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Abstract We explain the notion of dissipative solitons within a historical perspec-
tive. We show that the ideas of the theory of dissipative solitons emerge from several
fields, including classical soliton theory, nonlinear dynamics, with its theory of bi-
furcations, and Prigogine’s concept of self-organization. A new notion, emerging
from this three-part foundation, allows us to build the novel concept of the dissipa-
tive soliton. We also show that reductions to lower dimensional systems have to be
done carefully and should always include a comparison of the results with numerical
simulations of the original equations.

1 Introduction

This book is a collection of works in various fields that have the common concept of
the “dissipative soliton” behind each specific topic. Before turning to the chapters,
written by experts in their fields, it is instructive to start with general “definitions”
and a little history of the terms. Our introductory chapter summarizes the main ideas
and explains what a “dissipative soliton” entails, in simple terms. The ideas have
been developed over a number of years and have appeared in various publications
[1, 2, 3], but a compact presentation of all these ideas in a single volume is important.

The term “soliton” was first introduced in 1965 by Zabusky and Kruskal [4]
when studying the numerical solutions of the Korteveg-de Vries equation. General
solutions of this equation behaved “strangely” as a superposition of solitary waves
or “solitons” and radiation waves, despite the fact that the governing equation was
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nonlinear. Clearly, the solitons were modes of a nonlinear system. At that point, it
was understood that “waves of translation”, first observed by John Scott Russell in
1834 [5], are also solitons. Later, a rigorous mathematical theory was developed [6],
and this allowed us to construct a general solution of a certain class of equations
in terms of solitons and radiation waves. Since this pioneering work of Gardner,
Greene, Kruskal and Miura in 1967, scientists tend to use the term “soliton” to
describe the modes of nonlinear partial differential equations that happen to be inte-
grable by means of the “inverse scattering technique” [7, 8]. These “integrable” soli-
tons do not change their shape and velocity after colliding with each other, and they
remain intact when interacting with radiation waves. Occasionally, other types of
localized solutions in physics were named “solitons” as well. However, this custom
met serious resistance from the mathematicians who were studying “true” solitons
of “integrable models”.

A dramatic turning point occurred at the beginning of the 1990s, which was
a time when many physicists understood the limitations of the theory. They ob-
served the fact that “solitary waves” do exist in a variety of systems, though they
do not behave exactly as the classical theory predicts for “true” solitons. In particu-
lar, “soliton-like” pulse propagation in a real optical fiber satisfies equations which
are more complicated than the integrable nonlinear Schrödinger equation [9]. These
equations still have solutions in the form of solitons, but they usually include addi-
tional terms that destroy integrability. The additional terms could describe physical
effects, of both conservative and non-conservative nature, which modify the prop-
erties of solitons, but leave them as distinctively localized solutions of the system
under consideration. Thus, the theory had to be extended, firstly, to cover localized
solutions in conservative and Hamiltonian systems and later to construct a theory
of solitons in systems with loss and gain. On the one hand, new solitons could not
be used as superpositions in order to construct a general solution of the system, but
on the other hand they appeared in physical systems as localized solutions describ-
ing certain classes of phenomena. Thus, new terms had to be used, such as “solitary
pulse” for conservative systems or “dissipative soliton” in cases of systems with gain
and loss. In this respect, it is worthwhile mentioning early works [10, 11] where the
term “dissipative solitons” was used to describe solitons in such systems. We also
have to mention that there is a very wide variety of systems with gain and loss, so
that even the rather specific term “dissipative soliton” may need a finer definition in
more complicated systems.

The first book “Dissipative Solitons” was published by Springer in 2005 [12].
This was the time when major principles had to be unified and presented in a sin-
gle volume. This first attempt turned out to be highly successful. It generated a
multiplicity of ideas and brought the scientific community to the idea of organiz-
ing a workshop with the same name. The workshop took place in January 2006 in
Dresden, Germany, within the Max Planck Institute for Physics of Complex Sys-
tems. This meeting solidified the ideas behind the concept of “dissipative solitons”.
It also became clearer than ever that the notion of “dissipative solitons” could be ap-
plied to biology and even medicine, and hence not only to physical systems. Hence,
in publishing this book, the editors attempt to spread these ideas broadly and attract
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more scientists to consider localized solutions from the new point of view. This may
open new facets in the perception of known phenomena, as well as assisting in the
understanding of novel phenomena.

The dissipative soliton concept is a fundamental extension of that for solitons in
conservative and integrable systems. It includes ideas from three major sources, viz.
standard soliton theory developed since the 1960s, ideas from nonlinear dynamics
theory and Prigogine’s ideas of systems far from equilibrium and self-organization
(see Fig. 1). These are basically the three sources and three component parts of this
novel paradigm. Physically speaking, the major part of standard soliton theory is
the notion of the balance between dispersion and nonlinearity that allows stationary
localized solutions to exist. For dissipative systems, we need to observe that the im-
portant balance is between gain and loss – this condition is necessary for solitons to
be stationary objects. Even the slightest imbalance will result in the solution either
growing indefinitely, if gain prevails, or disappearing completely because of the dis-
sipation. Thus, instead of a single balance, we have to consider a composite balance
between several physical phenomena.

The second part of our foundation – nonlinear dynamics – inspires us with the
idea of a soliton as a fixed point of an infinite-dimensional dynamical system. Stabil-
ity properties of fixed points determine the stability of the soliton itself. Fixed points
can be transformed into limit cycles at certain values of the system parameters, and
then the soliton becomes a pulsating object. Further transformations may include
irregular behavior of the trajectory, thus creating chaotic solitons. Therefore, non-
linear dynamics supplies us with the ideas of soliton bifurcations and the chaotic

Concept of
Dissipative solitons

Prigogine's ideas
of

self-organization

Classic
Soliton theory

Nonlinear dynamics
Theory of bifurcations

Fig. 1 Three sources and three component parts of the concept of dissipative solitons
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evolution of solitons. Since we consider infinite-dimensional dynamical systems,
there is a huge variety of types of solitons and their bifurcations.

Finally, the third part of the basis – the theory of systems far from equilibrium –
tells us that solitons are self-organized formations requiring a continuous supply of
matter or energy. As soon as that supply finishes, a dissipative soliton ceases to ex-
ist. In simple terms, self-organization is a convergence of certain initial conditions
to a localized solution of the system that is stable for a given set of external param-
eters. Thus, the final state is determined by the physical laws and not by the initial
condition. For infinite-dimensional dynamical systems, this stable solution can be
very complicated. It is not necessarily a smooth function with a single maximum
and exponentially decaying tails. Moreover, there can be several stable solutions
existing for the same set of parameters. This can even happen in the case of a rel-
atively simple equation like the complex cubic-quintic Ginzburg–Landau equation.
The majority of processes in nature are governed by far more complicated dynam-
ical factors. Thus, stationary solutions of these systems can be considerably more
involved.

