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Abstract

We show that the complex cubic-quintic Ginzburg—Landau equation has a multiplicity of soliton solutions for the
same set of equation parameters. They can either be stable or unstable. We show that the branches of stable solitons can
be interrelated, i.e. stable solitons of one branch can be transformed into stable solitons of another branch when the
parameters of the system are changed. This connection occurs via some branches of unstable solutions. The trans-
formation occurs at the points of bifurcation. Based on these results, we propose a conjecture for a stability criterion for
solitons in dissipative systems. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Coherent structures in dissipative systems play
an important role in their dynamics. In optics,
dissipative systems can be realized in nonlinear
devices with gain and loss. Particular examples
include wide-aperture lasers, all-optical transmis-
sion lines and passively mode-locked lasers. The
generation of spatio-temporal dissipative struc-
tures in wide-aperture lasers [1-8] can be modeled
by the (2 + 1)-dimensional complex Ginzburg—
Landau equation (CGLE). This equation admits
solutions in the form of various patterns, as well as
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vortex solitons [9]. Coherent structures, in the
form of (1 + 1)-dimensional temporal solitons,
appear in optical fiber systems with linear and
nonlinear gain and spectral filtering (such as com-
munication links with lumped fast saturable ab-
sorbers [10-14]. Of particular interest for us are
passively mode-locked lasers such as fiber lasers
with additive-pulse mode-locking or nonlinear
polarization rotation [15-24]). Stable operation of
these systems generating ultra-short pulses is cru-
cial for practical purposes. Their stability is closely
related to the issue of soliton stability in the theory
of dissipative systems.

For the (1 + 1)-dimensional cubic-quintic
CGLE, rather complete information can be ob-
tained on the existence and competition of several
types of coherent structures, such as fronts, pulses,

0030-4018/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.

PII: S0030-4018(01)01594-2



284 J.M. Soto-Crespo et al. | Optics Communications 199 (2001) 283-293

sinks and sources [25]. The existence of soliton-like
solutions of the quintic CGLE in the case of sub-
critical bifurcations (¢ > 0) has been numerically
determined [26,27]. More recently, the regions in
the parameter space where stable pulse-like solu-
tions exist were found for the cases of anomalous
[28] and normal dispersion [29]. A qualitative
analysis of the transformation of the regions of
existence of the pulse-like solutions, when the dis-
sipative terms change from zero to infinity, was
presented in Ref. [30].

Analytic soliton solutions to this equation in the
form of stationary pulses are known (see Ref. [31]
and references therein). However, analytic solu-
tions exist only when there is a certain relation
between the parameters, and most of them are
unstable [28]. Numerical studies provide more
branches of solitons, but require a large number
of simulations. Knowledge of the complete set of
solutions, even for some restricted range of pa-
rameters, is very important. The reason is that
each stationary solution, even if it is unstable, is a
singular point in the infinite-dimensional phase
space of the system and it may play a decisive role
in the complicated and rich pulse dynamics.

We already know [32] that, even in one di-
mension, solitons in dissipative systems appear
in some multiplicity. A similar phenomenon is
known for solitons in Hamiltonian systems [33].
However, there is a significant difference between
solitons in Hamiltonian and dissipative systems. In
Hamiltonian systems, soliton solutions appear as a
result of a balance between diffraction (dispersion)
and nonlinearity. Diffraction spreads the beam
while nonlinearity focuses it and makes it nar-
rower. The balance between the two opposed ef-
fects results in stationary solutions, which are
usually a one-parameter family. In systems with
gain and loss, in order to have stationary solu-
tions, gain and loss must also be balanced. This
situation is illustrated qualitatively in Fig. 1, which
shows that this additional balance imposes a sec-
ond constraint, so that, as a result we get solutions
which are fixed. The shape, amplitude and the
width are all fixed and depend on the parameters
of the equation. There can be exceptions to this
rule, but the solutions are usually fixed (i.e. iso-
lated from each other).

