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A method is proposed for finding exact solutions of the nonlinear 
Schr~dinger equation. It uses an ansatz in which the real and 
imaginary parts of the unknown function are connected by a linear 
relation with coefficients that depend only on the time. The 
method consists of constructing a system of ordinary differential 
equations whose solutions determine solutions of the nonlinear 
Schr~dinger equation. The obtained solutions form a three-parameter 
family that can be expressed in terms of elliptic Jacobi functions and 
the incomplete elliptic integral of the third kind. In the general 
case, the obtained solutions are periodic with respect to the spatial 
variable and doubly periodic with respect to the time. Special cases 
for which the solutions can be expressed in terms of elliptic Jacobi 
functions and elementary functions are considered in detail. Possible 
fields of practical applications of the solutions are mentioned. 

I. Introduction 

The nonlinear SchrSdinger equation (NSE) is one of the representatives of the class 
of completely integrable partial differential equations that has great applied importance. 
The classical method of its solution is the inverse scattering method [i] and its 
generalizations to the case of periodic solutions [2-4]. Among the other effective 
methods of constructing solutions of the NSE we mention the method of Darboux transforma- 
tions [5]. To construct and classify solutions in the present paper, we use an approach 
based on the direct association of finite-dimensional completely integrable dynamical 
systems with definite classes of solutions of the NSE. In this approach, the problem 
of constructing and classifying the NSE solutions reduces to constructing and analyzing 
qualitatively the phase portrait of a finite-dimensional completely integrable dynamical 
system. The basis of this approach was some observations [6,7] about known NSE solutions 
and also the view put forward in [8,9] about solutions of soliton type on both homoclinic 
and heteroclinic trajectories belonging to finite-dimensional separatrix manifolds in the 
corresponding infinite-dimensional phase space. 

It is shown below that the finite-dimensional completely integrable system generated 
by the linear manifold is the support of a large and, from the applied point of view, 
important class of NSE solutions, including both the classical envelope soliton [i] as 
well as the modulation soliton [7], which determines the evolution of an unstable wave 
with constant amplitude. Numerical calculations as well as examination of known exact 
solutions of the NSE show that to the class of rational solitons, and also the class of 
spatially periodic solutions doubly asymptotic in the limits t ~ • to a wave with constant 
amplitude correspond to finite-dimensional completely integrable systems generated by 
algebraic manifolds in the functional phase space of the NSE. In such an approach, it is 
natural to ask whether or not this possibility is characteristic of only the particular 
completely integrable model we consider, namely, the NSE. Although at the present time it 
is difficult for us to estimate the degree of generality and effectiveness of the proposed 
approach for all known integrable models, we may draw attention to the following observa- 
tion relating to the completely integrable sine-Gordon equation 

~tt--u=+sin ~=0. 

Using the substitution u = 4 tan -I ~, which reduces the sine-Gordon equation to the form of 
an equation with algebraic nonlinearities, one can show that the basic solutions of soliton 
type (kinks and breathers) can be associated with algebraic manifolds P(~, ~t; x) = 0 or 
P(~, ~x; t) = 0. The latter may be associated with dynamical systems generated by the 
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class of solutions that decrease rapidly with respect to x or the class of solutions 
periodic in time. 

The investigation and classification that follow below of the NSE solutions associated 
with identification of a linear manifold in the phase space of the NSE have as outcome not 
only the finding of exact solutions of the NSE previously unknown in explicit form (some- 
thingthat can be achieved by various methods [2-5]) but also illustrate the fact that 
relatively simple algebraic manifolds can be the carrier of a large class of solutions. 
We hope that our observations will facilitate investigations of different versions of 
the problem of direct association of completely integrable field equations or continuum 
equations with finite-dimensional completely integrable dynamical systems. 

2. Construction of the Dynamical System 

We write the NSE in the standard notation [1-4]: 

and, following [6], we suppose that the solutions satisfy a linear relationship between 
the real and imaginary parts of the unknown function ~ = u + iv: 

u(x, t)=ao(t)v(x, t)+bo(t). (2) 

As in [6], we assume further that the coefficients a 0 and b 0 in (2) depend only on the 
variable t; it is this that will ultimately enable us to find the solution. If we go 
over to new functions q;(t), 6(t), and Q(x, t) by means of a0=ctg% b0~-6/sin ~, and u=Qcos~- 
5sin ~. then the solution ~(x, t) will have the representation 

~(x, t)=[Q(x, t)+i6(t) ]e ~">, (3) 

in which only the function O depends on the variable z. 

