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We show results obtained from a semiconductor saturable-absorber mirror mode-locked Ti:sapphire soliton la-
ser that was operated in the multiple-pulse regime. Double, triple, and quadruple pulses were observed when
the dispersion was decreased below a critical value. The pulse pairs and triplets were either widely separated
or closely coupled, and spectra that resembled those of constant as well as rotating phase differences between
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1. INTRODUCTION
Multiple-pulse operation of soliton lasers has been re-
ported from time to time during the past decade. An
early report of the observation of higher-order solitons is
that of double-humped pulses from a colliding pulse
mode-locked dye laser.1 The autocorrelation and spec-
tral features closely resembled those of asymmetric N
5 2 solitons of the nonlinear Schrödinger equation
(NLSE). A large number of randomly spaced solitons
were observed within the cavity of a figure-eight fiber
laser.2 In this context it was found that the intracavity
energy was quantized, increasing in steps with the num-
ber of solitons present. More recently, the breakup of
single pulses into multiple pulses was seen in a Kerr lens
mode-locked Ti:sapphire laser3 as well as in other solid-
state lasers mode locked by semiconductor saturable-
absorber mirrors (SESAM’s).4 In these cases the spacing
between pulses was generally much larger than the
single-pulse width, was irregular, and was subject to
spontaneous changes.

The appearance of multiple pulses within a laser cavity
is of significance to the production of high-repetition-rate
soliton pulse sources for optical fiber communication sys-
0740-3224/99/060895-10$15.00 ©
tems. In this context considerable effort has been di-
rected toward refining harmonic mode locking in erbium-
doped fiber lasers5–9 as well as in a Cr41:YAG bulk
laser.10 In these systems either nonlinear polarization
rotation or a semiconductor Bragg reflector was used as
the passive mode-locking mechanism. The appearance of
self-organized multiple pulses in each round trip of the
cavity was attributed to a number of causes, such as cou-
pling of the solitons by means of the dispersive continuum
and acoustic waves5,7,11 or to gain dynamics.9,12 How-
ever, explanations of the conditions that lead to the for-
mation of multiple solitons have generally been of a
rather qualitative nature.8,10,13

In this paper we are concerned with the multiple-pulse
operation of a Ti:sapphire laser that is mode locked by a
SESAM. In addition to widely separated double, triple,
and quadruple pulses with irregular spacing, we have
also found closely coupled states that are the result of in-
terplay between saturable-absorber and filter losses,
saturated gain and the coherent interaction of solitons.
Emphasis lies on the explanation of these observations as
well as of the mechanisms involved in the transitions
from single to multiple-pulse states within the framework
1999 Optical Society of America
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of the Ginzburg–Landau master equation used to model
the laser.

2. EXPERIMENT
A. Setup
We performed mode-locking experiments by using ion-
implanted GaAs-based SESAM’s as passive mode-locking
elements in a commercial Ti:sapphire laser (Coherent
Mira 900D).14,15 The arrangement of the laser cavity is
shown in Fig. 1. The SESAM and a focusing mirror were
incorporated part way along the cavity, and the birefrin-
gent filter was placed near the output coupler. Other
features of the cavity were an SF10 prism-pair dispersion
compensator, allowing for a maximum negative total int-
racavity group-delay dispersion (GDD) of 21100 fs2

6 25 fs2 (i.e., b2 5 22200 fs2 6 50 fs2); a 23-mm-long
Ti:sapphire crystal; and an output coupler (reflectivity
Roc 5 86% at l 5 840 nm). An ABCD-matrix calcula-
tion of the resonator indicated that, because of the asym-
metry and astigmatism introduced by addition of the
SESAM, there were two narrow and separate stability
bands that corresponded to the location of mirror M1
within ,1-mm-wide ranges; this was confirmed experi-
mentally. The output beam for operation within one of
these stability bands was elliptical, with a horizontal-to-
vertical beam radius ratio of wx /wy ' 1.5; the calculated
spot diameter on the SESAM was '50 mm. Operation in
the other stability band resulted in a smaller but round
output beam and a SESAM spot diameter of '120 mm.
With a saturation fluence of Fsat ' 100 mJ/cm2,15 these
SESAM spot sizes lead to saturation energies of
Ea ' 2 nJ and of Ea ' 10 nJ, respectively. While it was
operating in either of the stability bands, the laser mode
locked in a self-starting fashion for wavelengths of 820–
870 nm, with mode-locking buildup times from 3 ms to 30
ms. Single pulses per round trip as short as 105 fs were
achieved in this configuration with the mode-locking driv-
ing force provided by the SESAM’s. The SEAM’s had re-
sponse times of 100–500 fs and maximum reflectivity
modulations of 0.5–2%, both of which depended on the
conditions of the ion-implantation process as well as on
the operating wavelength. Generally the modulation
depths were smallest at l 5 820 nm and largest at
l 5 870 nm. Note that the beam-limiting aperture that
is present in the standard Mira resonator was removed
and that no mode-locking was observed in the modified
resonator when the SESAM was replaced by a dielectric
mirror.