From this point of view, the idea of self-organization allows us to extend the
concept of dissipative solitons to highly complicated objects such as animal species
and the formation of life itself. How far we can go in extending our principles in
this direction only depends upon our imagination. Adding to this complexity, when
a system converges to a solution, is not necessarily a stationary solution but can
be a limit cycle or a strange attractor in an infinite-dimensional phase space. Many
biological processes such as heart beats and nerve pulse propagation have been de-
scribed using simple mathematical modeling. Scientific progress in this direction
continues and the reader can find some examples in other chapters of this book.

There is the older term “autosoliton” which comes from the book by Kerner and
Osipov [13]. As the title of the book suggests, the authors consider localized so-
lutions from Prigogine’s point of view as self-organized structures. As we can see
from Fig. 1, this is one of the foundation stones of the new concept. More specif-
ically, the name “autosoliton” came naturally from the theory of reaction-diffusion
systems [14]. Usually, it had to be supplemented with the notions of “activator” and
“inhibitor” to be understood in its full complexity. The root of the word itself origi-
nates from the term “auto-oscillations” in the theory of “flutter and shimmy” which
can be understood as “self-propelled” solitons. In a few cases, this term has even
been used in optics. Throughout this book, the term “dissipative soliton” is used
as the one that covers the majority of relevant phenomena in optics, biology and
medicine. As a fuller explanation, it means “soliton in a dissipative system”, where
“dissipative system” is to be understood in Prigogine’s sense as a sub-system with
an external pump of energy, rather than a system with losses only. An optical laser
is one of the examples of such subsystem in optics [15].

There is a significant difference between solitons in Hamiltonian systems and in
dissipative ones. In Hamiltonian systems, soliton solutions appear as a result of a
balance between diffraction (or dispersion) and nonlinearity. Diffraction spreads the
beam, while nonlinearity focuses it and makes it narrower. The balance between the
two results in stationary solutions. These usually form a one-parameter family. In
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systems with gain and loss, in order to have stationary solutions, gain and loss must
be balanced in the first place. The two balances result in solutions which are fixed.
The shape, amplitude and the width are all fixed and depend on the parameters of the
equation. This situation is represented qualitatively in Fig. 2. For telecommunication
applications, the rigidity of the soliton may provide efficient suppression of noise
and stop any drift in the soliton parameters.

Clearly, stationary dissipative solitons can be considered as fixed points of an
infinite-dimensional dynamical system. Thus, their parameters are fixed. These for-
mations are stable on propagation, provided the system parameters are chosen in
appropriate regions. In general, dissipative solitons are not necessarily stationary. In
other words, fixed points are not the only objects that may exist in such systems. For
example, a limit cycle is another, more complicated, object that can exist in the phase
space of the dynamical system. It corresponds to a pulsating soliton where the pa-
rameters oscillate periodically [25]. These solitons usually exist in regions of the
parameter space which are adjacent to those of stationary solitons. However, even
in this case, the soliton characteristics are fixed, i.e., the period of the pulsations and
the shapes at particular points of the period are all fixed, since they are functions

Hamiltonian systems:

Dissipative systems:

Family of 
soliton solutions

Fixed
soliton solutionDiffraction

or dispersion

Diffraction
or dispersion

Gain

Loss
Nonlinearity

Nonlinearity

Fig. 2 Qualitative difference between soliton solutions in Hamiltonian and dissipative systems [1].
In Hamiltonian systems, soliton solutions are the result of a single balance, and comprise one- or
few-parameter families, whereas, in dissipative systems, the soliton solutions are the result of a
double balance and, in general, are isolated. There can be exceptions to this rule [16, 17, 18],
but, usually, the solutions are fixed (i.e., isolated from each other). On the other hand, it is quite
possible for several isolated soliton solutions to exist for the same equation parameters. This is
valid for (1+1), (2+1) dimensional as well as for (3+1) dimensional cases. In the latter case, the
terms “localized structures” [19] and “bullets” [20, 21, 22, 23] are also used, along with the term
“solitons” [24]
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loss

gain gain

loss loss

Fig. 3 Qualitative description of solitons in dissipative systems [1]. The soliton has areas of con-
sumption as well as expenditure of energy, and these can be both frequency (spatial or temporal)
and intensity dependent. Arrows show the energy flow across the soliton. The soliton is the result
of complicated dynamical processes of energy exchange with the environment and between its
own parts

of the system parameters. One more possibility is that the dissipative soliton can be
chaotic [25]. If the soliton is chaotic, the characteristics of this chaotic behavior are
also given by the parameters of the system.

Another simple qualitative picture is presented in Fig. 3. In order to be sta-
tionary, solitons in dissipative systems need to have regions where they extract
energy from an external source, as well as regions where energy is dissipated to
the environment. A stationary soliton is the result of a dynamical process of con-
tinuous energy exchange with the environment and its redistribution between var-
ious parts of the soliton. As soon as this energy redistribution ends, the soliton
disappears. In more complicated cases, a matter exchange is involved as well. In
this sense, the dissipative soliton is more like a living thing than an object of the
inanimate world. It is like a species in biology which is fixed (or isolated) in its
properties.