Making the ansatz (3) in (i) and separating the real and imaginary parts, we obtain 
a system of equations for the function Q: 

Q~,-St-~tQ+2~Q+fQa=O, ( 4 ) 

Q~-~5+26Q=+26~=O. (5) 

Equation (4) admits the first integral 

Q f+Q% (26~_r Q=-25tQ=h, ( 6 ) 

where h = h(t) depends only on t. If the system of equations (5) and (6) is to be com= 
patible, the Frobenius relation Qxt = Qtx must hold. Substituting (5) and (6) in this 
relation and then equating its coefficients of equal powers of Q, we obtain a system of 
three differential equations: 

866~+~. =0, ( 7 ) 

hl+266t~t--46a6,=O, i 8 j 

55h+6,,--46a~t+6~tz+45s=O. (9) 

The coefficients of Q to the fourth and fifth powers vanish identically. 

Equations (7)-(9) can be integrated successively. The first integral of Eqo (7) 
has the form 

46~+~, =W, ( 10 ) 

where W is a constant of integration. Substituting ~ from (I0) in Eq. (8), we find the 
second integral of the system 

h+W52--36~=H, (II) 

in which H is a further constant of integration. Finally, using (i0) and (Ii), we find 
an integral of Eq. (9): 

5t~+(4H+Wf)52--8WS~+i6&=D, 

where D is a third constant of integration. 
and (i0) can be rewritten in the form 

(12) 

By means of the substitution z = 6 2 , EqSo (12) 
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zt2=-64z%32Wz~-4 (4H+W 2) z2+4Dz, ( 13 ) 

~,=W--4z, (14) 

and Eq. (6) t a k e s  wi th  a l lowance  f o r  (11) the  form 

Q 2=_Q% (W-6z)Q~ + ~ Q +  (H-Wz+3z~). (15) 

Thus, if we do not consider shifts with respect to both variables and rotation in the 
complex plane through a constant angle, the class of solutions determined by the represen- 
tations (2) or (3) is a three-parameter family of NSE solutions, and it can be found by 
successive solution of Eqs. (13), (14), and (15). 

In the phase space of pairs of real functions (u, v), the relation (2) defines a 
linear manifold. The evolution of the linear manifold in time is determined by the 
solutions of the finite-dimensional dynamical system (7)-(9). The condition of compati- 
bility of Eqs. (5) and (6) determines the correspondence between the evolution of the 
parameters of the linear manifold in time and the dependence of the solution on the spatial 
variable x. 

The solutions of Eqs. (13) and (15) belong to the class of elliptic functions [i0]. 
Reduction of Eq. (15) to the Weierstrass form [I0] shows that its invariants g= and g3 and, 
therefore, the period with respect to the variable x do not depend on the time and are 
determined by the constants of the first integrals of the dynamical system (7)-(9): g2 = 
W2/12 -- H, ga = D/4 -- (H + W2/36)W/6. The relations given in this section completely 
determine the classification of the NSE solutions of first order in the constants of the 
first integrals of the dynamical system. 

3. Finding of Solutions of the Dynamical System 

To simplify the further calculations, we go over from the parameters D, H, and W, 
which determine the NSE solutions, to three other equivalent parameters ~i, ~2, and ~3, 
which are roots of the polynomial of fourth degree on the right-hand side of Eq. (13). 
The fourth root of this polynomial is obviously zero. These triplets of parameters are 
related to each other by Vi~te's relations for a cubic polynomial: 

W = 2 ( ~ + ~ 2 + ~ ) ,  (16a) 

H=2 (~2+a2~+al~)  -ai2-~22-a3 ~, ( 16b ) 

D=16a,a2~. (16c) 

In the region of allowed parameters, determined below, each point in the space of the 
parameters (~l, a2, a3) corresponds to a definite solution of the NSE. Equation (13) can 
be expressed in terms of the new parameters as follows: 

z~=-64z(z--a,) (z-as) (z-a~). (17) 

We s h a l l  be i n t e r e s t e d  in only r ea l  p o s i t i v e  solu t ions  of Eq. (17), s ince by d e f i n i t i o n  
z = 52 and 5 are r e a l .  Therefore, a t  l e a s t  one of the roots  must be p o s i t i v e .  Let t h i s  
be ~ .  The two other roots  may be r e a l  or complex conjugates. I f  r e a l ,  we order them and 
w i l l  assume al  ~ ~2 S ~ .  In the case of complex roo ts ,  we go over from al and a2 to two 
other parameters 9 and ~: ~l = a~ = 9 + iq. 