B. Observations
Once mode locking had been established, tuning the in-
tracavity dispersion through insertion of prism P2 re-
sulted in consistent evolution of the pulse properties (see
Fig. 2). This behavior is summarized as follows.

Starting from single-pulse operation at large negative
dispersion (b2 5 22000 fs2), decreasing ub2u led to a lin-
ear reduction in the single-pulse autocorrelation width tac
from 250 to 155 fs at b2 5 21250 fs2, as would be ex-
pected for solitonic mode locking. The reduction in dis-
persion was accompanied by a slight decrease in average
output power, which suggests that the intracavity dy-
namic losses increased as the dispersion was lowered. In
the case of the data shown in Fig. 2, this decrease was
however counteracted through slight readjustment of the
pump power to keep the output power Pout constant at 510
mW. A further decrease in dispersion below b2
5 21250 fs2 led to an abrupt transition from a single
pulse to double pulses circulating within the resonator.
This transition was accompanied by an increase in Pout to
560 mW, and the autocorrelation widths of the individual
pulses in the double-pulse pair also increased compared
with the single-pulse autocorrelation width on the high
dispersion side of the transition. Similar transitions
were reported previously in other SESAM and semicon-
ductor Bragg reflector mode-locked soliton lasers.4,10

However, from the pulse energies, and assuming first-
order solitons for both the single- and the double-pulse
cases, one should expect a larger jump in pulse width
than that indicated in Fig. 2. We have therefore anno-
tated the soliton number N 5 (kQt0/2ub2u)1/2 (Ref. 16) to
the measured values of tac , assuming-sech2 pulses. Here
Q is the pulse energy, k is the self-phase modulation pa-
rameter (Section 3), and t0 5 tFWHM/1.763. Whereas the
pulses in the single-pulse regime are virtually ideal first-
order solitons, N becomes ;0.8 in the double-pulse case.

Fig. 1. Schematic of the Ti:sapphire laser cavity used in the
mode-locking experiment: M’s, mirrors; P’s, prisms; BRF’s, bi-
refringent filters. ROC, radius of curvature.

Fig. 2. Measured autocorrelation width versus total intracavity
dispersion b2 in the range of the single-to-double soliton transi-
tion with soliton number N annotated.
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Such a change in N could indicate that the double pulses
underwent nonnegligible nonlinear formation within one
round trip. Alternatively, the switch from single to
double pulses could have caused a slight readjustment of
the mode size in the laser crystal whereby the self-phase-
modulation parameter k was changed. We have not in-
vestigated the exact cause of the decrease in N because
the analyses below, in which N 5 1 is assumed, will re-
main qualitatively valid.

Note that in this paper we are concentrating on disper-
sion as the variable to induce switching among the vari-
ous pulse states. However, these states could also be
changed by adjustment of the pump power and hence of
the small-signal gain g0 . As a result, for fixed dispersion
on the single-pulse side of the transition an increase in
pump power also caused the appearance of double pulses.

Once it was in double-pulse mode, we could force the la-
ser back to single-pulse operation by increasing ub2u.
The transitions from single to double and from double to
single generally occurred with hysteresis in ub2u, indicat-
ing a form of bistability. Note, however, that the exact
nature of the pulses (their separation and relative phase)
in the double-pulse state near the transition could vary as
the laser was cycled through the transition zone or when
it was started with a ub2u value in the double-pulse region.
In fact, the observed pulse-to-pulse spacings ranged sev-

Fig. 3. Autocorrelation traces and spectra of (a) a widely sepa-
rated doublet, (b) a rotating f doublet, (c) a f ' p doublet, and
(d) f ' 0 doublet.
eral hundred femtoseconds to several picoseconds, as can
be seen from sample autocorrelation traces in Fig. 3. In
general there was a tendency toward larger pulse spac-
ings when the laser was operating at high pump power.
The time-integrated spectra that correspond to the auto-
correlation traces provide information, albeit limited,
about the relative phases between the pulses in the
double-pulse states. The spectra suggest that the rela-
tive phase between pulses, f, can assume a number of dif-
ferent states, which include fully rotating f [Figs. 3(b)]
and fixed at or alternating around f ' p [Figs. 3(c)] and
f ' 0 [Figs. 3(d)]. Spectra that correspond to either
fixed or fully rotating phase states were observed for
widely separated doublets, indicating that rather weakly
selective processes were responsible for determining the
relative phase in this case.