So we have just described, albeit briefly, the basic cornerstones of the powerful
concept of the dissipative soliton, and we present them schematically in Figs. 1, 2
and 3. Our observations are mostly related to dynamical systems whose evolution
can be described by differential equations with partial derivatives. Such dynamical
systems have an infinite number of degrees of freedom and, surely, they may have
a countless number of soliton solutions with a countless number of bifurcations be-
tween them. As a rule, these systems are non-integrable, which means that exact
solutions in their full complexity can be studied only numerically. To describe fine
features of soliton bifurcations analytically, we need approximations and some tech-
niques to reduce the dimensionality of the dynamical system. These methods may
help, to some extent, in describing stationary or pulsating solitons and their bifurca-
tions over a limited range of the system parameters. However, they cannot be used
as a total substitute for rigorous studies of the solutions. Only the most prominent
features of the solitons, along with selected bifurcations, can be determined in this
way. For a full picture, we still need numerical simulations. In the rest of this chap-
ter, we give a few examples of studies that involve reductions to finite-dimensional
approximations. We also show that direct comparisons with the results of numerical
simulations are essential in these studies.
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2 Cubic-Quintic Complex Ginzburg–Landau Equation

Throughout this chapter, we are dealing with an infinite-dimensional dynamical sys-
tem governed by the cubic-quintic complex Ginzburg–Landau equation (CGLE)
which in optics has been widely used to describe the pulsed operation of passively
mode-locked lasers and all-optical long-haul soliton transmission lines. Generally,
the CGLE has a wide range of applications in various branches of physics, chemistry
and biology. An extensive list of applications can be found in the review paper by
Aranson and Kramer [26]. This enormous sphere of knowledge has been dubbed
“The world of the Ginzburg–Landau equation” [26]. The cubic-quintic complex
equation has so many different types of solutions that this area of expertise is a
whole world by itself. Even if we restrict ourselves to localized solutions, i.e., dis-
sipative solitons of CGLE, the variety of these objects is still not known in its full
complexity although the regions of soliton existence have been studied quite exten-
sively [27, 28, 29].

One of the difficulties is that analytic solutions are known only for a special
class of CGLE solitons [30] when parameters of the equation are related by a spe-
cific algebraic equation. All other soliton solutions can only be found numerically.
One of the features of these solutions is that they have rich structure of bifurcations
[31, 32]. Having this structure leaves little hope for exact analytical description.
Nevertheless, approximate methods are always a possibility. Such approximations
are the main subject in the rest of this chapter. We give an example of the appli-
cation of the so-called method of moments, which allows us to approximate, for
example, periodicity in the motion of the soliton and the bifurcation from station-
ary to pulsating solitons. We stress that only simple properties of the dissipative
solitons can be approximated by employing reductions. Using this technique, we
consider three examples where simple approximations can give qualitative descrip-
tions of the soliton behavior and even predict the existence of unknown branches of
solitons.

In our notation, the CGLE is

iψt +
D
2

ψxx + |ψ|2ψ +ν |ψ|4ψ = iδψ + iε|ψ|2ψ + iβψxx + iμ |ψ|4ψ. (1)

When used to describe passively mode-locked lasers, the CGLE represents a dis-
tributed propagation model, in which t is the distance traveled inside the cavity, x is
the retarded time, ψ is the normalized envelope of the field, D is the group veloc-
ity dispersion coefficient, with D = ±1, depending on whether the group velocity
dispersion (GVD) is anomalous or normal, respectively, δ is the linear gain–loss
coefficient, iβψxx accounts for spectral filtering or linear parabolic gain (β > 0),
ε|ψ|2ψ represents the nonlinear gain (which arises, for example, from saturable ab-
sorption), the term with μ represents, if negative, the saturation of the nonlinear
gain, while the one with ν corresponds, also if negative, to the saturation of the
nonlinear refractive index.
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During numerical computations with the propagation equation, the magnitude
that we most often monitor is the energy, Q, carried by a certain solution after a
propagation distance of t. It is defined by

Q =
∞∫

−∞

|ψ(x, t)|2dx.

For a dissipative system, Q is a function of t rather than a conserved quantity. The
convenience of monitoring the energy Q is clear from the following considerations.
For localized solutions, Q is finite. Decaying solutions result in Q converging to
zero. When the localized solution is stationary, Q takes a constant value. Stable lo-
calized solutions show convergence of Q to a constant when starting from an initial
condition that is not a solution of the CGLE. Thus, stability of a soliton obtained
this way follows directly from numerical simulations. When the soliton solution is
pulsating in t, the quantity Q also oscillates on propagation. In this instance, we
denote its maxima and minima of Q by QM and Qm, respectively. Chaotic solitons
generally produce chaotic evolution of Q. Of course, a more detailed study of soli-
tons should involve more of these integral parameters. However, there will always
be a limitation because of the gap between the finite number of the parameters that
we are able to use and the fact that our dynamical system has an infinite number of
degrees of freedom.

3 The Method of Moments

In this section, we briefly outline the approach that we use to derive the dynamical
model. The method of moments [33] is a reduction of the complete evolution prob-
lem with an infinite number degrees of freedom to the evolution of a finite set of
pulse characteristics. For a localized solution with a single maximum, these charac-
teristics include the peak amplitude, pulse width, center-of-mass position and phase
parameters. For an arbitrary localized field, one can introduce two integrals, namely
the energy Q and momentum M,

Q =
∞∫

−∞

|ψ|2dx, M =
1
2

∞∫

−∞

(ψψ∗
x −ψ∗ψx)dx, (2)

and higher-order generalized moments [33],

I1 =
∞∫

−∞

x|ψ|2dx, I2 =
∞∫

−∞

(x− x0)2|ψ|2dx,

I3 =
∞∫

−∞

(x− x0)(ψ∗ψx −ψψ∗
x )dx. (3)
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The number of higher-order generalized moments is infinite. Depending on the
complexity of the reduced model, we can restrict ourselves to a finite number of
them. Using the original equation (1), we can derive the evolution equations for the
generalized moments [33],

dQ
dt

= i

∞∫

−∞

(ψR∗ −ψ∗R)dx,

dM
dt

= −i

∞∫

−∞

(ψxR∗ +ψ∗
x R)dx,

dI1

dt
= iDP+ i

∞∫

−∞

x(ψR∗ −ψ∗R)dx,

dI2

dt
= −iDI3 + i

∞∫

−∞

(x− x0)2(ψR∗ −ψ∗R)dx,

dI3

dt
= 2P

dx0

dt
+ i

∞∫

−∞

(2D|ψx|2 −|ψ|4)dx

+2i

∞∫

−∞

(x− x0)(ψxR∗ +ψ∗
x R)dx

+ i

∞∫

−∞

(ψR∗ +ψ∗R)dx.

(4)

Equations (4) are quite general, i.e., they are valid for a large class of NLSE-type
evolution equations, including (1) with arbitrary coefficients. Up to this point, the
equations are exact if we use an exact solution of (1) for ψ .

In practice, one uses a trial function with a few parameters which depend on t.
Equations for the evolution of these parameters are found from a system similar to
(4). A suitable choice of trial function can be deduced from the general symmetries
of the problem, and from results of experiments and numerical simulations. The
minimum number of parameters needed to describe localized solutions is usually
five (see Sect. 4). More parameters may improve the accuracy, but the complexity
of the analysis then increases dramatically. Since the number of the moments should
correspond to the number of the parameters, we consider only five moments.