Specifying the roots of the right-hand side of Eq. (17) and obtaining its solutions, 
we must then find the roots of the polYnomial of fourth degree on the right-hand side of 
Eq. (15). With allowance for Eq. (17), we rewrite this polynomial in the form 

Q~- (W-6z) Q2-8Y ( a,-z)  ( =2-z) ( a3-z)Q-( H-Wz+ 3z z) =0. ( 18 ) 

By means of Ferrara's formulas [ii], we can decompose the polynomial (18 into the 
following two quadratic trinomials: 

Q~•177 u ( a,-z)  ( a~-z) =0, ( 19 ) 

whose discriminants are 

D(•  =a ,+a~-2z~V (~,-z)  (a2-z). (20) 

F u r t h e r ,  i t  i s  n e c e s s a r y  to  ana lyze  s e p a r a t e l y  t he  cases  of  r e a l  and complex r o o t s  a~ and 
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We consider first the case of real ai- In this case, formula (20) can be written 
in the form 

{ --(]/z--~1-----]/z--o~2) 2 for z~>oc2, 

D ( •  (Y~--~-z-~lta-~-z) 2 f o r  z<~ai. 
( 2 i )  

It can seen from formulas (21) that the polynomial (18) has four real roots only for 
solutions of Eq. (17) in the interval 0 5 z _-< ~i, when all the parameters ~i are positive~ 
and it has one multiple real root in the case of coincident negative ~z = a~ <= 0 and 0 =< 
z <_- ~a. In the remaining cases, the roots of the polynomial (18) are complex, and Eq. (15) 
does not have real solutions. Let all the roots ~i be positive. Then the solution of 
Eq. (17) on the interval 0 <= z 5 ~i can be expressed in terms of elliptic Jacobi functions: 

o ~  sn 2 (~tt, k) ( 2 2 )  z(t) = 

~ - a ,  cn ~ (~t, k) ' 

w h e r e  y,=4Ya2(a3-ai), k2=a,(a3-a2)/a2(a3-~z~) i s  t h e  m o d u l u s  o f  t h e  e l l i p t i c  f u n c t i o n s ,  The 
r o o t s  o f  t h e  p o l y n o m i a l  ( 1 8 )  a r e  r e a l  and  h a v e  t h e  f o r m  

Q~-~/a~-z+'c'~x~.-z+~a3-z, Q2=-]/a~-z-]/a2-z+l/~-~-z, 
( 2 3 )  

Q~=-Val-z+l/~z-z-ra3-z,  Q,=V~x,-z-'C~z-z-T~3-z, 

w h e r e  t h e  s i g n s  i n  f r o n t  o f  t h e  r o o t s  a r e  c h o s e n  s u c h  t h a t  O. -<_ Q3 -<- Q2 5- Qt .  E q u a t i o n  ( 1 5 )  
h a s  s o l u t i o n s  i n  two i n t e r v a l s .  

Q = Q,(Qz-Q,)-Q,(Q,-Q2)sn2(px, m) 

( Q 2 - Q , ) - ( Q i - Q 2 ) s n Z ( p  x, m) ' Q~<~Q<~Q" 
Q, (Q~-Q3) -Q, (Q~-Q,) sn ~ (px, m) (24) 

Q = , Q~<~Q<~Q~, 
(QI-Q~)- (Q3-Q4) sn ~ (px, m) 

where p=Ya~-a~, mZ=(~z--~)/(~-~). To each solution (24) there corresponds a solution of 
the NSE. However, these solutions can be transformed into each other by shifts with 
respect to the variables x and t. Formulas (22) and (24) are not the only form of 
expression of the solutions; we shall see that in a number of special cases they can be 
expressed more simply. We find the function ~ by integrating (14). Taking into account 
(16b), we obtain 

t 

~=Wt-4  - ~ z clz=2(a,+a~-cta)t + 4a~ I I (n ;  ~t, k),  ( 2 5 )  

p t  

w h e r e  I I ( n ; ~ t , k ) - - -  , t_nsnZ(.~,k) i s  t h e  i n c o m p l e t e  e l l i p t i c  i n t e g r a l  o f  t h e  t h i r d  k i n d  [ 1 2 ] ,  

n -- ~a / (c% - c ~ a ) .  S i n c e  ~p(t) o c c u r s  i n  t h e  s o l u t i o n  ( 3 )  as  an a r g u m e n t  o f  t r i g o n o m e t r i c  
f u n c t i o n s ,  t h e  s o l u t i o n s  o f  t h e  NSE o f  f i r s t  o r d e r  a r e  i n  t h e  g e n e r a l  c a s e  c o n d i t i o n a l l y  
p e r i o d i c  w i t h  r e s p e c t  t o  t h e  t i m e  ( w i t h  t w o - f r e q u e n c y  b a s i s ) .  For  b r e v i t y ,  we h a v e  o m i t t e d  
i n  E q s .  ( 2 2 ) ,  ( 2 4 ) ,  and  ( 2 5 )  t h e  o b v i o u s  c o n s t a n t s  o f  i n t e g r a t i o n  t o ,  x0 ,  and  %, a l t h o u g h  
i n  them and  e v e r y - ~ h e r e  b e l o w  we s h a l l  u n d e r s t a n d  t h e  p o s s i b i l i t y  o f  t h e  s u b s t i t u t i o n s  
t § t - t o , x  § x - x 0, and  q~p--g~0. At  t h e  same t i m e ,  t h e  p o s s i b l e  d e p e n d e n c e  o f  t~  and q% 
on x t h a t  e x i s t s  i n  t h e  t h e o r y  i s  e l i m i n a t e d ,  s i n c e  s u c h  a d e p e n d e n c e  wou ld  c o n t r a d i c t  t h e  
o r i g i n a l  a s s u m p t i o n s  o f  x - i n d e p e n d e n c e  o f  t h e  c o e f f i c i e n t s  i n  ( 2 ) ,  and t h e  a s s u m p t i o n  o f  
a t - d e p e n d e n c e  o f  x 0 c o n t r a d i c t s  Eq.  ( 5 ) .  