Starting with double pulses, a further reduction of ub2u
led again to a linear decrease of tac and finally to the ap-
pearance of triple pulses at b2 5 21050 fs2. The double-
to-triple-pulse transition was again accompanied by a
jump in average laser power, by an increase in the auto-
correlation widths of the pulses on the low ub2u relative to
the high ub2u side and by variability in the exact pulse
spacing and relative phase of the pulses after the transi-
tion. The transition from triple pulses to double pulses
could be induced with hysteresis by an increase of ub2u.
We found that in the triple-pulse state the separation of
the pulses could differ widely (from several hundred fem-
toseconds to several nanoseconds). Autocorrelation
traces and spectra of some triple-pulse states are shown
in Figs. 4(a)–4(c). The spectral modulation that is due to
the widely separated pulse in Figs. 4(a) is not resolved.
The relative phases between triple pulses can be defined
by use of the phase of the central pulse as the reference.
For reasons of symmetry, in the case of the triplet in Figs.
4(b) the central pulse must be p out of phase with its com-
panions. We therefore call it a f ' p triplet; Figs. 4(c)
show a f ' 0 triplet. There was a clear tendency for
both double and triple pulses to be closely spaced with ap-
parently fixed phase, only when the laser was tuned at
the long-wavelength end of the SESAM’s range of opera-
tion, (i.e., where it exhibited the largest modulation
depth) and only when it was operating with the smaller
SESAM spot size, (i.e., under strong saturation). With a
further reduction in ub2u, quadruple-pulse states also ap-
peared but were always separated by large distances (.1
ns). However, the dispersion ranges for triple and qua-
druple pulses were small and somewhat ill defined. Any
further decrease of ub2u resulted in irregular, chaoslike
behavior, indicated by unsteady autocorrelation traces
[Figs. 4(d)]. Finally, crossing to positive dispersion
caused the laser to emit strongly chirped picosecond
pulses [Figs. 4(e)]. We noted that the transition to order-
less and irregular output occurred earlier when the laser
was operating with low small-signal gain g0 , where only
closely spaced double pulses were seen within a narrow
range of ub2u.

Finally, if the laser was started at a ub2u value in the
multiple-pulse region, variable final states were observed,
which generally were different from those achieved when
the laser was forced from single- to multiple-pulse opera-
tion via a gradual change of dispersion. Although a par-
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ticular multiple-pulse state could be stable over extended
periods, the global stability of the laser in multiple-pulse
mode was poor, and any slight perturbation could provoke
a change of separation.

These observations provide the essential clues to iden-
tifying the important parameters that affect the appear-
ance of multiple pulses in the laser. Clearly the transi-
tions between pulse states display similarities, indicating
that they result from the same underlying physical pro-
cesses. Furthermore, the equivalent effect of changing
dispersion or small-signal gain to cause a transition sug-
gests that these two parameters must be intimately
linked in any model of the process. The observation that
a transition is accompanied by a distinct change in aver-
age output power indicates that a change in saturated

Fig. 4. Autocorrelation traces and spectra of (a) a doublet with a
widely separated companion, (b) a f ' p triplet, (c) a f ' 0 trip-
let, (d) irregular output for small ub2u, and (e) chirped picosecond
pulses for positive b2 .
gain occurs that can be caused only by a change in the dy-
namic losses in the cavity. Clearly the dynamic losses
also increase as ub2u is reduced in the regions of stable
single or stable multiple pulses, because the average laser
power decreases. Within the multiple-pulse regions, only
weak processes determine the pulse separation and rela-
tive phase, because there is no strongly favored state.

Qualitatively we can link most of these factors by rec-
ognizing first that we are dealing with a soliton laser for
which pulse duration and spectral bandwidth are directly
related to intracavity dispersion and pulse energy. Sec-
ond, it must be recognized that the intracavity dynamic
losses are determined by the spectral bandwidth of the
pulse through its interaction with a bandpass filter
within the laser (explicitly included in our system as a bi-
refringent tuning filter) and also by the circulating pulse
power through interaction with the saturable-absorber
modulator in the cavity. In explaining the observations,
therefore, we focus on the relation between filter and
saturable-absorber losses to the solitons within the reso-
nator and search for regions where the laser becomes de-
stabilized, leading to a transition to a lower loss state.

3. THEORETICAL
A. Model
To investigate the above observations further we used the
master equation approach17–19 to describe the dynamic ef-
fects of the laser by means of numerical simulations.
The relevant equation is the generalized complex
Ginzburg–Landau equation18,19 (GCGLE):

iTRcT 2
b2

2
c tt 1 kuc u2c 5 i~g 2 q 2 l0!c 1 ibc tt ,

(1)

qt 5
q 2 q0

Ta
2

uc u2q

Ea
, (2)

gT 5 2
g 2 g0

Tg
2

Qg

PgTgTR
. (3)

Here TR is the round-trip time; b2 is the total intracavity
dispersion; g and q are the saturable gain and the satu-
rable absorption with the associated recovery times
(Tg , Ta), saturation energies (PgTg , Ea), and unsatur-
ated values (g0 , q0); l0 is the linear loss (output coupling,
etc.); and b 5 1/V2 describes the effect of the birefringent
filter, where V is the HWHM of the filter. k is the self-
phase-modulation parameter calculated from the nonlin-
ear refractive index n2 of sapphire, the effective mode
area Aeff inside the crystal, and the total length lL of the
Ti:sapphire crystal per round trip, with k
5 2pn2lL /l0 Aeff . Further, c represents the electric-
field envelope that describes the pulses on two time
scales, the soliton or retarded time t and the slow time T
of multiple round trips. Subscripts of these time vari-
ables indicate derivatives. Eventually, Q 5 * uc u2dt de-
notes the total intracavity energy. It is critical for the
validity of this approach in conjunction with a solid-state
laser with lumped elements that the fields vary by only a
small amount within one round trip. We can take the ra-
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tio of round-trip time to soliton period as a measure of the
strength of solitonic pulse formation20:

r 5
Q2k2

2p ub2u
5

Qk

pt0
. (4)