The method of moments has been applied to various problems described by
the perturbed NLSE [33, 34, 35]. The method was also used for the CGLE in
[36, 37, 38], where simplified trial functions were considered. For special prob-
lems, even the first two equations (4) may be sufficient when we deal with specific
two-dimensional reductions of the CGLE [39]. In more complicated cases, we need
more equations. It turns out that the complete set of equations (4) is the minimum
required for modeling the pulsating solitons.
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4 Pulsating Solitons and Their Approximations [37, 38]

A pulsating soliton is a localized solution of the CGLE that changes its width, am-
plitude and other parameters periodically in t. A pulsating soliton is a limit cycle of
the infinite-dimensional dynamical system and can be described by a closed loop in
the phase space of the system. Exact analytical solutions for pulsating solitons are
not known. Thus, we have to use finite-dimensional approximations. One of them is
an approximation using a trial function with a finite number of variable parameters.
The choice of trial function is usually motivated by numerical simulations of the
CGLE (1). It was found [25, 31, 40] that for various sets of the system parameters,
a dissipative soliton is a single-humped pulse with phase modulation. We consider
two forms of the trial function in order to demonstrate that the results may vary, but
qualitative features of the solution can be picked up, provided a reasonable choice
of the function has been made.

4.1 Trial Function: Sech-Pulse

The first type of trial function that we use has the form of a sech-function:

ψ(x, t) = A sech

(
x− x0

w

)
exp

[
i
[
φ +b(x− x0)+ c(x− x0)2]] , (5)

where A(t), w(t) and x0(t) are the amplitude, width and position of the pulse max-
imum, respectively, φ(t) is the phase shift, b(t) is the linear phase coefficient, and
c(t) is the chirp parameter. The phase in (5) is expanded up to the second order.
This form differs from the trial function used in [36], where only linear terms in the
phase were considered. We emphasize that the chirp is highly important for solu-
tions of the CGLE. As numerical simulations show, even stationary solitons have
appreciable phase modulation, not to mention more complicated localized waves,
such as pulsating and exploding solitons.

Now, the generalized moments can be expressed in terms of the soliton param-
eters in the trial function. Evaluation of integrals (2) and (3), with the help of (5),
gives the following expressions:

Q = 2A2w, M = −2iA2wb, I1 = 2A2wx0,

I2 = (π2/6)A2w3, I3 = i(2π2/3)A2w3c. (6)

Then, using (4), one can obtain a set of ordinary differential equations for the soliton
parameters in (5):

Qt = F1 ≡ 2Q

[
δ −β

(
b2 +

1
3w2 +

π2

3
c2w2

)
+

ε
3

Q
w

+
2μ
15

Q2

w2

]
,
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wt = F2 ≡ 2Dcw+β
(

8
π2w

− 16π2

15
c2w3

)
− 2ε

π2 Q− μ
π2

Q2

w
,

ct = F3 ≡ 2D

(
1

π2w4 − c2
)
− 1

π2

Q
w3 −4

(
1
3

+
1

π2

)
β

c
w2 − 8ν

15π2

Q2

w4 . (7)

We have made additional reductions in (7), namely two equations

x0,t = F4 ≡ b (D− 2π2

3
βcw2),

bt = F5 ≡−4
3

β (
1

w2 +π2c2w2)b, (8)

can be removed. For β > 0, the value of the linear phase b tends to zero for t → ∞.
Then, the soliton center x0(t) tends to a constant value for t → ∞. This allows us
to consider a system with only three variables, viz. Q,w and c. In other words, the
three-dimensional subset describes the asymptotic dynamics of the five-dimensional
model (7) for t → ∞.

4.2 Trial Function: Generalized Gaussian Pulse

As numerical simulations show [25, 31], pulsating solitons change their shape dur-
ing one period from a bell-shaped pulse to a flat-top pulse. Therefore, we consider a
second trial function which is a combination of Gaussian and super-Gaussian types
of functions:

ψ(x, t) = Aexp

(
− x2

w2 − x4

4mw4 + icx2
)

, (9)

where A(t),w(t) and c(t) have the same meaning as in (5). The constant m can be
chosen arbitrarily, but it is independent of t. Note that, following the discussion in
Sect. 4.1, x0(t) and the linear phase b are taken to be zero implicitly in the ansatz.
This leaves three parameters, A,w and c, to be found from the three-dimensional
model.

The trial function (9), with m > 0, gives better results than the sech function or the
Gaussian function alone or the super-Gaussian function with a quartic term alone.
Also, the case 4m = 1 agrees well with the numerical simulations of the CGLE.
However, this value is not critical and other values of m can be used.

Since the function (9) is symmetric in x, the integrals M and I1 are identically
zero. Other moments in (2) and (3), for 4m = 1, are given by

Q = 1.051A2w, I2 = 0.1448Qw2, I3 =
i
4

cI2. (10)
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Then (4) results in the following dynamical model (4m = 1):

Qt = F1 ≡
Q
w2

[
2δ w2 −3.737β −1.158β c2w4 +1.433εwQ + 1.143 μ Q2] ,

wt = F2 ≡
1
w

[
2.142β +2cw2 −0.8738β c2w4 −0.2896εwQ−0.3254μQ2] ,

ct = F3 ≡
1

w4

[
6.453 − 2c2 w4 − 1.237wQ − 1.319ν Q2 −19.62β w2 c

]
. (11)

As expected, the equations for Qt ,wt and ct in (7) and (11) are similar. The only
difference lies in the numerical values of the coefficients of the terms.

4.3 Fixed Points and Their Stability [38]

Fixed points (FPs) of (7) with x0 = b = 0, or of (11), are found from the set of alge-
braic equations Fj = 0, j = 1,2,3. The stability of the FPs is determined from the
analysis of the eigenvalues λ j, j = 1,2,3, of the Jacobian matrix Mi j = ∂Fi/∂ p j,
where {p1, p2, p3} ≡ {Q,w,c}, and i = 1,2,3. When the real part of any eigenvalue
becomes positive, the corresponding fixed point becomes unstable. Since the char-
acteristic equation for the eigenvalues is cubic, either λ1 = λ ∗

2 and λ3 is real or all
three λ j are real.