The c a s e  o f  n e g a t i v e  c% = e% c a n  be  r e g a r d e d  as  a s p e c i a l  c a s e  o f  c o m p l e x  c o n j u g a t e  
r o o t s  w i t h  v a n i s h i n g  i m a g i n a r y  p a r t .  S i n c e  Q i n  t h i s  c a s e  d o e s  n o t  d e p e n d  on x ,  t h e  NSE 
s o l u t i o n  i s  a l s o  i n d e p e n d e n t  o f  x .  I t  i s  e a s y  t o  show t h a t  i t  h a s  t h e  f o r m  ~ = - - t ' ~ e x p ( 2 i a ~ t ) .  

We a n a l y z e  t h e  c a s e s  o f  c o m p l e x  r o o t s  i n  g e n e r a l  f o r m .  L e t  eta = co~ = ~ + ir~. The 
r o o t  a a i n  t h i s  c a s e  c a n  be  p o s i t i v e  o r  z e r o .  The s o l u t i o n  o f  Eq. ( 1 7 )  can  be  w r i t t e n  i n  
the form 

z(t) ( i - -v)  (t--en(2lxt, k) ) ( 2 6 )  
4 ( t - - v  cn(2pt ,  k))  

where 
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] -g  ~=41/lg---, U =  l [  ~ + p ( p - a ~ )  ] v = i+---7, -~- I /g , ,, /=T (as-p)~+~1 ~, 

The d i s c r i m i n a n t s  o f  Eqs.  (19)  a r e  

D (•  -----2 (p -z )  ~ (p--z)2+qL 

For  a l l  v a l u e s  o f  p and q, two r o o t s  o f  Eq. (18)  a r e  r e a l ,  and two complex:  

Q,,2=-b• Q3,~=b+-ic, 

where b=f~3--z; d,c=(2[f(p--z)2+~l~• A solution of Eq. 

Q2 5- Q _-< QI: 

Q = - b - d  r--cn(2px, m) 
t - r  en(2px, m) ' 

where 

4 

p=1/(a~-p) 2+q~, 

2 2 g=Yp +~. 

p2 ] 

(15) exists in the interval 

1/ / + b - - b d - f  /+b+bd 
r =  

]/ / + b - b d +  ]/ / +b+bd 

(27) 

(28) 

(29)  

For the function ~ in this case we obtain by integration of (14) with allowance for (26) 
the expression 

~ = ( 2 p §  2g2 ( (n~-l)H(n,; ~t,k)+(l-no)H(n~; ~t,k) ] (30)  
a ~ p l  " ' "  

where  n,=2fk2/(f-g+a~), n2=2tk2/(f-g-a3). 

Formulas  ( 3 ) ,  ( 2 2 ) ,  ( 2 4 ) - ( 2 6 ) ,  ( 2 9 ) ,  and (30)  d e t e r m i n e  t h e  s o l u t i o n s  o f  t h e  NSE of  
f i r s t  o r d e r  f o r  a l l  a i  in  t h e  r e g i o n  o f  a l l o w e d  v a l u e s .  From t h e s e  f o r m u l a s  we can s e l e c t  
some s p e c i a l  c a s e s  o f  t h e  g r e a t e s t  p r a c t i c a l  i n t e r e s t .  We f i r s t  make an i m p o r t a n t  
o b s e r v a t i o n .  D i v i s i o n  o f  t h e  r o o t s  a i  by some p o s i t i v e  number q i s  e q u i v a l e n t  t o  t r a n s i t i o n  
f rom t h e  s o l u t i o n  ~ (x ,  t )  c o r r e s p o n d i n g  t o  t h e  r o o t s  ~ i  t o  a d i f f e r e n t  s o l u t i o n  ~ ' ( x ,  t )  
c o r r e s p o n d i n g  t o  t h e  r o o t s  a i = ~ i / q .  These  two s o l u t i o n s  a r e  c o n n e c t e d  by t h e  t r a n s f o r m a -  
t i o n  

