ELSEVIER

1 January 2002

Optics Communications 201 (2002) 217-221

OPTICS
COMMUNICATIONS

www.elsevier.com/locate/optcom

Pulse—pulse interaction in dispersion-managed fiber
systems with nonlinear amplifiers

Nail Akhmediev®*, Freddy Zen®, Pak Chu®

& Australian Photonics CRC, Optical Science Centre, Research School of Physical Sciences, Australian National University,
Canberra ACT 0200, Australia
® Department of Physics, Institute of Technology Bandung, Ganesha 10, Bandung, Indonesia
¢ Department of Electrical Engineering and Computer Studies, University of New South Wales,
P.O. Box 1, Kensington, NSW 2033, Australia

Received 16 September 2001; received in revised form 7 November 2001; accepted 12 November 2001

Abstract

The pulse—pulse interaction in a dispersion-managed fiber system is studied for the case when a nonlinear gain and
spectral filtering are included into the dispersion-gain map. In this system, the pulse of any shape converges quickly to a
dispersion-managed soliton. Using the technique of interaction plane, we have found stable bound states of two pulses.
The effects we have studied may significantly reduce the chances of pulse coalescence in specially designed optical
transmission lines. © 2002 Published by Elsevier Science B.V.

PACS: 42.79.5; 42.81.D; 42.65.W

Recent developments in lightwave transmission
systems [1] are stimulated by increasing demands
in communication. Dispersion-managed optical
transmission systems may greatly improve the
transmission capacity of fiber links [2-5]. Periodic
variations of dispersion bring the pulse back al-
most to its original shape after each period [6].
Solitons in such links may exist even when the
average dispersion is zero or positive [7,8]. The
performance obtained with this technique is be-
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yond the most optimistic expectations. A properly
designed pulse periodically resumes its shape for
hundreds of periods.

However, there are a few major problems re-
lated to dispersion-managed systems. Firstly, there
is the problem of initial pulse preparation. It is
well known that a dispersion-managed system
without gain and loss allows stable pulse propa-
gation. The shape of the stable pulse is close to a
Gaussian [9,10], thus allowing an analytical de-
scription [11-13]. If initial condition is chosen to
be slightly different from the stable pulse, it oscil-
lates chaotically around the stable shape. This
chaotic behavior can be a source of noise in the
fiber transmission system [14].
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The pulse—pulse interaction in the link is an-
other problem which has not been completely
solved [15,16]. Periodic breathing of pulse width in
dispersion-managed link leads to a significant
overlap between adjacent pulses. This overlap may
lead to their fusion causing the loss of information
bits. Thirdly, if we are dealing with all optical fiber
systems with optical amplifiers periodically located
in the line we cannot consider the system to be
conservative. We have to take into account peri-
odic changes in gain and loss [17,18]. Clearly, dy-
namics of dissipative systems is qualitatively
different from the dynamics of conservative sys-
tems.

These problems can be solved if nonlinear gain
and spectral filtering are explicitly introduced into
the system. This might require additional elements
to be introduced into the system. For example,
nonlinear gain (or loss) can be introduced using
saturable absorbers very much like in the passively
mode-locked laser systems [20-22]. These elements
also have nonlinear saturation. Spectral filtering
has already been used in experiments [23]. Once
introduced, these effects may appreciably improve
the quality of the transmission line. The presence
of periodic gain and loss converts the pulse to a
dissipative soliton which can be viewed as an at-
tractor or the ‘mode’ of this system. In this in-
stance, the actual shape of the initial pulse does
not play a major role, as it will always converge to
the ‘mode’ of the link. Another remarkable feature
of such an approach can be better pulse-to-pulse
performance. Indeed, we find in this work, that the
proper choice of parameters prevents the neigh-
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boring solitons from merging. It happens that
there is an equilibrium distance, p, between the
pulses such that, when closer than p, the pulses
repel each other, while when further apart than p
they attract. This means that the two pulses never
merge together and each can successfully carry a
separate bit of information.

To some approximation, the equations de-
scribing the pulse propagation in dispersion-man-
aged system become integrable [19]. However,
when gain and loss effects are taken into account,
the problem can only be solved numerically. We
start with the general pulse-propagation equation,
which, after both distributed gain and dispersion
have been included, takes the form

a(z)

i+ 2+ WY

= i0(2)Y +ic@) I +iB(2).
+in@) Wl —ve) Wy, (1)

where z is the propagation distance, ¢ is the re-
tarded time, ¥ is the normalized envelope of the
optical field, o(z) is the renormalized dispersion,
0(z) is the linear gain (usually negative, thus indi-
cating loss), 3(z) is the spectral filtering, e(z) is the
nonlinear gain or loss, p(z) represents the satura-
tion of the nonlinear gain, and v(z) the saturation
of the nonlinearity. We suppose that all z-depen-
dent coeflicients except 6 and ¢ are zero in the fiber
with negative dispersion and finite in the positive
dispersion part (see the numbers in Fig. 1). Linear
loss d(z) is negative everywhere to prevent the
noise generation.