Therefore, if r ! 1 one can expect the master equation
approach to be valid. In the case of our laser, the r val-
ues were of the order of 0.1 or smaller. Note that by ne-
glecting the perturbations on the right-hand side of Eq.
(1) one arrives at the well known NLSE, which has the
first-order soliton solution16

c 5 A kQ2

4ub2u
sechS kQ

2 3 ub2u
t D expS i

Q2k2

8ub2uTR
T D . (5)

As an initial condition for the simulation, we either as-
sumed that a pulse of several-picosecond width that con-
tains all the intracavity energy and originates from the
mode-coupling driving force of the saturable absorber ex-
isted in the cavity20 or used fields that were suitably close
to the final solution. The parameters for the simulations
are given in Table 1 and in the text when the need arises.

B. Simulations

1. Single↔Double Transition, Relevant Mechanisms,
and Widely Separated Pulses
It was pointed out in Refs. 13 and 18 that the stability of
a soliton in the laser, when subject to perturbations from
a filter and an absorber, can be maintained only as long
as the growth of dispersive continuum radiation is effec-
tively suppressed. This is the case when ls , lc , where

ls 5 d 1 a 5
b

3t0
2 1

1

2t0
E

2`

`

sech2S t

t0
D q~t !dt (6)

is the total energy loss of the soliton consisting of filter
loss d and absorber loss a, and lc is the loss experienced
by the continuum. For a particular ub2u the continuum
loss depends mainly, in roughly inverse manner, on ab-
sorber recovery time Ta and maximum modulation depth
q0 , as was shown in Ref. 18. In the real laser, apart from
filter and absorber perturbations, the discreteness of all
effects (self-phase modulation, dispersion, gain, ...) causes
shedding of continuum by the soliton. The discreteness

Table 1. Relevant Modeling Parameters

Parameter Value Comment

l0 0.08 Total linear loss per round trip
TR 12.5 ns Round-trip time
V 2p 3 25 THz Filter HWHM
b2 Variable Net intracavity dispersion
k 1 3 1026 l/W Self-phase

modulation coefficient
q0 DRmax/2,

variable
Maximum amplitude

modulation of SESAM
Ea Variable Saturation energy of SESAM
Ta Variable SESAM recovery time constant
Tg 2.5 ms Upper-state lifetime of Ti:sapphire
Pg Variable Saturation power of Ti:sapphire
g0 Variable Small-signal round-trip gain
is not covered by the current model but will become im-
portant for cases when r ' 1 or larger. Generally, for
the laser in-equilibrium the condition of energy balance

g 2 l0 2 d 2 a 5 0 (7)

must be fulfilled, where d and a are the energy losses that
are due to the filter and the absorber for both solitons and
continuum, if present. A graphic representation of this
condition is shown in the inset of Fig. 5(a). Depending on
the values of d and a, the laser will adjust its saturated
gain g such that Eq. (7) will remain fulfilled. The frame
defined by the two lines separated by q0 therefore moves
with respect to the zero-gain line. Clearly, if the line g
2 l0 2 q0 crosses the zero line, because of an increase in
d for instance, continuum growth is possible, even for soli-
tonic mode-locking schemes that use ultrafast saturable
absorbers such as the Kerr lens or nonlinear polarization
rotation. For a slow absorber the growth occurs slightly
earlier, indicated by e Þ 0, but the physical process is the
same. Our results show that the onset of continuum
growth is the critical condition that destabilizes the soli-
ton pulse in the laser cavity. The condition for con-
tinuum growth in the presence of a single soliton with en-
ergy Q1 , and hence the threshold for the transition from
single to multiple pulses, is simply

~a1 1 d1 1 e!Q1
> q0 , (8a)

Fig. 5. (a) g 2 l0 2 q0 as a function of b2 around the single-to-
double transition. Inset, diagram clarifying the energy balance
in equilibrium. (b) Evolution of the single soliton into two soli-
tons with ;5-ps separation at b2 ' 21200 fs2. g0 5 0.1687,
q0 5 0.006, Ta 5 0.3 ps, Ea 5 10 nJ, Pg 5 4 W (see also Table
1).
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where e 5 0 for the ideally fast absorber. If a second
stable soliton is formed at a distance @Ta , the two pulses
have approximately half the total intracavity energy and
twice the width of the single pulse before breakup; gener-
ally, this decreases d but increases a, which leads to the
condition that

~a1 1 d1!Q1
. ~a2 1 d2!Q2

(8b)

for the formation of two stable solitons. Here Q2 is the
total intracavity energy of two pulses, which is slightly
larger (a few percent; see also Fig. 2) than Q1 . The sub-
scripts 1 and 2 refer to the losses experienced by one and
two pulses with the total energy Q1 and Q2 , respectively.
From inequality (8b) we infer that, on switching from a
single to a double soliton, as long as the decrease in filter
loss is greater than the increase in absorber loss the total
losses are decreased, the growth of continuum is sup-
pressed, and two stable solitons are formed. Note, how-
ever, that inequality (8a) is the breakup condition and as
such is a prerequisite for inequality (8b). Equation (21)
of Ref. 13 is the same as inequality (8b), although it was
assigned a different significance there, namely, that of a
breakup condition other than that of continuum growth.
However, our numerical results show that, even if in-
equality (8b) is satisfied, stable single pulses exist in the
resonator unless inequality (8a) is also satisfied (see e.g.,
Fig. 5(a), at b2 ' 21400 fs2). Finally, whether the initial
growth of the continuum will lead to a second soliton or
will become stabilized, observable as a continuum spike
on the spectrum, depends on how far g 2 l0 2 q0 has
been driven above zero and therefore also on the degree of
saturation and response time Tg of the gain medium.