~(x, t)=q~' (qx, q2t). ( 3 1 )  

As q we can choose, for example, the value of one of the roots and seek a two-parameter 
family of solutions ~'(x, t), specifying directly the a i. The third parameter is intro- 
duced into the solution by means of the transformation (31). Below, when considering 
special cases, we shall proceed in precisely this manner and restrict ourselves to finding 
the solutions ~'(x, t), regarding the transformation (31) as trivial. For convenience 
of comparison with the previously obtained results in the cases when ~ ~ 0, we set q = 2~3, 
so that the two parameters a I and a 2 of the family of solutions ~'(x, t) are related to 
the parameters of the required family of solutions ~(x, t) by a,=a,/2a3, az=~/2a3, and the 
third parameter is aa = �89 

4. Special Cases 

We consider first cases when all roots are real. 

i. Suppose O<~a,=a2<~a3-=I/2. In this case, we obtain from (22) 

ai sh 2 ~t 
z (32 )  

ch 2 ~t--2a, ' 

where  ~2 = 8 a l (  1 _ 2az )  ' and f o r  t h e  f u n c t i o n  q0 f rom (25)  we o b t a i n  

~= t+a rc tg  ? ,  (33)  

where  ?=]/2ai/(i-2a,)th~lt. The e x p r e s s i o n s  f o r  t h e  r o o t s  (23)  t a k e  t h e  form 

Q,,2- u177 , Q3,~ ] / l -2a ,  ch ~lt ( 3 4 )  

1/2 1/ch 2 ~t--2a, ~21/ch 2 ~t--2a, 
One of the roots Q~ = Q4 is multiple, and the solution corresponding to this case does not 
depend on x: Q = Q3- The solution of Eq. (15) in the interval Q2 <= Q -<- Qz has the form 
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1/l--2a~ ch 2 ~t-4a~+]/2a~ cos 2px ch ~t 

Q = 1/ch 2 ~t-2a~ ?2 (oh ~t-V2al cos 2px) 
The solution of the NSE for this ease can be simplified by means of 

(35) 

where p = V 2 ( l - 2 a , ) .  
the formula 

~'(x,t)= (Q-~YD+~(~Q+~D r (36) 
Y t + ?  ~ 

For Q independent of x, we obtain the stationary solution 

r e", ( 3 7 )  

and for Q expressed by (35) we obtain the solution 

( l - 4 a ~ )  ch ~t+u cos 2px+i~ sh ~t 
, ' ( x , t )=  ~ _ _ _  - - e " .  ( 3 8 )  

?2 (oh  ~t-Y2a~ cos 2px) 
T h u s ,  t h e  c a s e  a 1 = a 2 c o r r e s p o n d s  t o  two s o l u t i o n s .  One o f  t h e m ,  ( 3 7 ) ~  d e s c r i b e s  

a wave  w i t h  c o n s t a n t  a m p l i t u d e ;  t h e  o t h e r ,  ( 3 8 ) ,  d e s c r i b e s  e x p o n e n t i a l  g r o w t h  o f  
p e r t u r b a t i o n s  p e r i o d i c  i n  x s u p e r i m p o s e d  on a c o n s t a n t  a m p l i t u d e  and  a s u b s e q u e n t  r e t u r n  
after attainment of the maximal modulus to the original state (37). For a I = i/4, the 
growth rate of the perturbations is maximal, $ = i, and the solution (38) simplifies to 

cos x + i u  t r (x, t) _ e". ( 3 9 )  
Y2 ch t - c o s  x 

In the limit a I § �89 we obtain from (38) a rational solution with power-law growth of the 
localized perturbation: 

* ' ( x ,  t ) = - -  [1 - -4  l+2it le  i' 
l + 2 x 2 + 4 t  ~ j ~  ( 4 0 )  

w h i l e  i n  t h e  c a s e  a 1 = 0 t h e  s o l u t i o n  ( 3 8 )  d e g e n e r a t e s  i n t o  ( 3 7 ) .  

If a I = a 2 < O, then only the multiple root Q3 = Q4 is real, and in this region there 
exists only the stationary solution (37). The initial stage of growth of the periodic 
perturbations, the so-called modulation instability, has been investigated several times 
in a number of physical applications [13,14]. The solution (38), which describes the 
further evolution of the modulation instability, was given earlier in our [7] (in other 
notation). 

