pulse should be chosen in a different
way. Let us introduce a new variable for the relative phases of
each soliton: o, = £,,/2x. In the case of initial condition (2),
these values are alternating: o, = {0, 1,0, 1,0, - - - }. In this
case, the pulse amplitude at the zero point is equal to

N
[0, 0)| = ’22 b, (—1)*|. (15)

It can be seen from this formula that to achieve a maximal pos-
sible amplitude of a pulse at the zero point, it is necessary to
set all o, = 0. Thus, we obtain the maximum amplitude of a
pulse to be equal to N2, and the intensity of the pulse at this
point is equal to N*. But we need to find some other initial point
on the £-axis which correspond to a broad and desirably smooth
shape of initial pulse. This choice of initial and final points is
in contrast with the case in [6].

The distinction will be clearly seen if we plot the |y (£, 7)|
dependencies on £ for 7 = 0 and the same N and compare the
curves for two cases. These curves describing the envelope be-
havior in the pulse center upon propagation along the fiber are
presented in Fig. 2 (as in [6]) and in Fig. 3 (zero phases case).
We choose for simplicity only three values of N = 3, 4, and 5.
Obviously, the field value in the center of the pulse is maximal
in the points £,, of maximal self-compression. For the same
N, these points are not coincided in [6] and in case of zero
phases. In [6], initial condition (2) is located at the point £, =
0, and the maximum amplitude |y ({0, 7 = 0)| ~ NVN is
achieved at some point £,,,,, which is different for different N.
In the case of zero phases, the maximum amplitude | ¢ (£00, 7
= 0)| = N? takes place in the point £,,,, = O (and at the end
of the soliton period £ = 7 /2), but the initial condition should
be chosen in some other point £,. This can be done properly
using the spectra of pulses. The comparison of envelopes of
initial pulses and self-compressed ones in the two cases for N
= 3 is shown in Fig. 4. The initial and self-compressed pulses
for N = 4 in the case of zero phases are shown in Fig. 5.
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Fig. 3. The same as in Fig. 2 but for zero phases o, = 0.
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Fig. 4. (a) Envelopes of initial (¢ = £, = 0, solid curve) and self-com-
pressed (¢ = £, = 0.372, dashed curve) pulses for N = 3 [6]. (b) En-
velopes of initial (§ = £, = £0.516, dashed curve) and self-compressed

(£ = &£max = 0, solid curve) pulses for N = 3 zero phase case. The phase
chirp of the initial pulse is shown by the dotted curve.

V. SPECTRAL PICTURE OF THE SELF-COMPRESSION
PROCESS

The consideration of the self-compression process will be
more complete, and the choice of the point £, can be made more
conveniently, if we investigate the spectral evolution. The spec-
trum f(w) of a solitary pulse ¥ (7) can be calculated using the
definition

o

flw) = S ¥ (7) exp (i 2mwr) dr. (16)
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Fig. 5. The same as in Fig. 4(b) for N = 4. The value £, = +0.629.
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Fig. 6. Evolution of the pulse spectra along the fiber for N = 3 for two
cases: (a) zero phases; (b) alternating phases. The points £, and £, are
shown by arrows.

It is more convenient to use in numerical calculations the sum-
mation instead of integration (16):
TS (T
fkdw) = & Eo ¥ <Nn> exp (i 2wkn /N) an
where T is the summation interval on 7, N is the number of
points, Aw = 1/T. The functions f (w) and f (kAw) are approx-
imately coincided in the interval —(N/2) < k < (N/2) for a
large number of points N. We calculated the spectra pulses using
(17) with the aid of the fast Fourier transform using N = 256
or 1024 points.
The examples of spectral evolution for the cases N = 3 and
N = 4 are shown in Figs. 6 and 7, respectively. The cases of
spectral evolution for zero phases are shown on the left-hand

sides of these figures; the cases of alternating phases are shown
on the right-hand sides. It is seen from these figures that for
alternating phases, the most narrow spectrum of pulses takes
place at £, = 0. This spectrum corresponds to the initial con-
dition (2). At the widest point of the spectrum, we should wait
for the maximal pulse self-compression. This value of £, for
the case N = 3 is located at 0.372. For the case N = 4, this
value of ¢ is located near the point £, = 0.234.