Hamiltonian systems:

Family of
. . soliton solutions
Diffraction . =

or dispersion
N\
\

Nonlinearity

Dissipative systems:
Fixed

. . soliton solution
Diffraction

or dispersion

\' / Gain
Loss / \

Nonlinearity

Fig. 1. Qualitative difference between the soliton solutions in
Hamiltonian and dissipative systems. In Hamiltonian systems,
soliton solutions are the result of a single balance, and comprise
one- or few-parameter families, whereas, in dissipative systems,
the soliton solutions are the result of a double balance and, in
general, are isolated. On the other hand, it is quite possible for
several isolated soliton solutions to exist for the same equation
parameters.

On the other hand, more than one fixed solu-
tion can exist for a given set of parameters of the
system. In some cases, we can observe up to five
stable solutions in a given system [32]. Each type of
solution may be stable in a certain region of the
space of parameters. The regions for different so-
lutions can overlap in a narrow region, resulting in
multistability. Now, a question arises as to whe-
ther these known branches are interconnected
or completely independent. In other words, is it
possible to change the parameters of the system
continuously in such a way that we could start
from one stationary solution and transform it
continuously to a completely different solution? If
we restrict ourselves to stable solitons, this is cer-
tainly not the case. However, leaving aside ques-
tions of stability, we find an indication that we can
recover all known soliton solutions by continu-
ously changing the parameters. In this work, we
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have at least uncover the connection between plain
and composite solitons [32,34]. This may mean
that there is a connection between other soliton
solutions as well.

The existence of stable and unstable solitons for
the CGLE raises another important issue: when we
change the parameters of the equation, is it pos-
sible that there are regions of stable and unstable
solitons? If the answer is positive, when does such
a transition occur? In other words, what is the
stability criterion for solitons in dissipative sys-
tems? Up till now, we are not aware of any work
which answers the above questions. There are works
dealing with the stability criterion for ground state
solitons in Hamiltonian systems [35-37]. Some ap-
proaches for higher order solitons have also been
developed [38,39]. However, as we discussed above,
solitons in dissipative systems are qualitatively
different from solitons in Hamiltonian systems. As
a result, the stability criterion for Hamiltonian
systems cannot easily be generalized to the case of
dissipative systems.

Recent works by Kapitula and Sanstede con-
sider the stability of CGLE (dissipative) solitons
when they are perturbations of nonlinear Schro-
dinger equation (NLSE) solitons [40]. This is im-
portant for optical transmission lines which are
governed by the perturbed NLSE. However, in
lasers, e.g., dissipative terms are strong and the
approach developed in Ref. [40] is not sufficiently
general. In this work, we present a numerical ex-
ample which might encourage further studies on
stability. In particular, we find that the points
where the stability changes abruptly coincide with
the turning points of the branches representing the
different families of solitons. These branches are
represented by curves which show any soliton
parameter (usually its peak amplitude or propa-
gation constant) versus one equation parameter (in
this work ¢). Wherever this curve folds around
itself, the corresponding soliton solutions change
their stability properties.

Solving the whole propagation equation [32,34]
allows us to obtain only stable structures. How-
ever unstable solitons may play an essential role in
the overall dynamics when the system starts with
an arbitrary initial condition. Therefore, it is im-
portant to know all soliton solutions when moving

in the parameter space from one point to another.
The conclusion is that both types of stationary
solitons, stable and unstable, are important and
deserve careful study.

In the situation where a single transverse (or
temporal) coordinate is retained in the analysis,
the cubic-quintic CGLE reads as [15]

bt D+ WY = 00+ iyl + B0,
iyl =l ()

where D, d, f, ¢, u, and v are real constants (we do
not require them to be small). The CGLE applies,
as we mentioned, to the problem of ultra-short
pulse generation in passively mode-locked lasers.
In this case, ¢ is a retarded time, z is the number of
round trips, ¥ is the complex envelope of the op-
tical field, D is the dispersion (diffraction) coeffi-
cient, ¢ gives account of the linear gain, f§ describes
spectral filtering or parabolic gain (f > 0), € ac-
counts for nonlinear gain/absorption processes,
represents a higher order correction to the non-
linear amplification/absorption, and v is a possible
higher order correction term to the intensity-
dependent refractive index. By a proper rescaling
and without loss of generality D can be restricted
to have the values D=+1. We use D= +1
throughout this work.