2. 
lowering transformation of Landen's descending transformation [12] to the form 

• sn 2 (t, • cn z (t, • 
z(t) = ~ 

2[ t - •  5 sn ~ (t, z )  ] 

w h e r e  we have__gone o v e r  f r o m  t h e  m o d u l u s  k = ~ l / a  2 o f  t h e  e l l i p t i c  f u n c n i o n  t o  t h e  new 
m o d u l u s  • I n  t h i s  c a s e ,  t h e  e x p r e s s i o n  f o r  t h e  f u n c t i o n  ~ c a n  a l s o  b e  w r i t t e n  
in the form (33), where, however 

s n ( t , z ) d n ( t , •  = 
c n ( t , •  

The  v a l u e s  o f  t h e  r o o t s  ( 2 3 )  c a n  b e  w r i t t e n  i n  t h e  f o r m  

where 

We set a I + a 2 = a 3 = �89 Then the function (22) can be transformed by means of a 

Q,,2=( t• /o, Q~,~=-( l~:w0)/o ,  

d n ( t , •  

~2 ? 1--•  ~ sn '  (t, • 

c a n  b e  c o n v e n i e n t l y  

Y l + u [ i - - • 2 1 5  ~ t - - z [ l + u s n 2 ( t , •  
v o =  d n ( t , •  , w0 d n ( t , x )  ' 

The solution of Eq. (15), which varies in the interval Q2 ~ Q ~ Ql, 
expressed in the given case in the form 

[~ t + ~  sn 2 (t, •  (t, • + c n  2 (t, ~ ) A  (x) ] 

Q= y2?i_n~sn,(t,•215215 ' 
where 

(41) 

(42) 

(43) 

(44) 
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A (x) = 
c n ( ] / J - ~  x' ~'~-~z)t-x' 

1 " , / t + x  1--• 

The solution of the NSE corresponding to (44) can also be calculated in accordance with 

formula (36) and takes the form 

• A(x)cn(t,•165 r = __ e". (45)  
~2 1/i+•215 

The solution (45) is periodic in x, and with respect to the variable t the solution has a 
double frequency: a duty cycle frequency, determined by the exponential function, and 
a modulation frequency, determined by the elliptic functions. Depending on • the latter 
may vary from zero to the duty cycle frequency. In the limit • this solution reduces 
to the solution (39), while in the limit • (45) has as limit the soliton solution 

~' ( x ,  t )  = e 2~t. (46) 
ch 1/2x 

With allowance for (31), this solution can be written in the form #=-- 1/2q e 2~q't . Other 
ch 1/2 qx 

types of solutions in the case a I + a2 = aa can be obtained from (45) by shifts by a 
quarter period with respect to each of the variables, and we shall not give them here. 

3. Solitons with nonvanishing asymptotic behavior at infinity. 
1 = ~. Then z(t) can be expressed in terms of trigonometric functions: 

z(t) al sin 2 ~t (47) 
1--2a, cos2~t ' 

where ~=2~I-2aI, and the function ~ has the form 

2 ~=2ait+arctg(--~-tg gt) . (48)  

The r o o t s  Qi in  (23)  t a k e  t h e  form 

Q2,z=-/l~a--~cos ~t, Q i , , = / l ( ~  cos ~t• (49)  

where /i=u165 and t h e  r o o t  Q2 = Q3 i s  m u l t i p l e .  I t  i s  c o n v e n i e n t  t o  w r i t e  
the solution of Eq. (15) in the form 

Q=/~ ~ 2 ( t - a ,  cos 2 ~t) ~u ~t ch 2px ( 50 ) 

-~2a~ cos ~t•  2px 
where p=~'/2--a~. Besides (50), there also exists a solution stationary with respect to x: 
Q = Q2. The solution of the NSE corresponding to this value of Q has the form 

r ~o,~, ( 51 ) 

while the solution corresponding to (50) can be written in the form 

~' (x, t) -- 2 (t--a~) cos ~t~2a, ch 2px+i~ sin ~t eZ~,t. (52)  

-2~-$a~ cos ~ t •  2px 
The s o l u t i o n  (52)  d e s c r i b e s  a s o l i t a r y  wave d o u b l y  a s y m p t o t i c  w i t h  r e s p e c t  t o  t h e  t i m e ,  
h a v i n g  a t  i n f i n i t y  ( a s  x § • t h e  b e h a v i o r  ( 5 1 ) .  The s o l u t i o n s  w i t h  t h e  two d i f f e r e n t  
s i g n s  in  (52)  go o v e r  i n t o  each  o t h e r  unde r  a s h i f t  w i t h  r e s p e c t  t o  t h e  v a r i a b l e  t by t h e  
h a l f - p e r i o d  o f  t h e  m o d u l a t i o n :  ~t  + ~t  + w. I f  t h e  uppe r  s i g n  in  f r o n t  o f  cosh  2px i s  
c h o s e n ,  t h e  l i m i t  o f  t h e  f u n c t i o n  (52)  as  a 1 + a 2 i s  t h e  r a t i o n a l  s o l u t i o n  ( 4 0 ) ,  w h i l e  
in the limit a I ~ 0 formula (52) degenerates into the soliton solution (46). 