The stability of the pair of solitons is however, bounded
by two limits. The first, toward smaller ub2u, is that of
renewed shedding and growth of the continuum if (a2
1 d2 1 e)Q2

. q0 , similarly to the single-soliton case
[inequalities (8)]. This process eventually drives the
transition from double to triple pulses. The second limit,
toward larger ub2u, is not immediately obvious because,
from the above argument, the pulse pair always appears
to experience lower loss than a single pulse with the same
total energy, because of the dominant influence of the fil-
ter loss. However, the situation becomes clearer if we de-
rive a stability criterion from the evolution of pulse ener-
gies Qa and Qb as well as the gain g in the framework of
soliton perturbation theory. Here we assume that Eq. (5)
remains a solution of Eq. (1) in the adiabatic sense, al-
though the perturbations on the right-hand side are not
neglected. This condition leads to

TR

d Qa

d T
5 2@g ~Qa 1 Qb! 2 l0 2 da 2 aa#Qa , (9)

TR

d Qb

d T
5 2@g ~Qa 1 Qb! 2 l0 2 db 2 ab#Qb , (10)

d g

d T
5 2

g 2 g0

Tg
2

~Qa 1 Qb!g

PgTgTR
, (11)

where the filter and absorber losses are given by the
expressions in Eq. (6) with t0 5 2ub2u/kQa,b
5 tFWHM/1.763. From the fact that Qa 5 Qb 5 Qtot/2
and DQa 5 2DQb Eqs. (9)–(11) lead, after linearization,
to an equation for the changes to first order in the energy
of either pulse:

TR

d DQ

d T
5 2DQ~Dg 2 Da 2 Dd!. (12)

Because Dg 5 0 initially, the condition for stability of the
two solitons is therefore given by

Dd . 2Da. (13)

This means that any small perturbation of one of the soli-
tons that leads to a change of energy and hence of pulse
width can be counteracted by a change in filter loss as
long as the latter is larger than the negative change in ab-
sorber loss at the current working point. If the stability
condition [inequality (13)] is violated, the laser will switch
back to single-pulse operation. One can expect inequal-
ity (13) to be violated when ub2u is increased, because that
results in an increase in pulse duration, which reduces
the absolute filter losses as well as the incremental varia-
tion in filter losses caused by the appearance of an energy
imbalance. Given that the total intracavity energy al-
ways changes slightly when one switches between states
(Q1 Þ Q2 , owing to changes of losses and gain satura-
tion) it is apparent that the observed hysteresis is a con-
sequence of Q1 Þ Q2 in conjunction with inequalities (8)
and (13).

Figure 5(a) shows the calculated evolution of g 2 l0
2 q0 as function of ub2u for the transition from one to two
solitons. The parameters were chosen to match the ex-
perimental conditions of Fig. 2 as closely as possible.
Starting the calculation well within the regime of single-
pulse operation, we gradually changed ub2u in the simula-
tions toward smaller values to mimic a dispersion change
in the actual laser. Each gradual dispersion change was
accomplished over 2000 round trips, which were then fol-
lowed by 25,000 round trips of unperturbed evolution.
Figure 5(a) clearly illustrates the main mechanisms in-
volved: (a) shedding and growth of the continuum as
(a1 1 d1 1 e)Q1

. q0 , (b) formation of a second soliton to
reduce the total dynamic loss, moving g 2 l0 2 q0 well
below the level needed for continuum growth (note that,
because of the relatively fast absorber, e ' 0), and (c)
hysteresis in switching back to a single soliton as Dd
, 2Da. Because of a lack of analytical solutions we
checked the stability condition [inequality (13)] numeri-
cally for perturbations in Q. For the given parameters
and pulse energies this condition leads to single-pulse op-
eration for ub2u . 1315 fs2, in agreement with the simula-
tion. Note that the single-to-double soliton transition in
the simulation occurs at the same dispersion b2 as in the
actual laser (see Fig. 2), indicating the validity of the
master equation model in this case. Figure 5(b) shows
the evolution of the single pulse into two pulses with
equal energies at dispersion b2 ' 21200 fs2. Inasmuch
as the continuum is suppressed by 20 orders of magnitude
(not shown) and the observed separation (;5 ps) is too
large for the two pulses to interact coherently or through
the absorber recovery tail, they remain at a constant
mean separation because of their equal energies. It must
be noted that this explanation of the pulse spacing is
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valid only in the framework of the present model. It does
not take into account the possibility of gain dynamics
within one round trip, as considered in Ref. 12, or acoustic
effects.11 However, because of the relatively large per-
turbations per round trip (14% output coupling, self-
phase modulation, dispersion, and filter) in our laser, we
would expect gain dynamics and acoustic effects not to be
dominant in the self-organization of widely separated
pulses. As we mentioned in Section 2, we did not observe
reliably reproducible pulse patterns for widely separated
multiple pulses and are therefore not pursuing their ori-
gins here.

