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A very simple exact analytic solution of the nonlinear Schr6dinger 
equation is found in the class of periodic solutions. It describes 
the time evolution of a wave with constant amplitude on which a small 
periodic perturbation is superimposed. Expressions are obtained for 
the evolution of the spectrum of this solution, and these expressions 
are analyzed qualitatively. It is shown that there exists a certain 
class of periodic solutions for which the real and imaginary parts 
are linearly related, and an example of a one-parameter family of 
such solutions is given. 

In recent years, much attention in the scientific literature has been devoted to 
periodic solutions of nonlinear partial differential equations [I] and, in particular, the 
nonlinear Schr6dinger equation (NSE) (see [2-5] and the bibliography given there). This is 
due to the fact that periodic solutions are needed in a number of practically important 
problems, for example, the problem of the generation of picosecond pulses in an optical 
fiber [6,7], in the problem of self-focusing [8,9], in the theory of waves on deep water 
[i0,ii], and in many other cases. In the class of periodic solutions of the NSE a particular 
position is occupied by the solution describing modulation instability, i.e., growth of 
long-wave periodic perturbations on the background of a continuous wave of constant ampli- 
tude. The initial stage in the development of the instability in this problem has been 
investigated by the linearization method [8,9], and the further evolution of the field has 
been studied by numerical modeling of the solutions of the NSE on a computer [5,6,10,11]. 
These investigations have made it possible to clarify to a large degree the qualitative 
behavior of the solution. In particular, it has been established that the initial growth 
of the perturbation amplitude as a result of evolution of the field is replaced by its 
subsequent decrease and return to the original state of the plane wave, this being similar 
to the Fermi-Pasta-Ulam return in a system of coupled oscillators, and under certain condi- 
tions the solution becomes oscillatory in time too. However, an exact analytic solution 
of this problem was not given in the quoted studies, and this was the stimulus for our 
investigations. In the present work, we have obtained an exact solution to the problem of 
modulation instability, expressed in elementary functions. The solution is made by means 
of an ansatz that relates linearly the real and imaginary parts of the unknown function, in 
which the coefficients depend only on the time. We show that such a connection is valid for 
a large class of periodic solutions of the NSE, and we give an example of a one-parameter 
family of solutions periodic with respect to two variables found by means of it. 

We write the spatially one-dimensional NSE in the form 

i + W oz---~ 

The n o t a t i o n  h a r e  i s  s t a n d a r d .  For  c o n v e n i e n c e  o f  t h e  f o l l o w i n g  a n a l y s i s ,  we make in  (1 )  
a change  o f  v a r i a b l e  by means o f  t h e  r e l a t i o n  ~ ( x ,  t )  = u ( x ,  t ) e  i t ,  and t h e n  t h e  e q u a t i o n  
f o r  t h e  complex  f u n c t i o n  u ( x ,  t )  w i l l  h a v e  t h e  f o r m  

Ot 2 0 t  2 ] al2u=O" (2 )  

E q u a t i o n  ( 2 )  h a s  a v e r y  s i m p l e  s t a t i o n a r y  s o l u t i o n  in  t h e  fo rm o f  a complex  c o n s t a n t  
a=exp~p ,  w h i c h ,  a s  i s  w e l l  known [ 6 - 1 1 ] ,  i s  u n s t a b l e  w i t h  r e s p e c t  t o  x - p e r i o d i c  p e r t u r b a -  
t i o n s  o f  t h e  fo rm cos  k ( x  -- x 0 ) .  Fo r  s u c h  p e r t u r b a t i o n s ,  t h e  f i r s t  t e r m  in  t h e  e x p a n s i o n  
o f  t h e  s o l u t i o n  n e a r  t h e  p o i n t  u = 1 ( f o r , ~ = O )  h a s  t h e  fo rm 
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25)e6% b I 26 \ b,l u : l +  [a(  1+,--~- ~ i - , - ~ - ) e - ] c o s k ( x - X o ) ,  (3) 

where a and b are two independent small parameters, x 0 is an arbitrary constant, and 
2 I 

= k(l -- k /4)~ is the growth rate of the instability, real in the interval of wave 
vectors 0 < k < 2 and taking its maximal value, equal to unity, at the point k = v~. Below, 
we shall restrict ourselves to considering the further evolution of perturbations of the 
type (3) only with this wave vector, since it has the greatest interest in practice. 

To find the required solution of Eq. (2), we represent it in the form of an explicit 
complex function u = v + iw. Then Eq. (2) itself can be expressed as a system for the two 
real functions v and w: 

.v,-w+'/~w=+(v%w')w=O, -w~-.v+'iv=+(v2+wgv=O. (4) 

We assume that v and w are related linearly: 

.v=~lw+~, (5) 

in which the coefficients q and ~ depend only on the time variable. In this paper, we 
consider the case ~ = ~ = --tanh t and take 

v=--~h t ( w + t ) .  ( 5 a )  

For functions v and w satisfying the NSE, substitution of (5) in (4) must lead to two 
equivalent equations for the function w. Eliminating from these two equations the second 
derivative with respect to x, we obtain after simple transformations an equation of first 
order for w (Bernoulli equation): 

w,+w 2 t h t + w  th t----0. (6 )  