For the case of zero phases, the self-compressed pulse with
the widest spectrum is located at the point £,,, = 0. The nar-
rowest spectrum for the case N = 3 takes place near the value
of £, = 0.516. As can be seen from Fig. 6(a) for N = 3, this
is the only value ¢, inside the soliton half period (0 < ¢ <
0.785 = w/4) at which a narrow spectrum is observed. This
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Fig. 7. The same as in Fig. 6 for N = 4.

value of £, corresponds to the smooth pulse envelope shown in
Fig. 4(b) (dashed curve). For N larger than 3, the choice of £,
for initial condition is not single valued. Several possibilities
with approximately equal widths of initial pulses exist. The
number of these points increases with increasing N. In the case
N = 4, there are two such values of £, with narrow spectrum:
£, = 0.3and £, = 0.6 (see Fig. 7). The smooth pulse envelope
takes place near the value £, = 0.63 (see Fig. 5). The pulse
envelope for this value £, is also shown in the inset of Fig. 8
by solid curve. This envelope is compared in this figure to the
pulse shape corresponding to the initial condition (2) (dashed
curve). The spectra of these two pulses are shown in the upper
part of Fig. 8.

The pulse envelope at the point £, = 0.3 is not smooth (dot-
ted curve in the inset of Fig. 8). It has approximately the same
width as pulse at £ = 0.63, but has three maxima on the top.
Nevertheless, this pulse shape and its phase chirp are almost
unchanged during propagation from ¢ = 0.2 upto ¢ = 0.4. So,
the choosing of this initial condition could be more preferable
for the self-compression process because of its stability.

There are three values of ¢ with narrow spectrum in the case
N=5:%,=031, & = 0.442, and £, = 0.626. The spectra
of pulses in the two cases (¢, = 0.442 and £, = 0.626) for N
= 5 are shown in the lower part of Fig. 8. The spectrum of
initial condition (2) is also shown for comparison.

The spectra of self-compressed pulses in two cases (zero
phases and [6]) are shown in Fig. 9. The spectrum in the case
of zero phases apparently is wider than in [6], and consists of
a well-separated central part and sidebands. Sidebands define
the main peak of the pulse, and the central part is responsible
for the wings.

VI. SELF-COMPRESSION PARAMETERS

For quantitative evaluation of the pulse self-compression
phenomenon, the envelopes of pulses at the moment of maximal
compression (¢ = £,,,) and at the initial moment (¢ = £,) have

fa = {0,0,0,...} fa} = {0,1,0,...}
1t N=4
12 4
] 5t |
9 i
1 * IV
J 34 iN W
}/
6 24 \
1 14 R\
34
] 0
] -4 =2 [ 2 4
o T [nanaas
-3 0 3 @ -3 0 3 w
£,=0.83 £,=0
s
N=5
12
94
6
3_
0 ,-,_,J,_,_,_,
-3 0 3 -30 3 @ -3 0 3 @
£,=0.44  £,=0.626 te =0

Fig. 8. Spectra of initial pulses for the cases N = 4 and N = 5 for zero
phases (left) and alternating phases (right). Two choices of £, are shown
for the N = 5 case. The curves in the inset are envelopes of initial pulses
for zero phases (£, = 0.63—solid curve, £, = 0.3—dotted curve) and al-
ternating phases (dashed curve).

to be compared. Let us introduce the following definitions. Let
the compression degree Q be the width (FWHM,.) of the main
peak of the self-compressed pulse divided by the width
(FWHM,,) of the initial pulse

0 = FWHM,./FWHM,,. (18)
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Fig. 9. Comparison of spectra at the point of maximum self-compression
for two cases: (a) zero phases; (b) alternating phases for N = 3, 4, 5.

Let F be the amplitude of the self-compressed pulse divided
by the amplitude of initial one

F = ¥ Emax O/1¥ (0 0. 19)

Let us define the energy coefficient as the ratio of the energy
contained in the main peak to the full energy of the initial pulse

L [V G | dr

G = (20)

S‘m (Y, 1| dr

where 7, is the zero nearest to the main peak of the pulse en-
velope.