2. Closely Spaced Pulses
It is well known that solitons of the NLSE interact,16 de-
pending on their relative phase and amplitude. A phase
of f 5 0 leads to attraction and periodic collapse,
whereas even small differences in amplitude and phase
prevent this collapse; for f 5 p the evolution becomes
aperiodic. Owing to the similarity of the laser master
equation to the NLSE we suspect that soliton–soliton in-
teraction also plays a role in the formation of closely
spaced multiple pulses of this laser. Further, if two
pulses are separated by less than '5Ta , the second one
will reach the absorber when it is still partly bleached,
therefore incurring less absorber loss than the first pulse.
In fact, the total absorber loss atot seen by the two pulses
per round trip depends on both the separation and the
relative phase between the pulses. Similarly for the fil-
ter loss, because the spectral energy of a f 5 p pulse pair
is relocated somewhat into the wings of the spectrum,
where the filter loss is higher. Clearly, there are limits
to both separation and phase difference of double pulses.
For instance, because the laser operates in the multiple-
pulse regime, two pulses that attract each other owing to
a zero phase difference between them cannot merge com-
pletely to form a stable single soliton, because the merged
state is inherently unstable. Simulations show, however,
that two pulses can merge and separate periodically with
a period that is usually much longer than the soliton pe-
riod for the given energy, dispersion, and self-phase
modulation. Here the gain dynamics play a decisive role,
reacting to the strong increase of filter loss during the
merging of the pulses, when one of the pulses compresses
while the other nearly disperses.

It seems more likely that stable pulse pairs exist with
small separation if the relative phase is rotating such
that attractive and repulsive forces average out. Addi-
tionally, the dependence of the filter and absorber losses
on separation and phase of the pulses also plays a role.
As a simple example, we evaluated the total loss for the
case of two solitons of equal energy Ep as a function of
separation for different phases f and absorber saturation
energies Ea (Fig. 6). We calculated Fig. 6 by neglecting
the nonlinear pulse superposition that occurs for closely
spaced pulses; hence the figure is valid only at separa-
tions for which the phase influence becomes negligible (at
a separation of '1 ps for the given parameters). How-
ever, it is apparent that the total loss for the two pulses
increases with separation before it flattens off to the value
seen by well-separated pulses. This weak potential gra-
dient tends to favor relatively closely spaced pulses, al-
though the gradient is sufficiently weak and similar for
different pulse phases that there is little difference among
the various possible pulse conditions. One could deduce
that a range of final states could exist for identical initial
conditions, as observed experimentally. Obviously if the
absorber is strongly saturated, the total loss becomes
dominated by the filter, and little absorber dynamics is to
be expected.

We investigated the possibility of closely spaced double
pulses in the GCGLE master equation [Eqs. (1)–(3)] for
parameters that are realistically close to the ones that
pertain to the laser. First, Fig. 7 shows the intensity au-
tocorrelation, the time-integrated spectrum, and evolu-
tions in the time domain as well as in the interaction
plane for a pair of pulses with rotating relative phase.
The interaction plane is essentially a polar plot of the
pulse-to-pulse separation r and the relative phase f.19

Both autocorrelation and spectrum are in good agreement
with those obtained experimentally [see Figs. 3(b)] with
the laser operating in either stability band. Note that
the power of the first pulse is less than that of the second
one, as expected from the above argument. Similarly,
Figs. 8 and 9 show simulations of double pulses in which
the time-integrated spectra resemble those of f ' p and

Fig. 6. Total soliton loss versus separation of two solitons of
equal energy for Ep /Ea 5 2.35 and Ep /Ea 5 23.5 (inset). b2
5 2900 fs2, Ta 5 0.3 ps, Ea 5 10 nJ, q0 5 0.006, t0 5 77 fs
(see also Table 1).

Fig. 7. Simulation results after 10,000 round trips: (a) inten-
sity autocorrelation, (b) time-integrated spectrum, (c) evolution
in the time domain, (d) interaction plane of two closely spaced
pulses with rotating phase difference. b2 5 21100 fs2, Ta
5 0.3 ps, Ea 5 10 nJ, q0 5 0.006, g0 5 0.2441, Pg 5 2 W (see
also Table 1).
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f ' 0 phase difference. Most notably, they were
achieved with a strongly saturated absorber, which corre-
lates with the fact that we observed features in the time-
integrated spectra of the experiment only for operation
with the smaller SESAM spot size and hence under
strong saturation. Further, as can be seen from the in-
teraction plane, f and r are not constant but can evolve in
complex loops with mean values of f closer either to p or
to 0. Finally, despite the good agreement between the
simulations with the GCGLE model [Eqs. (1)–(3)] and the
experiment, there are possible shortfalls as well. For in-
stance, the SESAM differential reflectivity is only ap-
proximately described by the simple two-level rate equa-
tion (2). Generally the response is at least bitemporal,
with a fast ('60-fs) transient owing to carrier thermali-
zation and a slower one associated with carrier cooling,
capturing, and recombination. Both may also depend on
the excitation level because of many-body and trap filling
effects. Strictly, one should also consider the nonlinear