In the present work, we are interested in the
whole set of soliton solutions. These include both
stable and unstable solitons existing for a given set
of values of the equation parameters. We find that
different types of solutions, with particular char-
acteristics, which were previously viewed as be-
longing to different branches of solutions, in fact
belong to the same branch, and can be obtained
by continuously changing one parameter of the
CGLE. We also numerically study their stability
properties over their range of existence and cal-
culate the growth rates for the unstable branches.
From this stability analysis, we shed some light on
a stability criterion for these solutions.

The rest of the paper is organized as follows. In
Section 2 we present the method for finding sta-
tionary localized solutions. Section 3 presents the
results for continuous wave (CW) and soliton so-
lutions which follow from our analysis. Section 4
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presents the results for stability of solitons and
presents the conjecture for a stability criterion.
Finally Section 5 summarizes our main conclu-
sions.

2. Analytical approach for finding stationary local-
ized solutions

Exact analytical solutions can be found only for
certain combinations of the values of the para-
meters [31]. On the other hand, we know that
CGLE has soliton solutions which cannot be ex-
pressed analytically. Hence, we need to develop
some technique to find stationary solutions. One
way to do it is by reducing Eq. (1) to a set of
ordinary differential equations (ODE). We do that
by seeking solutions in the form:

Y(1.2) = (1) exp(—ioz)
— a(v) explig(x) — ieoe], 2)

where a and ¢ are real functions of 1 =¢ — vz, v is
the pulse velocity and w is the nonlinear shift of
the propagation constant. Eq. (2) is general rep-
resentation of a complex function and covers all
possible solutions. Substituting Eq. (2) into Eq.
(1), we obtain an equation for two coupled func-
tions, a and ¢. Separating real and imaginary
parts, we get the following set of two ODEs:

[w—%DqS'z—l—ﬁqﬁ"—}—vd)'}a—l—Zﬁq’)'a'
+1Dd" + &’ + va® = 0,
(= 0+ B9 +1D¢")a+ (DY ~ v)d

—pd" —ea’ — ua® =0,

3)

where each prime denotes a derivative with respect
to 1.
It can be transformed into:

DM* pM' D ,
2a3 + a + 2
+a+vad =0,
BM? +DM’

a’ 2a

—ea’ — ua® =0,

wa+v——
a

—da—vd + pa’

where M = a*>¢’.

Separating derivatives, we obtain a dynamical
system in standard form [42] with the first order
derivatives on the left hand side:

208~ 2/23w) 2 2De— 22ﬁ) a4
1 +4p 1+4p
2(Du —2pv) 4pv
1147 114p
2Dv
T
. M* 2(Do+285)  2(D+2pe) (5)
T @ 114 14 ¢
2(Dv+2pu) 4pBv
- 74— 7Y
1+4p 1+4p
2Dv M
1+4f% a’

a=y.

This set contains all stationary and uniformly
translating solutions. The parameters v and w are
the eigenvalues of Eq. (5). In the (M, a) plane, the
solutions corresponding to pulses are closed loops
starting and ending at the origin. The latter hap-
pens only at certain values of v and w. If v and @
differ from these fixed values, the trajectory cannot
comprise a closed loop.

If we are only interested in zero-velocity (v = 0)
solutions, Eq. (5) can be further simplified:

20— 2§w) 2, UDe— 22/3) “
1+4p 1+4p
2(Du —2Bv)
1+4p* 7
, M 2Dw+285)  2D+2p) 5 (6)
O Y- R Ny
_ 2(Dv +2Bu) &5
1+4p

a =y.

This set of three coupled first order ODEs can be
solved numerically. For localized solutions with
correctly chosen w, the amplitude a should go
exponentially to zero outside the region of local-
ization. The exponential part of the solution is
unique as it can be found using the linear ap-
proximation. This way we leave out fronts, sources



J.M. Soto-Crespo et al. | Optics Communications 199 (2001) 283-293 287

and sinks. Only the value of w plays a role of an
eigenvalue in this nonlinear problem. It is fixed for
a given solution but other solutions have different
values of w unless there is a degeneracy.