Suppose a~ 5 a 2 = a~ 

1 4. Now suppose a I = 0 _-< a 2 _-< a 3 = ~. In this case, a solution of the NSE exists 
only for z = 0. The roots (23) do not depend on the time: 
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l •  l~k  
' ~ ,  

where k = 2~a I. The solution of the NSE can be expressed directly in the form 

( l 

This s o l u t i o n  d e s c r i b e s  a s t a t i o n a r y  envelope  wave and i s  s i n g l y  p e r i o d i c  wi th  r e s p e c t  to 
the time. In the limit a 2 ~ 0, the solution (54) with the lower sign degenerates into the 
stationary solution (37), while as a2 + a s the function (54) has as limit the soliton 
solution (46). 

The four cases we have considered exhaust all possibilities for simplifying the 
general formulas (22), (24), and (25), which determine together with (3) the solution of 
the NSE for real parameters a i. We now turn to the case of complex parameters ai~ 

form 
5. Suppose a~=az*='A+iq, a3='/2. Then the function z(t) can be represented in the 

(53) 

(54) 

sn2!ltt, k) dn2 (~t, k) (55) 
z ( t ) =  2[l_k~sn~(~t,k)l , 

where fa=]/l+t6q 2, k=t /~.  At t he  same t ime {p i s  de te rmined  by the  exp re s s ion  (33) ,  where 

k sn (Izt, k)en (~t, k) (56) 
7 = dn (~t, k) 

The roo t s  of t he  polynomial  (18) can be expressed  in t he  form (28) ,  where 

_~ t •  t~k  sni(~t, k) cn(~t, k) ],, d,c-- ~-~ (57) 
b = Y2 [-'1- U sn ' (~t, k) t •  sn ~ (~t, k) 

I t  i s  conven ien t  in t h i s  case  to  r e p r e s e n t  t he  s o l u t i o n  of Eq. (15) in t he  form 

k~ SIl2 ( T  '; )cn( T ] 'k'  T 
Q = , (58 )  (-2, )] 

and then the complete solution of the NSE takes the form 

r (z, t) = _ _ ,  r (59)  
k ( 2 [ i  ] /  k cn(X , ] / 1 - k l c n ( - ~  k)]  

This solution is an analytic continuation of the solution (45) to • (z=L/k). As k ~ I, 
the solution (59) has as its limit formula (39). 

6. Now suppose ~i = ~ = P + in, as = 0. In this case it is not possible to 
normalize the roots by means of 2~s, and the solution is represented in terms of the 
original parameters ~i" Equation (17) has only the trivial solution z = 0, and by means 
of (29) we can express the solution of the NSE in the form 

~(x,t) = mqo ca( qox ) 
~2m2-----'---t ~2m2___ t , m e ~q~ 

where qo=49, mi=l/2[l+p/ypi+qi]. The modulus of  t he  e l l i p t i c  f u n c t i o n  v a r i e s  in t he  range 
�89 & m 2 ~ i for ~ > ~ > 0. Like (54), the solution (60) describes a stationary envelope 
wave and is singly periodic with respect to the time. 

5:. Solutions of the NSE of Higher Order 

We define solutions of the NSE of n-th order as solutions for which the real and 
imaginary parts satisfy a relation 

(6o) 
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P~(u, v)=0,  (61)  

where Pn is a polynomial of n-th degree in u and v with coefficients that depend only on 
the time. Specifying the order of the polynomial n, we can in principle construct by the 
method we have described a dynamical system corresponding to the given order and find its 
solution, this being equivalent to the finding of a solution of the NSE. Such calculations 
in general form go beyond the scope of the present paper. Here, we limit ourselves to 
the simplest example of finding a particular solution of second order. 

We consider the simplest case of a curve of second order and assume that the points 
(u, v) lie on a circle with center at the origin and with a radius that depends on the 
time: 

u2(x, t)+v2(x, t)--R2(t)=O. (62)  

The solutions of the NSE that satisfy the condition (62) can be represented in the form 

~(x, t)=R( t)e ~(~'~ (63) 

Substituting (63) in (i) and separating the real and imaginary parts, we obtain the system 
of equations 

R~+R~==0, 2R~-~-R~=0. (64) 

After integration of the first equation and division of the second by R, the system takes 
the form 

2S 2R,@ O,=2R~__O~ ' (65)  

where  S = S(L)  i s  a c o n s t a n t  o f  i n t e g r a t i o n .  Using t h e  c o n d i t i o n  o f  c o m p a t i b i l i t y  
r  = Otx and e q u a t i n g  t h e  c o e f f i c i e n t s  o f  d i f f e r e n t  powers  o f  ~, we o b t a i n  t h e  d y n amica l  

s y s t e m  

S~R-3SRt-2R~R~=0, 3R~-BR~,=0.  (66)  