We analyze the models (7) with x0 = b = 0 and (11) for different signs of D
and values of the parameters ν ,ε,μ and β . We set δ = −0.1. Firstly, we compare
the results of numerical simulations of the CGLE (1) with those of the models (7)
and (11). The results of numerical simulations of the CGLE (1) for β = 0.08 and
μ = −0.1 are shown in Fig. 4a. The figure shows the bifurcation boundaries be-
tween various types of localized waves that exist at particular values of the system
parameters. The region with vertical shading corresponds to stationary solitons. So-
lutions describing two fronts moving in opposite directions exist in the region with
horizontal shading. Pulsating solitons with periodic or chaotic variations of their
parameters occupy the area between these two regions.

There are four types of fixed points for the three-dimensional model:

S1 = {(−,+), λ �
1 , (−,0)},

S2 = {(−,0), (−,0), (−,0)},
U1 = {(+,+), λ �

1 , (−,0)},
U2 = {(−,+), λ �

1 , (+,0)}, (12)

where the variables in curled brackets are complex eigenvalues {λ1, λ2, λ3} of the
fixed point. The symbols in parentheses show that the corresponding parts of λ j =
(Reλ j, Imλ j) are either positive (+), negative (−) or zero. The types S1 and S2 (U1

and U2) correspond to stable (unstable) FPs.
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Fig. 4 (a) Regions of existence of various solutions obtained from numerical simulations [31] of
the CGLE (1). (b) Regions of existence and stability of FPs and limit cycles of the reduced systems
in (ν ,ε)-plane. The region between the two solid [dashed] lines, 1 and 2, corresponds to the region
of existence of stable LCs in the models Eqs. (7) [Eqs. (11)]. The region for pulsating solitons is
copied from (a) to (b) for comparison. The system parameters are shown in (a)

The bifurcation diagram for the models (7) and (11) is shown in Fig. 4b. When
the value of gain, ε , is small, there are no FPs in the system. The threshold for
FP existence, εex, can be estimated roughly as εex ≈ 2

√
δ μ . For the parameters in

Fig. 4, εex ≈ 0.2. If ε > εex, then there are two FPs. In the region below the solid
[dashed] curve 1 for model (7) [for model (11)], one FP is of the type S1, while the
other FP is of the type U2. The second point, U2, does not change its type and is
unstable in the whole square region shown in Fig. 4b. Therefore, the bifurcation line
1 in Fig. 4b is related to the transformation of the first FP.

Curve 1 is the bifurcation boundary (threshold) where the stable FP of type S1

becomes an unstable one of type U1. The following condition is satisfied at the
threshold:

Re[λ1] = Re[λ2] = 0. (13)

The loss of stability of an FP can either be a result of merging with another unstable
FP or be due to the creation of (annihilation with) a limit cycle [41]. The latter
transition corresponds to a super-critical (sub-critical) Hopf bifurcation [41]. Since
the number of the FPs does not change in the whole area in Fig. 4b, the curve 1 is
related to the threshold of the Hopf bifurcation in the models (7) and (11).

If the Hopf bifurcation is super-critical, a stable LC would appear exactly at the
same value of ε where the FP loses stability. When the Hopf bifurcation is sub-
critical, the stable LC should appear before the FP becomes unstable [41]. In the
latter case, the stable FP and stable LC co-exist for a certain interval of the system
parameters. Numerical simulations of (7) and (11) show that for the set of parame-
ters in Fig. 4b, the bifurcation is super-critical. The loss of stability of the FP S1 is
accompanied by the creation of a stable limit cycle (LC).
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Close to curve 2 in Fig. 4b, the period of the LC tends to infinity. There is no
stable LC above curve 2. The soliton energy Q and width w in this region increase
monotonically with t, while the ratio Q/w, which is related to the square of the
soliton amplitude A2 [see (6) and (10)], remains roughly constant.

The region in Fig. 4b surrounded by the thin solid curve corresponds to the area
of existence of pulsating solitons of CGLE, as found from direct numerical sim-
ulations. It is copied from Fig. 4a. A comparison of Fig. 4a and b shows a clear
correspondence between the attractors (FPs and LCs) of the two models (7) or
(11) and stable localized solutions of the CGLE. Specifically, an FP of the model
(7) or (11) corresponds to a stationary soliton, and an LC obtained in the reduced
model corresponds to a pulsating soliton. The solution with almost constant A and
increasing w (the area above the curve 2 in Fig. 4b) approximates two fronts mov-
ing in opposite directions. Such a solution was observed in numerical simulations
of the CGLE [31]. The boundaries obtained in each of the reduced models are fairly
close to the exact ones. Thus, each of the models (7) and (11) provides a reason-
ably good qualitative description of soliton bifurcations inside the squared area
of Fig. 4.

In contrast to the stationary state, LCs or pulsating solitons appear due to the
dynamic balance between dissipation and energy supply. Pulsations involve periodic
variations of the soliton-shape parameters A and w and the phase parameter c. This
behavior is similar to transient dynamics in the integrable NLSE [42], when a non-
soliton pulse adjusts its form to the fundamental soliton via quasi-periodic changes
of its amplitude and phase. In the case of the NLSE, such oscillations are damped
because the pulse loses energy, radiating linear waves during the transient stage. In
the case of pulsating solitons of the CGLE, such oscillations are undamped due to
the continuous energy supply.

The parameters of the LC change between curves 1 and 2. The oscillation period
of the LC is finite on curve 1 but it varies along this curve. It is inversely proportional
to Im[λ1] of the first FP. The period increases monotonically with ε at any fixed ν .
As mentioned above, the oscillation period of the LC becomes infinite on curve 2,
and the LC disappears above it. Examples of limit cycles in three-dimensional phase
space for two different sets of parameters are presented in Fig. 5.

The dependence of the oscillation period of the LCs on ε , when other parameters
are fixed, is shown in Fig. 6 for each of the reduced models. The curve (solid line),
obtained from direct numerical simulations of the CGLE (1), is also shown for com-
parison. There is an apparent difference in the numerical values of the period due
to the drastic reduction in the number of degrees of freedom in the models. How-
ever, all three curves have the same qualitative behavior. In particular, each curve
starts with a finite value of the period T at the lower boundary of the region where
pulsating solitons exist. The period T increases to infinity when ε reaches the upper
boundary. It is clear that the function given by (9) gives more accurate results.

A comparison of the actual field evolution in z with the one reconstructed from
the reduced model is presented in Fig. 7. The results of numerical simulations of the
CGLE (1) are shown in Fig. 7a. The field reconstructed from the ansatz (5) and the
dynamical systems (7) is plotted in 7b. The qualitative features of the dynamics are
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similar. In particular, the soliton width varies periodically, while the soliton ampli-
tude is close to a constant in each case.