The asymptotic behavior of Eq. (6) at small a is
given by

a = ayexp(gr),

Do —2
= 7%%6 exp(2¢7),
g(1+4p7)
where qq is an arbitrary small amplitude and the
soliton tail exponent g can be found from the bi-
quadratic equation

. 2Dw+285) 5 (D5—2pw)
14 f T aaapy O )
Thus
), @+ Dw+2p5
e VR By ®)

Using this approximation for the tails and ad-
justing properly the eigenvalue w, it is possible to
find the rest of the pulse solution with a shooting
method.

3. Solitons and continuous wave solutions

Using the above described technique we studied
stationary soliton solutions in a certain range of
parameters. It would be a confusing and compli-
cated task to try to change several parameters
at once. So we restricted our study and we fixed
all parameters except ¢ which was variable. Other
parameters were chosen close to a region of tran-
sition between soliton solutions and fronts where
multiplicity of solutions appear [33]. This region is
relatively wide [33] and allows some variations.
The particular choice of parameters is not critical
and we got qualitatively similar results for other
sets of parameters inside of the transitional region.
In addition, there are some restrictions dictated by
the underlying physics of the problem under con-
sideration.

In particular, § must be negative in order for the
background to be stable, ¢ must be also negative

to limit the amplitudes from above and f must
be positive in order to stabilize the soliton in
the frequency domain. These considerations show
clearly that e can be the only gain term (> 0) in this
model. In a way, it is responsible for existence of
any structure in this dissipative system. Hence, we
can consider € as the most important parameter
and study the properties of solitons when e chan-
ges.

As the cubic gain term is the only one which is
positive, there is a minimum threshold value of e
below which all solutions die away. Soliton solu-
tions exist only above this threshold. The numeri-
cal results are presented in the following set of
figures. The solid curve in Fig. 2 shows the peak
amplitude of the single pulse (SP) soliton branch
versus €. This is the branch of solitons with the
“plain” or bell-shape profile which resamples
usual sech-profile solitons. The shape of the soliton
continuously changes when we change €. As a re-
sult we have a “branch” of solitons. It extends
from the threshold both up and down in ampli-
tude. For every value of ¢ above the threshold we
have two SP soliton solutions.

Soliton solutions are tightly related to CW so-
lutions which exist in the system. To show this, in

Peak Amplitude

Fig. 2. Maximum SP soliton amplitude (solid curve) versus e.
The amplitude of the CW solutions (dotted curve) is shown for
comparison. These two lines show the amplitudes a, and a_ of
the two CW solutions with M =0 as given by Eq. (9). The
shadow represents the values of the parameter ¢ where SP soli-
tons of the upper branch are stable.
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dotted line we plotted the curve for the CW solu-
tion which is given by

—e+ /e —4du PR 9)

a. = T , O=—vd, —a;.
Just like for SP solitons, there are two types of CW
solutions with low and high amplitudes respec-
tively. They coincide at the lowest value of € at
which they exist, ¢ = (40u)"/%. This is the threshold
for existence of CW solutions. The low amplitude
CW solutions are always unstable. However, the
CW solutions of the upper branch have a chance
to be stable. The stability of the upper branch CW
relative to modulation instability can be studied
analytically.

Similar to CW solutions, the lower branch of
SP solitons is always unstable and the solitons of
the upper branch have a chance to be stable. These
features are due to the nonlinearity which in our
case is quintic. Namely, the CGLE has at least
three solutions including the trivial zero solution
for CW as well as for solitons. Due to our choice
of parameters, the trivial solution is stable, and the
stability of the upper branch solitons is the main
problem in this work. We stress again that SP
soliton solutions of either branch can be found
only numerically in contrast to CW solutions.
Consequently, the stability of the SP solitons can
reliably be studied only numerically.