E 20.05 | 00 km 60 km 5=100.25
£ 5=—0.1

| | B=30.9
g 7 £=6.5
é Simulation _ w _=0'5
- oy | [o—tos] | | v=0.03
'z (1 period) =001] | ~Z D = 0.2 ps/kmenm
< B W N s ... 2=V psh
Z z
A -21

225 km 225 km 225 km

Fig. 1. Dispersion map used in the numerical simulations. This is similar to the dispersion map used in experiments [6]. The values for
the parameters on the RHS of Eq. (1) for this numerical simulation are given in rectangular boxes.
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As mentioned before, nonlinear saturation does
not exist in the present practical transmission lines,
as well as nonlinear gain. Like in the laser systems,
they must be introduced into the line artificially in
the form of saturable absorbers [20-22] or other
optical elements. Thus our results predict new
phenomena rather than describe the performance
of existing transmission lines.

The dispersion map is similar to the one in the
work [6] with a slight variation of parameters in
order to achieve the best performance (see Fig. 1).
The major difference is the addition of periodic
gain and loss effects. The values of parameters are
shown in two rectangular boxes in Fig. 1. Our
numerical simulations show that for this choice of
parameters, practically any pulse reasonably close
in shape to a dispersion-managed soliton con-
verges very quickly (in around 10-15 periods of
the dispersion map) in propagation to a fixed
stable shape which then evolves periodically in the
link. One period of this evolution is shown in Fig.
2. To represent the profiles, we choose the z-range
of evolution shown by the thick solid line in Fig. 1.
The final pulse produced by this evolution can be
viewed as an attractor for this dynamical system or
a nonlinear ‘mode’ of the system [24].

In order to investigate the interaction between
the pulses, we used two of these stable pulses, and
located them at a distance from each other which
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Fig. 2. Single pulse evolution during one period (marked by the
solid thick line in Fig. 1) in a dispersion-managed fiber.

is comparable to the single pulse width. Pulses
which are far from each other (at distances larger
than two pulse widths) essentially do not interact
with each other. If there is a train of such pulses,
due to the spectral filtering in the system, all soli-
tons in the train have the same velocity, so jitter
can be ignored. Real interaction between the pul-
ses occurs when the distance between the solitons
in a pair is close to the soliton width. Maximal
interaction occurs when the phase difference be-
tween the pulses is m/2. A bound state appears
when, in addition, the solitons are located at some
specific distance zx from each other.

We studied these bound states using the inter-
action plane formalism developed in [25]. Basi-
cally, the fact that the pulse parameters are fixed
implies that, during the interaction of two of them,
only two parameters can change: their separation
p, and the phase difference between them, ¢. Thus
the phase space here is 2-dimensional, and we may
analyze the bound states formed from two soli-
tons, their stability and their global dynamics in
this 2-dimensional ‘‘interaction plane” [25]. Es-
sentially, the “‘interaction plane” is a plane of
polar co-ordinates with p plotted along the radius
and ¢ plotted as the polar angle. The possibility of
this reduction in the number of degrees of freedom
is a unique feature of systems with gain and loss. It
does not apply to conservative dispersion-man-
aged systems, where the amplitudes of the solitons
can also change, and therefore more sources of
instability of the bound states appear.

Fig. 3 shows some trajectories on the interac-
tion plane obtained in our direct numerical simu-
lations of Eq. (1). Initial conditions have been
chosen in the form of two stable solitons located at
some distance from each other, comparable to the
width of each soliton. Any initial condition in this
form can be represented as a point in the interac-
tion plane. The value of p in further evolution has
been calculated as the separation between the
maxima of the two pulses and the value of ¢ as the
phase difference between the fields at same points.
The values of p and ¢ oscillate slightly inside each
period because of the oscillations of pulse shapes.
To remove completely these small effects we have
been calculating p and ¢ at some point of the
period in the dispersion map.
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Fig. 3. Trajectories on the interaction plane showing the evo-
lution of p and ¢ for a pair of nearest pulses. The trajectories
rotate around two singular points, thus showing the existence of
two stable foci which correspond to bound states consisting of
two pulses.

When the two pulses are located too close to
each other, they merge. In fact, there is some
critical distance z. so that if initial point in the
interaction plane is located inside the circle of the
radius z, the trajectory collapses into the center.
Trajectories corresponding to such collapse are
shown in Fig. 3 using dotted lines. No trajectories
corresponding to an interaction exist inside of the
circle made by these two lines.

On the other hand, if two pulses are initially
separated by a distance which is larger than z, the
trajectories never go to the center. Instead, they
rotate around one of the two fixed points. We can
see from this figure that there are, indeed, bound
states of two pulses with a phase difference be-
tween them of £m/2. When the distance between
the pulses and the phase difference between them
are not exactly those which correspond to the
bound state, these values evolve and the trajectory
rotates around one of the foci which corresponds
to an exact bound state. Hence, if initially two
adjacent pulses in a train are located at a distance
which is larger than z, then these pulses will never
merge, thus ensuring reliable information trans-
mission.

In conclusion, our two main results from this
investigation are the following. When the disper-
sion-managed system has, in addition, spectral
filtering and nonlinear gain in the fiber, pulses
convert to a dissipative soliton whose properties
are qualitatively different from those in conserva-
tive systems. In particular:

1. There is no need to prepare pulses for the trans-
mission carefully. Each pulse converges to the
shape which can be considered as an attractor
or the mode of this nonlinear system.

2. There is a minimal separation between the
pulses such that if initially two pulses are lo-
cated further apart than the critical distance,
the two pulses never merge together.
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