The s o l u t i o n  o f  t h e  s y s t e m  ( 6 5 ) ,  

R=Ct -~, S=-C3t-~lnt, (57)  

where C is a constant of integration, together with the solution of the system (65) for 
the function ~, 

�9 =x2/4t+2C~lnt, (68)  

determines the NSE solution 

C [ x  2 ln t  ] .] , ( x ,  t) = ~ e x p  i [  ~ + 2C' (69)  

T h i s  s o l u t i o n  was g i v e n  e a r l i e r  in  [5] by S a l l '  

B e s i d e s  t h e  s o l u t i o n  ( 6 9 ) ,  t h e r e  e x i s t  s o l u t i o n s  o f  h i g h e r  o r d e r s .  For  example ,  t h e  
s o l u t i o n s  d o u b l y  a s y m p t o t i c  as  t § • found  in  [7] a r e  s o l u t i o n s  o f  t h i r d  o r d e r ,  as  we 
have  c o n f i r m e d  by n u m e r i c a l  c a l c u l a t i o n s .  In  t h e  g e n e r a l  c a s e ,  t h e  p o s s i b i l i t y  o f  
c o n s t r u c t i n g s o l u t i o n s  o f  t h e  NSE o f  n - t h  o r d e r  t o g e t h e r  w i t h  t h e  c o r r e s p o n d i n g  d y n a m i c a l  
s y s t e m  can be s een  f rom t h e  f o l l o w i n g  c o n s i d e r a t i o n s .  L e t  P (u ,  v;  t )  = 0 be t h e  e q u a t i o n  
of an algebraic curve whose parameters depend explicitly on the time in the space of 
pairs of functions u and v satisfying Eq. (i). In this case, a simple consequence of 
Eq. (i) is the relations 

a2+v z+ (u 2+v ~) 2+ ~ ~ (p. du--PJv)=h (t)., (70) 

atP.--v,P.-F (~, v~) +2 (u~+v * ) (uP~+vP.)=0, ( 71 ) 

where F=P~ux2T2P~+P~ ~, P=OP~t is defined for u = co~, v = const, the curvilinear 
integral in (70) is taken along the curve P = 0, and the derivatives Ux, Vx, ut, and v t are 
subject to the restrictions u~P=+vxP~=O, P+utP=+v,P~=O~. The conditions of compatibility 
of Eqs. (70) and (71) determine the time evolution of the parameters of the algebraic 
curve P = 0 (i.e., the corresponding finite-dimensional dynamical system) and the function 
h(t), which redetermines the dependence of the solutions u and v on the spatial variable. 
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These assertions become more transparent if we go over from the implicit form of 
specification of the curve, P(u, v; t) = 0, to its parametric representation. Namely, 
let Q(x, t) be a variable that uniformizes the curve P = 0. Then u(x, t) = u(Q, t), 
v(x, t) = v(Q, t), and Eqs. (70) and (71) take the form 

Q 

Ip  Ou Or\ ., 

( ae v oe' Q:+ 2(u~+v9 (uP~+vP:) =0, 

where 

( 0 ~ \ ~  f a y \ 2  au av 
D= ~ }  +iT#) ' 'oQP~+-~Po=O. 

Thus, uniformization of the curve P(u, v, t) = 0 leads to the system of equations (72) 
and (73), which determines Qx and Qt as functions of the uniformizing variable Q and the 
finite number of parameters of the algebraic curve P = 0 and their first derivatives with 
respect to the time. In this representation, Qxt = Qtx is the condition of compatibility 
of the system (72)-(73). The reduction of this condition to a finite number of conditions 
determines the dynamical system in the phase space of the parameters of the algebraic 
curve P = 0, the functions h(t), and their first derivatives. 

(72) 

(73) 

6. Conclusions 

The class of NSE solutions that we have obtained encompasses all the importantcases, 
including the single-soliton solutions with zero and nonzero asymptotic behavior at 
infinity, the solutions that describe the evolution of the modulation instability, and 
also solutions periodic with respect to x and doubly periodic with respect to t. These 
solutions are of great importance from the point of view of applications -- in the theory 
of optical communication (see [7,14] and the references quoted there), the theory of deep 
water waves, etc. For example, the solutions describing the evolution of a modulationally 
unstable wave with constant amplitude describe the generation of a periodic train of 
pulses in an optical fiber [7]. The solutions periodic with respect to two variables 
describe the propagation of periodic signals in a fiber. The obtained solutions can also 
be used in the theory of two-dimensional small-scale self-focusing for the description of 
the decay of a plane wave into individual filaments [13]. Since the solutions can be 
expressed in terms of elliptic Jacobi functions and elliptic integrals, for which there 
are standard calculation programs, any of the obtained solutions can readily be repre- 
sented graphically, and this is of no small importance for concrete applications. 
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