The main qualitative difference of the curve for
SP soliton solutions from the curve for CW solu-
tions is that their amplitude is limited from above.
In fact, we can see from Fig. 2 that the solid curve
does not extend above the value approximately of
e = 1.15. Instead, the curve starts to spiral at the
upper end at around € ~ 1.1. The spiraling hap-
pens if we plot any other parameter of the solu-
tions rather than the amplitude. For example, the
propagation constant w versus € for solitons and
CW solutions for the same data as in Fig. 2 is
shown in Fig. 3. The spiraling of the soliton curve
in Fig. 3 is clearly seen.

To show the spiraling of the curve for SP soli-
tons in detail we calculated this curve with higher
precision, i.e. increasing considerably the sampling
in e values. The result is shown in Fig. 4. The
spiraling seems to happen indefinitely. Fig. 4(b)

O -
-1 F Ccw
3
oLk 4
B-0.18, n=-0.2 8=-0.1, v=-0.1
-3 I
0 1 2
€

Fig. 3. Propagation constant w versus ¢ for the same data as in
Fig. 2.

Peak Amplitude

2.517

2516

Peak Amplitude

2515 b
1095 1096 1.097 1.098

Fig. 4. (a) Maximum soliton amplitude versus ¢ for SP solitons
at the top of the branch shown in Fig. 2. (b) Magnification of
the curve shown in (a) inside the small rectangle.

shows a magnification of the part of the curve
shown in (a) which in turn has this spiraling fea-
ture. We do not have enough accuracy in our
calculations to study this issue deeper. Fig. 5
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Fig. 5. (a) Propagation constant o versus e for the branch
named SP. The parameters of the equation (except €) are the
same as in Fig. 2. (b) The part of (a) enclosed in a dashed line
rectangle in a magnified scale.

shows the propagation constants for the curves
presented in Fig. 4. These again have the same
spiraling structure.

The amplitude profile of the SP soliton has
plain bell-shape profile for almost any value of ¢
except for the spiraling parts. Examples of the
amplitude profiles are shown in Fig. 6. Only half of
the profiles is plotted as they are even functions of
t. These examples correspond to the circles in Figs.
4 and 5 accordingly numbered. We can see clearly
that before the curves start to spiral (the points 1
and 2), the amplitude profiles have simple bell
shape. The amplitude profile resembles the profiles
for composite solitons [34] inside the spirals (the
points 3, 4 and 5). This fact may bring us to the
conclusion that all soliton solutions (or at least
those we know about) are interconnected, i.e.
continuously changing parameters of CGLE we
can transform one type of soliton into another.
However, we do not have enough evidence for this
far reaching idea.

2SN T T T T T

2 | N €=1.141,1.080 A
15 F *
1F 2\ 4 1

05 F B .

Field Amplitude

0 n n n n 1 n n n T
0 2 4 6

25 T T T T T
15 F ; | ]

05 | ]

Field Amplitude

Fig. 6. Amplitude profiles of the stationary solutions marked in
Figs. 4(a) and 5(a) by the open circles. The numbers below the
curves correspond to the labels for the open circles in Figs. 4(a)
and 5(a). The values of € are shown in the figure.

4. Stability results

We have studied the stability of the SP solitons
at every point of the solid curves in Figs. 2 and 3
with the main attention concentrated on the spi-
raling part of the curves. In numerics, we used the
linear stability analysis, described in detail in Ref.
[28] and verified its results through direct numeri-
cal solution of the CGLE when the initial input is
one of the SP solitons. The stability analysis allows
us to calculate the growth rates (g) for the unstable
solitons. The zeros of the growth rate g versus e
curves give us the boundaries of instability. This
way we were able to find which parts of the spiral
correspond to stable solitons and which parts do
not. In particular, we confirmed that the lower
branch of the SP solitons is unstable up to the
threshold point in Fig. 2. The SP solitons are
stable above this point.