The limited range of parameters in Fig. 1b is chosen in order to establish a corre-
spondence with the known numerical results for CGLE. A comparison of the results
obtained from (7) and (11) with the numerical simulations of the full CGLE justifies
the validity of the models. Therefore, one can expect that the dynamical systems (7)
and (11) will be useful for predicting the bifurcation thresholds in a wider range of
the system parameters [38].

5 Creeping Solitons [32, 43]

A creeping soliton is a special type of pulsating localized solution that changes
its shape periodically and shifts a finite distance in the transverse direction after
each period of oscillation. The value of the shift is constant for each period so that
the soliton has a finite average velocity, although the motion occurs as a step-by-
step translation in one direction. In most cases, solitons that move in this way have
long flat-top profiles that consist of two fronts at the sides of the soliton. The two
fronts move asymmetrically in time, thus creating creeping movements of the whole
“worm-like” formation. An example is given in Fig. 8.

Creeping solitons were first observed in numerical simulations in [44]. Their
existence for various dissipative systems has been confirmed in later publications
[31, 45]. There is no technique that would allow us to describe pulsating solutions
using exact solutions of the governing equation. Consequently, we have little hope
of finding analytical solutions for creeping solitons. The method of moments allows
us to approximate roughly the creeping motion. As a particular result, it allows us
not only to estimate the period of the pulsations but to include in the model the
possibility of translational motion of localized solutions. This requires an additional
variable for the velocity of the soliton, and this increases the dimensionality of the
finite-dimensional dynamical system. The velocity is also a periodic function of
time, and it thus describes the creeping feature of the soliton. The technique also

Fig. 8 An example of a creep-
ing soliton of the CGLE. This
numerical example was first
found in [31]. The present
simulation shows more de-
tailed structure of creeping
behavior. The asymmetric
motion of the two sides of
the soliton is clearly visible.
The parameters of the equa-
tion are D = 1, δ = −0.1,
β = 0.101, ε = 1.3, μ = −0.3
and ν = −0.101
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Fig. 9 Region of existence of creeping solitons found by solving the CGLE with δ , β and μ fixed
at −0.1, 0.101 and −0.3, respectively. Creeping solitons exist in the central diagonal strip of this
plot. Above it, there is a strip that corresponds to pulsating solitons with zero velocity. Above the
upper line, solitons increase their width indefinitely, thus transforming into a pair of fronts. Below
the central diagonal strip, solitons have stationary profiles and move with constant velocities

allows us to estimate the region of existence of creeping solitons in the space of
equation parameters.

Creeping solitons exist in a certain range of the equation parameters. Previ-
ously, only isolated examples had been found [31]. Finding the complete region
requires extensive numerical simulations. The results of simulations are summa-
rized in Fig. 9. Creeping solitons exist in the central diagonal strip of the (ε,ν)
plane. Below this strip, pulsations disappear and pulses are transformed into fixed
shape solitons moving with constant velocity. These constant profile pulses are mov-
ing along the x-axis. Above the diagonal strip, the pulses are still pulsating but their
average velocity is zero. Thus, the creeping feature disappears at the middle solid
curve in Fig. 9. Inside the strip, the soliton energy oscillates due to the oscillations
of the soliton width. These oscillations are shown in Fig. 10a. The period of the os-
cillations varies in the range 50–60 across the strip. In each oscillation, the center of
mass of the soliton moves by a finite increment. This step wise motion of the center
of mass is shown in Fig. 10b. Due to the symmetry of the CGLE with respect to the
inversion of the x-axis, a soliton can equally well move to the left or to the right,
depending on the initial condition.

5.1 The Choice of Trial Function for Creeping Solitons

As numerical simulations show, a creeping soliton changes its shape during one
period from a bell-shaped pulse to a flat-top pulse. Its velocity is generally a constant
with an irregular ripple superimposed on it. Therefore, we consider a trial function
which is a generalization of a “super-Gaussian” function:
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Fig. 10 (a) Soliton energy Q vs t for a creeping soliton at the point ε = 1.3, ν = −0.101. The en-
ergy oscillates in a wide range showing that the width of the soliton changes appreciably. (b) Center
of mass of the same soliton vs t. The soliton moves step by step in the direction of increasing x. Due
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ψ(x, t) = a(m)

√
Q(t)
w(t)

exp

[
−
√
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w(t)

− y4

32w4(t)
+ i

(
b(t)y+ c(t)y2)] , (14)

where y = x − x0(t), w(t) is the width, b(t) and c(t) are the linear part and the
quadratic part of the chirp, respectively. The constant m can be chosen arbitrarily,
but it is independent of t, while a is a constant that depends on m. It is chosen in

such a way that the total energy,
∞∫

−∞
|ψ|2 dx, equals Q(t). For example, if m = 0.008,

we have a = 0.519548. The trial function given in (14) is deliberately chosen to be
non-symmetric in y, otherwise the velocity and linear chirp will approach zero after
a short transient. This would mean that we would then effectively have only three
ODEs, and the creeping effect could be lost. Using the above trial function, we are
still able to obtain analytic results for the integrals required.

The generalized moments in (2) and (3), for any m, are given by
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(

b(t)+4
√

m
kt

ka
c(t)w(t)

)
,

I1 = Q(t)
(
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,

where the constants ki are given by the following expressions:
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In these terms, we have used the function H(r,s;m) to represent the generalized
hypergeometric function 0F2

(
{};r,s;m2

)
.

For m → 0, we thus get the expected results for a symmetric function. Now,
we are in a position to take the derivatives of (15) with respect to t and equate
them with the right hand sides of (4). After rearrangement, we obtain five coupled
ODEs for the t-dependent parameters. By solving the ODEs, we obtain equations
for evolution of soliton parameters. In particular, we find that solitons can have a
non-zero velocity in a certain range of the original equation parameters. All soliton
parameters in this region are oscillating. This solution is a limit cycle in the five-
dimensional phase space. Two projections of this limit cycle into a two-dimensional
plane of parameters are shown in Fig. 11. For lower values of ε , the parametric
plot tends to a round shape, and hence the velocity of the center of mass and the
energy Q are approximately sinusoidal functions of t. Indeed, with ε = 1.29, the
velocity appears to be almost sinusoidal. For larger values of ε , the parametric plot
becomes more elongated. This kind of irregularity is more evident as ε reaches
the upper boundary of the creeping range. The closed curve parametric plots be-
come larger in area since both x′0 and Q have a larger range of oscillations as ε
increases.
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Fig. 11 Parametric plots of the soliton velocity x′0 vs energy Q for (a) ε = 1.45 and (b) ε = 1.29.
Other parameters for this calculation are chosen as D = 1, δ = −0.1, β = 0.101, μ = −0.3,
ν = −0.101, while m = 0.0025. This value of m gives reasonably good agreement with the nu-
merical solutions of the CGLE
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Fig. 12 (a) Soliton energy Q and (b) center of mass x0 along the propagation t for a creeping
soliton in the reduced model with ε = 1.45. Other parameters for this calculation are chosen as
D = 1, δ = −0.1, β = 0.101, μ = −0.3, ν = −0.101, while m = 0.0025