Fig. 8. Simulation results after 94,000 round trips: (a) inten-
sity autocorrelation, (b) time-integrated spectrum, (c) evolution
in the time domain, (d) interaction plane of two closely spaced
pulses with mean phase difference f between p/2 and p. b2
5 2688 fs2, Ta 5 0.1 ps, Ea 5 3 nJ, q0 5 0.01, g0 5 0.25, Pg
5 2 W (see also Table 1).

Fig. 9. Simulation results after 25,000 round trips: (a) inten-
sity autocorrelation, (b) time-integrated spectrum, (c) evolution
in the time domain, (d) interaction plane of two closely spaced
pulses with mean phase difference f between 0 and p/2. b2
5 2688 fs2, Ta 5 0.2 ps, Ea 5 3 nJ, q0 5 0.01, g0 5 0.249, Pg
5 2 W (see also Table 1).
dispersive effects in the saturable absorber. Most impor-
tantly, for r parameters little smaller than 1 and for
strong absorber saturation the discreteness of the laser
may influence closely spaced pulses differently from
widely separated ones. For these cases a more refined
model should be developed, with the intracavity dynamics
within one round trip taken into account.

3. Regions of Existence of Single and Multiple Pulses
We investigated the regions of existence of single, double,
and triple pulses for several values of small-signal gain g0
and dispersion b2 . The laser parameters (see the cap-
tion of Fig. 10 and Table 1) were those that pertain to op-
eration with the larger SESAM spot size, i.e., Esat
5 10 nJ. In a first simulation we permitted only widely
separated solitons, neglecting the possibility of closely
spaced pulses. Therefore we used Eqs. (9)–(11), with the
number of soliton energies adjusted appropriately. Set-
ting arbitrary initial conditions, we allowed the system to
relax to the final state, where the number of solitons was
noted. Figure 10(a) shows the ( g0 , b2) plane; the single-

Fig. 10. (a) ( g0 , ub2u) plane showing regions of existence for
single and multiple pulses according to simulations in the frame-
work of soliton perturbation theory. Insets, g 2 l0 2 q0 , d, and
a for constant g0 5 0.16 and ub2u 5 600 fs2 respectively, as cal-
culated from the steady-state energy balance [Eq. (7)] with a
1 d . q0 as the switching condition. (b) (g0 , ub2u) plane ob-
tained from simulation of the complete GCGLE [Eqs. (1)–(3)].
Ta 5 0.3 ps, Ea 5 10 nJ, q0 5 0.006, g0 5 0.1687, Pg 5 4 W
(see also Table 1).
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and multiple-pulse regions are indicated in different
shades of gray. Within the white bands between neigh-
boring regions the final state could fall either to the left or
to the right, depending on the initial condition, indicating
bistability. To underline further the sequence that leads
to the appearance of multiple pulses, we depict the values
of g 2 l0 2 q0 , a, and d (see the insets) for constant
small-signal gain g0 5 0.16 and variable dispersion (indi-
cated by the horizontal line) as well as for constant dis-
persion b2 5 2600 fs2 and variable small-signal gain (in-
dicated by the vertical line). Here we have simplified the
simulations by solving the energy balance in steady state
[Eq. (7)], using a 1 d > q0 as the switching condition.
Although this treatment neglects the finite recovery time
of the absorber, it emphasizes the principle that with
varying dispersion or small-signal gain the laser will try
to balance out the changes in the filter and absorber
losses by adjusting the saturated gain such that energy-
balance equation (7) is fulfilled for a first-order soliton.
However, once the dynamic losses become equal to the
maximum possible modulation q0 (i.e., g –l0 –q0 ' 0), en-
ergy is transferred to another first-order soliton. The in-
creased number of solitons renders the laser stable, be-
cause the total dynamic losses have dropped until, on a
decrease in ub2u or an increase in g0 , they become equal to
q0 2 e again (and so forth). For fixed g0 and variable
ub2u, the width of the bands is variable, mainly because of
the dependence of the absorber loss on the energy of the
single solitons, which is inversely proportional to the
number of solitons. Clearly, the bands would become ar-
bitrarily narrow for ub2u → 0. On the other hand, for
fixed ub2u and variable g0 , the width of the bands is con-
stant, because the necessary energy for an increase in the
number of solitons is supplied through an increase in g0 .
The energy of the single solitons, and therefore the losses,
remain approximately constant. However, the increas-
ingly saturated gain for a large number of solitons pro-
vides a decreased stability margin. The insets of Fig. 10
nicely illustrate the recurring nature of the transitions
between pulse states, underlining the fact, deduced from
our experimental observations, that the same physical
process is responsible for each transition.