The growth rate curves calculated for SP soli-
tons in the spiraling part of the curve in Fig. 2 are
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Fig. 7. (a) Perturbation growth rates versus e for SP solitons
around the spiral. (b) Magnification of the portion in (a) en-
closed in a dashed rectangle.

shown in Fig. 7(a). The curve with the larger
growth rate corresponds to the outer part of the
spiral which is shown in magnified version in Fig.
4(a). The arc of the growth rate curve from e =
1.08 to 1.14 corresponds to the part of the spi-
ral from point 4 to point 2. The lower part of
the growth rate which gradually goes to zero at
smaller € corresponds to the spiral from point 2
to point 1 and further away from the spiral. Be-
tween the different portions of the growth rate
curve with the points g = 0 SP solitons are stable.
It is clear that we have eigenvalue transformations
from being purely real to imaginary at the edges of
soliton existence where g turns to zero. These are
points of bifurcation as it follows from the general
theory of dynamical systems [42]. The behavior of
the solutions above and below the points of bi-
furcation are qualitatively different.

The two bifurcations in the stability of solitons
located at points numbered 4 and 2 are qualita-
tively different. At point 4, the growth rate goes to
zero and the next part of the spiral corresponds to
stable solitons. On the other hand, at point 2 the
mode of instability changes but the solitons remain
unstable. Moving to the left along the branch for
SP solitons, the value of the growth rate mono-
tonically decreases and below e¢ = 1.02 the SP
solitons become stable up to € = 0.4 which is the

absolute minimum point of the SP soliton exis-
tence. Turning down beyond this point, SP soli-
tons, which now become low amplitude ones, are
everywhere unstable. This turning point is quali-
tatively similar to the point 4.

The point 2 in the spiral is a special one. Al-
though this is the point of bifurcation, the SP
soliton is unstable at both sides of this point. What
changes at this point is the mode of instability.
Namely, using the standard stability analysis for
solitons we can write the solution in the form

¥(t,2) = [o(t) + af (1) exp(gz)] exp(—iwz),  (10)

where 1, (¢) is a stationary soliton solution, o is a
small parameter, f(¢) is the perturbation function
and g is its growth rate. Substituting Eq. (10) into
Eq. (1), assuming that « is small and linearizing
around the soliton solution we will get an equa-
tion for eigenfunctions f(¢#) and eigenvalues g.
For details see e.g. Section 13.7 of Ref. [33]. This
equation can be solved numerically. This way we
can find the perturbation function f(¢). We can
also call it “perturbation eigenfunction”.

Fig. 8(a) shows the perturbation function just
below the point 2 while Fig. 8(b) shows the per-
turbation function just above. It is clear that we

Field

Field

Fig. 8. Real (dashed line) and imaginary (dotted line) parts of
the eigenfunction of perturbation for unstable SP soliton (a)
below the point 2 and (b) above the point 2. Solid line shows the
SP soliton profile for each case.
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have a bifurcation at point 2 where the mode of
perturbation changes. Moreover, the eigenvalue of
the perturbation transforms from being complex
with imaginary part different of zero below the
point 2 to be purely real above the point 2. Its real
part is the growth rate g, and it is written inside
each figure. The instability has purely exponential
growth above the point 2 and it is oscillatory be-
low the point 2. The oscillatory instability is re-
lated to the birth of pulsating solitons [41] rather
than to radiation phenomena. This is confirmed by
the fact that the eigenfunction of perturbation in
this region is concentrated in the soliton center.

It appears clearly from these data that, the
points of local minima and maxima of the range of
soliton existence in the spiral are the points of bi-
furcation. Depending on the nature of the modes
of perturbation these points might be the turning
points of stability. This conjecture is confirmed
with further investigation. The small curve in the
dashed rectangle in Fig. 7(a) corresponds to the
inner part of the spiral which is shown in Fig. 4(b).
This small portion surrounded in dashed line is
conveniently magnified in Fig. 7(b). Note the two
different x- and y-scales. The smaller loop in Fig.
7(b) corresponds to the innermost part of the
spiral in Fig. 4(b). To establish the correspondence
between the stationary solutions and its stability
deduced from this analysis, the stable soliton
branches are shown in Figs. 4 and 5 by solid lines.
These curves confirm our conjecture that local
maxima and minima of e (i.e. the local edges in
region of soliton existence) are the points where
stability changes. We believe that further magni-
fication could reveal more detailed structure, but
we are close to the accuracy limit of our numerical
method.