The dependence of these parameters on the N-value calcu-
lated numerically is shown in Figs. 10, 11, and 12, respec-
tively. All of these parameters coincide for N = 2 because of
coincidence of solutions in this case; but the difference between
the two cases increases dramatically with increasing N. We can
see from these figures that using zero phases for the solitons is
apparently more profitable than alternating phases. It is espe-
cially important that, for large N, the majority of the energy of
the pulse is concentrated in the main peak, and only 20% of it
is continued in the wings. If we wish to avoid the wings com-
pletely, we can simply filter the central part of the spectrum
because of its separation from that part which is responsible for
the main peak. This is clearly seen in Fig. 9(a) for cases N =
4and N = 5.

The difference between the considered case and that of [6] is
also that the initial field distribution has a phase chirp. The ex-
amples of phase distribution across the initial pulse shape are
presented in Fig. 4 and 5 for cases N = 3 and N = 4, respec-
tively. The phase chirp complicates with increasing N. We can
avoid this fast dependence and obtain a smooth curve for the
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Fig. 10. Maximum amplitude F of the self-compressed pulse relative to

the amplitude of initial pulse versus N for two cases: a—zero phases; b—
alternating phases.
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Fig. 11. Self-compression degree @ versus N for two cases: a—zero phases;
b—alternating phases.
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Fig. 12. Energy in the main peak G relative to whole energy versus N for
two cases: a—zero phases, b—alternating phases.

0.1

phase by choosing another £,. This is illustrated in Fig. 13,
where the evolution of the phase is shown along with the evo-
lution of the shape for N = 3; but in this case, the curve for the
envelope will have a more complicated shape. Both of these
cases are equivalent from the point of view of preparation of
the initial pulse.

VII. CONCLUSIONS

The main consequence of this work can be expressed as fol-
lows. An N-soliton pulse with zero phases of all constituent
solitons is an optimum in the sense that, for a given N, a pulse



856 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 27, NO. 3, MARCH 1991

77 4 v
o | —_—
—r 4
(a) 0.785
s 7 (e, 0.887
i 0.689
6 - 0.481
4 ~
2
o T T > T , ©
-3 -2 -1 O 1 2 3
T

(b)

Fig. 13. Evolution of phase chirp (a) and envelope (b) of a pulse in the
case of zero phases and N = 3. The phase jumps connected with field zeros

are equal to 7.

can have the maximum possible amplitude N> and, hence, the
maximum possible intensity N* in the center of the evolved
pulse. Any other initial conditions which can be investigated
numerically (for example, by the beam propagation method) can
only approach the above case. This means that the parameters
of the self-compression process obtained can serve as a limiting
case, because arbitrary initial conditions apart from soliton con-
tent have a continuous spectrum (of inverse scattering theory)
as well. This is an additional reason for energy loss in the main
peak. Even if we suppose that the solitons of the initial pulse
have proper amplitudes and zero phases, the presence of con-
tinuous spectra will lead to worse self-compression parameters
than obtained above. So, the self-compression process consid-
ered above in some sense can serve as an ideal one if we limit
ourselves to describing the process using the nonlinear Schro-
dinger equation.

The considered process of pulse self-compression using the
special multisoliton pulses might be complicated for experi-
mental realization because of the special initial shape and phase
chirp of the pulse required. Nevertheless, this kind of self-
compression can be experimentally realized if Wiener and Her-
itage’s technique [12] of pulse preparation is used. Two main
difficulties exist in doing this, in our opinion.

First, the solutions found can be unstable relative to small
perturbations of initial conditions. This problem can be solved
numerically simulating the self-compression process with new
initial conditions using the split-step or beam propagation
method. Our preliminary investigations show that multisoliton
solutions are quite stable for flow values of N such as 3, 4, or
5, but become unstable with increasing N. The proper choice
of initial condition is also important. The quantitative estimates
of admitted perturbations are required in further investigations.

The second difficulty is concerned with self-induced fre-
quency shift due to Raman effect in a fiber which can separate
the solitons in a pulse and destroy the effect of self-compres-

sion. Taking this effect into account is also especially important
for high values of N. But we can avoid this difficulty by con-
structing the multisoliton solution with inclusion of this fre-
quency shift into the theory. As a result, we should obtain the
initial condition in which the solitons have opposite separations
in advance. So, all solitons. at the point £,, of maximal self-
compression will be in the same phase, and maximum intensity
will be equal to N* again. Both problems require special inves-
tigations which exceed the limits of this paper.
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