Periodic evolution of the energy Q and zig-zag type motion of the center of mass
of the soliton x0 along t are shown in Fig. 12. Qualitatively, these curves are similar
to those shown in Fig. 10. Clearly, we cannot expect a better fit because of the dra-
matic reduction of the number of degrees of freedom when using the trial function.
However, the possibility of modeling of the creeping solitons using a simple trial
function is remarkable in itself.

The results for the region of existence of creeping solitons in a low-dimensional
approximation are shown in Fig. 13. Similar to the numerical results, the creeping
solitons occur in a central diagonal strip in Fig. 13. For lower values of ε , the limit
cycle contracts to a fixed point with all parameters including the velocity being con-
stant. This transition is a Hopf bifurcation. Thus, below the diagonal strip, we have
solitons with constant shape and constant velocity the same way as in numerical
simulations.

As ε increases, the period of all five parameters increases. At the upper limit of
existence of creeping solitons, the soliton becomes wider while retaining a constant

Fig. 13 Region of existence
of creeping solitons in (ε −ν)
plane. Here, D = 1, δ =−0.1,
β = 0.101, μ = −0.3, while
we set m = 0.0025. For ν =
−0.101, the transition from
fixed point to creeping soliton
occurs at ε ≈ 1.29, while
the bifurcation from creeping
to moving fronts occurs at
ε = ε0 ≈ 1.5092
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amplitude, so the energy Q becomes approximately proportional to the width. At
the top of the “creeping” range, the period becomes infinite, and there is a bifurca-
tion to solitons with constantly increasing width. This behavior corresponds to the
splitting of a soliton into a pair of fronts moving away from each other in numer-
ical simulations. However, the velocity of the center of mass for this soliton is not
zero, as was the case in the numerical simulations. Thus, in our reduced model we
have only a single boundary separating creeping solitons from moving fronts (see
Fig. 13). Again, this is hardly surprising if we take into account the drastic reduction
in the number of degrees of freedom in our simplified model. Despite these discrep-
ancies, the qualitative location of the region of existence of the creeping solitons
and the boundary slopes are remarkably similar to those obtained in the numerical
simulations.

6 Solitons and Antisolitons [28]

To conclude our chapter, we give one more example where soliton modeling using
a simple trial function can be useful. In particular, this approach allows us to predict
the existence of one more branch of stationary solitons that could be important for
applications. Due to the many parameters which appear in the CGLE, finding all the
branches using numerical simulations of it is indeed a difficult task.

To find the stationary solitons, we shall use again the trial function (9) and the
corresponding dynamical system (11). Stationary solutions of (11) are given by the
soliton parameters which are t independent, i.e., Q(t) = Q0, w(t) = w0 and c(t) = c0.
The latter case corresponds to a fixed point (FP) of the dynamical system (11). Fixed
points of this three-variable dynamical system, together with the trial function (9),
approximate the stationary solitons of the CGLE. Standard linearization techniques
can be used to find the stability of these FPs. Unstable FPs usually correspond to
unstable solitons. Stable FPs may correspond to stable solitons, but this has to be
confirmed by direct numerical simulations of the CGLE. This is related to the fact
that an infinite-dimensional dynamical system has more degrees of freedom to de-
velop a soliton instability.

Solving the dynamical system (11) for various ε , μ and ν , regions of stable and
unstable fixed points can be constructed in the space of these three parameters of
the CGLE. Two plots representing the regions of stable and unstable FPs for fixed
values of D, δ and β are shown in Fig. 14a and b. Each plot is a two-dimensional
slice of the six-dimensional space of the equation parameters. Each of these plots
clearly shows the existence of two separate regions of stable fixed points. A point
from one region cannot be transformed into a point from the other region with a
continuous change of parameters. Thus, it appears that these two regions correspond
to two different types of solitons of the CGLE. One of the branches has high energy,
Q0, while the other one has low energy. Within the low-dimensional approximation
(11), these FPs are stable in both regions. However, the results for the stability of
exact CGLE solitons may differ, as we explained above.



22 N. Akhmediev and A. Ankiewicz

–0.12 –0.08 –0.04 0
0

0.2

0.4

0.6

0.8

1

no fixed points

stable FPs

unstable FPs stable

FPs

μ
–0.8 –0.4 0

0.5

1

1.5

2

2.5

ν

ε Stable FPs

no FPs

U
ns

ta
bl

e 
FP

s

St
ab
le

FP
s

ε
(a) (b)

0

Fig. 14 Soliton bifurcation diagram (a) on the ε − μ plane and (b) on the ε −ν plane. There are
two regions of stable fixed points that correspond to two quite different branches of solitons. In (a),
δ = −0.1, ν = −0.08 and β = 0.08. In (b), μ −0.1, δ = −0.1 and β = 0.125

Direct simulations of the CGLE (1) confirm the predictions made using the low-
dimensional approximation. Figure 15a, numerically obtained, shows regions in the
(μ , ε) plane where stationary localized solutions can be found. As predicted by the
simple model, there are two separate regions in the parameter space where dissipa-
tive solitons exist. The gray regions correspond to stable stationary solitons while
the hatched region corresponds to exploding solitons [31, 44, 46]. A comparison
between Fig. 14a and Fig. 15a shows that there is not only a qualitative agreement
between them, but that they also coincide reasonably well quantitatively. Our sim-
ple model, of course, cannot describe the explosive instability that is related to many
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Fig. 15 Regions of existence of the two types of solitons (gray) in (a) (ε , μ) and (b) (ε , ν) plane.
In each case, the two separate regions are quite distinct. Parameters are shown in the plot. The
hatched region corresponds to exploding solitons
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degrees of freedom of the CGLE solitons [46]. Thus, explosive solitons in a simple
model will be in the area of stable fixed points. If we take this into account, the
correspondence between the exact numerical results and the predictions of the low-
dimensional approximation is remarkably close.