The general results of the stability analysis are
illustrated in Figs. 2 and 3. The shadowed area in
these figures show the values of € where SP solitons
of the higher amplitude are stable. The edges of
stability are related to the local minima or maxima
of € on the curve for the SP solitons. An exception
is the right hand side edge of the wide stripe
around e = 1 where stability changes gradually. In
between both shadowed areas, any input tends to
give place to a pulsating solution in agreement
with the above results on oscillatory instability.

60

L 60 -

40 F BEN ] H

20 20 S ‘;;L..: J

L 107 1.09 111

| 6=-0.1,p=0.18

Fig. 9. Energy of the soliton Q versus e for SP solitons. Stable
solitons are shown by solid line and unstable solitons by dotted
line. The parameters of the equation (except €) are the same as
in Fig. 2. Two consecutive magnifications of the small parts of
the curve enclosed in dashed rectangles are shown in the insets.

The conjecture for soliton stability can be fur-
ther refined if we plot as one of the parameters a
measurable quantity, namely the soliton energy
versus e. The energy, 0 = [~ |¥o(1)|* dt, has been
calculated numerically for each point of the SP
soliton branch. The value of Q versus ¢ for the SP
solitons is shown in Fig. 9. Energy increases to
infinity while we move in along the spiral in Fig. 2.
The reason is that the width of the soliton in-
creases indefinitely. The soliton becomes a com-
posite structure consisting of the central peak and
two fronts attached to it from both sides. There
is an indication that the curve can be continued
indefinitely in the direction of large energy Q.
However, when the width of the soliton becomes
large, the binding energy between the central peak
and the two fronts is weak. Stability of these
higher order solutions is also weak.

Comparison with the above stability results
shows that the parts of the curve in Fig. 9 with
negative slope are all unstable. More accurately,
the solid parts of the curve in Fig. 9 correspond to
stable solitons and the dotted parts to unstable
solitons. As we can see, the stability change hap-
pens at the local minima and maxima of € vs. Q,
i.e. at the local edges of soliton existence in € pa-
rameter. The point 2 is not an exception. It rep-
resents a point of bifurcation as discussed above
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but the modes of perturbation on each side of this
maximum are different. As a result, the soliton has
different type of instability on each side of this
point.

Summarizing, we can formulate our conjecture
for the stability criterion as follows. The local
edges of soliton existence in e-parameter are the
points of bifurcation where stability of solitons
changes. Between the points of bifurcation, the
solitons are unstable if the slope of energy versus ¢
curve is negative. The opposite is not necessarily
true, i.e. solitons might be unstable even if the
slope is positive.

Clearly, numerical studies are restricted and
cannot give the complete answer to the problem of
soliton stability in dissipative systems. As it always
happen, this stability criterion might work only for
certain class of soliton solutions. Nevertheless, we
are sure that our brief study will serve as a sparkle
which at least will ignite the interest to this im-
portant problem. In this regard, we recall that even
in the case of Hamiltonian systems the problem of
soliton stability is not completely solved and re-
search in this direction continues. We also think
that an extension of this study to the (2 + 1)-
dimensional case might give valuable information
about spatio-temporal structures in wide-aperture
lasers [1-8].

5. Conclusion

In conclusion, we studied stationary soliton so-
lutions for the cubic-quintic CGLE which models
a passively mode-locked laser system. This study
revealed interconnections between several soliton
branches which had been considered completely
independent before. In particular, we found a
branch of soliton solutions of the quintic CGLE
which interconnects SP solitons and composite
solitons. Moreover, this study allowed us to make
a conjecture about the soliton stability. We found
that the boundaries of soliton existence in e-
parameter are the points of bifurcation where the
stability of solitons changes. We have also found
that between the points of bifurcation, the solitons
are unstable if the slope of energy versus e curve is
negative.
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