A simulation of the (g0 , b2) plane by use of the full
GCGLE [Eqs. (1)–(3)], also permitting closely spaced
pulses, is shown in Fig. 10(b). However, the agreement
between Figs. 10(a) and 10(b) is quite good, justifying the
simple approach through soliton perturbation theory.
The only major difference between Figs. 10(a) and 10(b) is
that the GCGLE model allows for interaction between
pulses through the phase- and distance-dependent ab-
sorber and filter losses and the soliton–soliton interac-
tion. As was shown in Section 2, these effects can lead to
the appearance of quasi-stable closely spaced double and
triple pulses. If the multiple-pulse regions are narrow,
or for ub2u values that correspond to a transition region,
g –l0 2 q0 is close to 2e. Then the interaction between
closely spaced pulses does not permit even quasi-stable
states, and the laser is in permanent nonequilibrium.
An example of the resultant complex behavior is shown in
Fig. 11(a), where the energy balance condition g 2 l0
2 a 2 d 5 0 is seen to be permanently violated, leading
to unsteady and nonperiodic pulse evolution, as can be
seen from the insets that show uc u2 after various numbers
of round trips. Such irregular behavior was also ob-
served in the experiment. It is suppressed in the case of
the rotating phase doublet and, to some degree, by opera-
tion of the absorber in strong saturation, as then the dy-
namic losses are determined mainly by the filter alone,
permitting closely spaced double and triple pulses to ap-
pear. Finally, crossing over to positive dispersion makes
the laser stable again; however, the laser now produces
picosecond pulses, as is evident from Fig. 11(b). Since
the laser is not operating in the soliton regime, the chirp
that is due to self-phase modulation remains uncompen-
sated for, and the pulses are therefore strongly chirped.

In a SESAM mode-locked soliton laser one can actually
use the transition from negative to positive b2 and the as-
sociated observations (single soliton→double pulses
→chaoslike operation→chirped picosecond pulses) to gain
a good estimate of the total intracavity b2 as a function of
the insertion of prism P2 . Provided that the small-signal
gain g0 is kept only as high as necessary to maintain
mode locking, the transition from stable double-pulse
emission to that of chirped picosecond pulses marks the
crossing from negative to positive GDD and is well de-
fined with respect to the amount of inserted P2 glass
lP22glass

zeroGDD (,u 6 0.5 mmu). In our experiment, this
led to the quoted values for b2 .

Fig. 11. (a) Simulation of the laser in nonequilibrium. The en-
ergy balance condition g 2 l0 2 a 2 d 5 0 is permanently vio-
lated. Also shown are the intracavity uc u2 after various num-
bers of round trips; b2 5 2200 fs2. (b) Simulation of uc u2 and
spectrum after 10,000 round trips for positive dispersion; b2
5 1200 fs2. Ta 5 0.3 ps, Ea 5 10 nJ, q0 5 0.006, g0
5 0.1687, Pg 5 4 W (see also Table 1).
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4. CONCLUSIONS
We have obtained solitonic mode locking from a Ti:sap-
phire laser, using ion-implanted SESAM’s. Apart from
the generation of single pulses, we have also observed
that transitions between single- and multiple-pulse states
can be induced by steadily reducing the value of the int-
racavity dispersion (or by increasing the small-signal
gain). The multiple pulses could be either well separated
(picoseconds...nanoseconds) without reliably reproducible
spacings or closely spaced (less than picoseconds) and
have their relative phase rotating or near 0 or p. The ex-
perimental observations were explained in the framework
of the generalized complex Ginzburg–Landau equation.

We analyzed the single-to-double-pulse transition in
detail, since it is representative of all transitions between
pulse states. We found that for a single soliton to break
up into two solitons the condition for shedding and
growth of the dispersive continuum (a1 1 d1
1 e)Q1

> q0 must be fulfilled. That is, when the ab-
sorber and filter losses experienced by the soliton exceed
the maximum possible modulation q0 corrected by a mar-
gin e determined mainly by the recovery time of the ab-
sorber (e 5 0 for an instantaneous recovery). On the
other hand, two well-separated solitons in the laser be-
come unstable and coalesce to form a single soliton when
a change in filter loss, introduced by a slight energy im-
balance, is outweighed by the simultaneous change in ab-
sorber loss Dd , 2Da. We have interpreted the latter
stability criterion in conjunction with the difference in to-
tal energy before and after the switching between states,
Q1 Þ Q2 , as the origin of the observed switching hyster-
esis. Using computer simulations, we have further
shown the existence of quasi-stable closely spaced pulse
solutions of the GCGLE that originate from a balance in-
volving soliton–soliton interactions, pulse separation,
phase- and saturation-dependent absorber loss, and filter
loss. The simulations were in good agreement with the
experimental observations, indicating the existence of ro-
tating phase, f ' p and f ' 0 doublets. Finally, the re-
gions of existence of single and multiple pulses in the
( g0 , b2) plane were mapped through simulations. For
fixed small-signal gain g0 the regions were shown to be-
come narrower for decreasing dispersion ub2u, resulting in
permanent nonequilibrium, as observed in the experi-
ment.
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