Figure 15b compiles the results of numerical simulations of the CGLE for the
plane of parameters (ν , ε). Again, gray regions are for stable solitons while the
hatched region is for exploding solitons. Comparing these results with those in
Fig. 14b again shows a good qualitative agreement.

The results for the exact field amplitude and phase profiles of the solutions for
each region of existence of stable solitons are presented in Fig. 16. The solid lines
represent the field amplitude of the solitons, while the dashed lines are their phase
profiles. The upper curves (a) in Fig. 16 correspond to the upper-right thick black
point in Fig. 15a and vice versa: the lower curves (b) in Fig. 16 correspond to the
lower-left thick black point. There are some obvious differences in the energies,
widths and amplitudes of the two solitons. However, the most visible qualitative
difference is in the soliton chirp. The phase profiles clearly show that the chirps in
the two cases are of opposite signs. Due to this difference, the energy flows from
the inside to the outside of the soliton in the first case while it flows inwards in the
second case.

The results obtained from the finite dimensional model (11) show that, for
Fig. 14a, the upper right corner region has c0 > 0 and it is large in magnitude,
i.e., there is a strong chirp across the soliton. On the other hand, the stable FP on the
lower left region has c0 < 0 and it is small in magnitude, so the soliton is weakly
chirped. As regards Fig. 14b, we have c0 < 0 in the lower right hand corner region
(low energy Q0), while we find c0 > 0 in the upper left corner region (high energy
Q0). The same patterns for the chirp signs are obtained in the two distinct regions in
Fig. 15a and b when directly solving the CGLE.
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Fig. 16 Exact soliton profiles (solid lines) of two examples in the (a) upper and (b) lower regions in
Fig. 15b. They are marked by thick black dots in Fig. 15b. Dashed lines show their corresponding
phase profiles
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The finite-dimensional model can be used to directly relate the chirp to the energy
generation P(x) and flux j(x) (see Sect. 6 of [25]). Using the trial function (9) for

arbitrary m, with A =
√

Q0
w0

, for stationary solutions we find

j(x) =
i
2
(ψ ψ∗

x − ψx ψ∗) = c0 GX exp

[
−2X2

(
1+

X2

4m

)]
, (17)

and

P(x) =
d j
dx

= c0
G
w0

(
1−4X2 − 2

m
X4
)

exp

[
−2X2

(
1+

X2

4m

)]
, (18)

where G = 2a2(m)Q0 and the normalized transverse variable X = x/w0. We have
the condition that the total energy generation is zero:

∞∫

−∞

P(x)dx = 0. (19)

This condition has to be satisfied for stationary solutions and is clearly valid for
these trial functions.

The curves for P divided by c0G/w0 and j divided by c0G are shown in Fig. 17.
It is clear that both the flux, j, and energy generation, P, change signs with c0,
since they are directly proportional to c0 (M > 0, and w0 > 0). Thus, the sign of
the chirp has an important physical implication. If c0 < 0, then P > 0 in the wings
and P < 0 around the pulse center. This means that energy is generated in the wings
and flows toward the middle, where it is dissipated. Conversely, if c0 > 0, then
P < 0 in the wings and P > 0 around the pulse center, so energy is generated in the
middle and flows toward the wings, where it is lost. This process, involving an in-
ternal flux of energy, produces the dynamic equilibrium which we call a dissipative
soliton.
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Fig. 17 Density of energy generation P across the soliton divided by c0G/w0 (solid line) and
energy flux j divided by c0G (dashed line) for low-dimensional model with m = 1/4. If c0 > 0,
then the curve shapes for P and j are as shown here so that energy is generated in the center.
However, the curves for P and j are plainly inverted if c0 < 0, and then the energy is dissipated in
the center
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The different signs of chirp appearing for each region (high Q and low Q) mean
that the phase profile across the soliton is concave up in one case and concave down
in the other. Hence, we can designate them “solitons” and “antisolitons” for conve-
nience. The phase profile for the CGLE solitons is not exactly parabolic, of course,
but it is clear from Fig. 16a and b that the effective chirp coefficients are opposite in
sign and that the chirp magnitude in Fig. 16a is much greater than that in Fig. 16b.

For comparison, we plot the distribution of energy generated and dissipated in-
side of the two types of the CGLE solitons in Fig. 18a and b. We can see clearly that
in the first case (a), the energy generation is positive in the middle of the soliton and
negative in the wings, while in the second case (b), the energy is generated in the
tails of the soliton and dissipated in the middle. Thus, there is a fundamental quali-
tative difference between the two types of solitons. One type cannot be transformed
into the other with a continuous change of parameters. To be specific, we call the
solitons with lower energy and c0 < 0 (ordinary) dissipative solitons and the local-
ized solutions of the upper branch (with c0 > 0) “dissipative antisolitons”. The fact
that antisolitons have much higher energy than solitons may have important conse-
quence for the development of high-power pulse-generating passively mode-locked
lasers. It is very likely that antisolitons have been already observed experimentally
in the recent paper [47].

Above, we have presented three examples of approximate analysis of dissipative
solitons and bifurcations between them. These give some flavor of what can be done
analytically in the study of soliton transformations of the CGLE. In these examples,
we were able to describe bifurcations between stationary and pulsating solitons as
well as bifurcations between pulsating and creeping solitons. The approach also
allowed us to predict the existence of a new branch of stationary solitons, and this
was then confirmed by direct numerical simulations. Taking into account the fact
that several system parameters control bifurcations of CGLE solitons, it is hard to
imagine that any other technique would give similar results.
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Fig. 18 Energy generation, P, inside the two types of solitons shown in Fig. 16. In (a), the energy
is generated in the middle of the soliton and is dissipated in the tails, while in (b), it is generated
in the tails and dissipated in the center
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7 Conclusions

The notion of the dissipative soliton has emerged from a three-part foundation. To
be specific, these parts are classical soliton theory, nonlinear dynamics (with its the-
ory of bifurcations) and Prigogine’s concept of self-organization. These underlying
ideas set us up for a comprehensive understanding of the new notion and allow
us to explain the basic properties of solitons in dissipative systems. Complications
which arise from the fact the dynamical systems usually have an infinite number of
degrees of freedom can be overcome by using reductions to low-dimensional sys-
tems. However, these reductions always need to be done carefully by comparing
the conclusions with the results of particular numerical simulations of the original
equation.
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