The general solution of this equation can be represented in the form 

w=c/(oh t -c) ,  (7) 

where  c = c ( x )  i s  a c o n s t a n t  o f  i n t e g r a t i o n .  To f i n d  i t s  d e p e n d e n c e  on x ,  we s u b s t i t u t e  (7 )  
i n  one  o f  t h e  e q u a t i o n s  o b t a i n e d  by s u b s t i t u t i n g  ( 5 a )  i n  ( 4 ) .  I n  b o t h  c a s e s ,  we o b t a i n  t h e  
e q u a t i o n  

C= + 2C=~ --2 i--C~-C ch t 
ch t 'C' ch t -C  = O, (8) 

and this indicates the validity of the above ansatz. It is easy to show that a function 
that satisfies (8) for all t must solve the equation 

C~ ~ = l - 2 c  ~, (9)  

f rom which  we f i n d  
l 

C = --=cos Y2(Z-Xo). (10) 
72 

S u b s t i t u t i n g  (10)  in  ( 7 ) ,  and t h e n  (7 )  i n  ( 5 a ) ,  we o b t a i n  t h e  r e a l  and i m a g i n a r y  p a r t s  o f  
t h e  f u n c t i o n  u and ,  t h e r e f o r e ,  t h e  c o m p l e t e  s o l u t i o n  o f  Eq. (2 )  i n  t h e  fo rm 

--V2sh t+i cos u u(x , t )=  . (11) 
u ch t - cos [2  (x-xo) 

T h i s  s o l u t i o n  i s  t h e  s i m p l e s t  i n  t h e  c l a s s  o f  p e r i o d i c  s o l u t i o n s  o f  t h e  NSE. I t  i s  
e a s y  t o  show t h a t  i n  t h e  l i m i t  t * - - -  t h e  s o l u t i o n  (11)  i s  i d e n t i c a l  t o  t h e  e x p a n s i o n  ( 3 ) ,  
in which the coefficient b = O. In the limit t + 4~, the solution (ii) is identical to 
formula (3), in which a = 0 and the factor e i~ has been added, i.e., the arbitrary phase 
in the given case is ~. Thus, as a result of the development of the instability the ampli- 
tude of the modulation increases from zero to the maximal value at t = 0, and then as 
t + ~ returns to a stationary solution with the original amplitude but opposite phase T. 

For periodic solutions, the evolution of the spectrum of the original wave is an 
important question. In the given case, we can also write down exact expressions for the 
spectrum. We represent the solution (ii) in the form of the Fourier expansion 

w 

a(x, t) =/0( t )  + 2 Zf~(t)cos[n(x--xo)Y-21. (12)  
m 

n = l  
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Fig. i 

The coefficients in (12) can be readily calculated: 

v~ 

i J ru(x,t)dz i~sht+~eht-~2ch2t-1 
fo(t) = y ~  . . . . . . .  Y2 ch2 t - I  

(13)  

o 

~'-i-n 

l . (t)=~ ~ a(x,t)cos(nxY-2)dx: )'2- isht +cht ((~cht_f2chZt_t). .  ( 1 4 )  
Y--2 ~ Y2 ch 2 t - t  

0 

F o r  t h e  sum o f  t h e  m o d u l i  o f  t h e  c o e f f i c i e n t s  f n ( t )  we h a v e  t h e  r e l a t i o n  

oo r  

l h ( t ) l  ~+2  ~ l l . ( t )  l~ - i .Sl~l~dx__1. (15) 
n ~ !  0 

I t  i s  obv ious  t h a t  as t ~ -+~ a l l  f n ( t )  v a n i s h  excep t  f o r  If0(t)l = i .  For a r b i t r a r y  t ,  
all fn(t) are nonzero, but the energy of the higher harmonics decreases in accordance with 
the law of geometric progression.__ At t = 0, the squares of the moduli of the coefficients 
are equal to I]012=(~2--I) 2, l]~I2=2(Y2-1)zL In this case, the maximal energy is concentrated 

in the first sideband; 

For the sake of greater clarity, we analyze the solution (ii) on the complex (v, w) 
plane (see Fig. i). To be definite, we fix the variable x = x 0, but this in no way restricts 
the generality. By analogy with the terminology adopted in the theory of nonlinear 
vibrations, the point u = 1 on this plane is a saddle, as can be readily seen by constructing 
near this point the trajectories described by formula (3). The parameter of these trajec- 
tories is t, and the parameter of the family of trajectories is the ratio a/b. Two trajec- 
tories emanate from the point u = I at angles 45 ~ and -135 ~ to the v axis, two enter it at 
the angles --45 ~ and 135 ~ , and the remaining trajectories have near this point the form of 
hyperbolas. The trajectories near the point u = --i have the same behavior, as can be 
readily seen by multiplying (3) by e i~. The trajectory described by the solution (II) is 
the upper part of the circle 

v~+ (W--I) z=2, (16)  

and it joins the points -+i along one of the directions indicated above. The solutions 
connecting the points +i along the three other directions can be readily obtained from (ii) 
by changing the sign in front of u and/or making the translation x + x 0 + ~/r All such 
trajectories are represented in Fig. i. 

In the case when the trajectory passes near the points +i without arriving at them, the 
solution is periodic in t, and the complete trajectories of such solutions, obtained by 
numerical methods (like those described in [12]), are represented in the figure by closed 
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curves close to the separatrix curves (16). For solutions with period with respect to x 
independent of the parameter a/b, the phase trajectories do not intersect. It can be seen 
from Fig. 1 that the separatrix solutions (ii) separate two qualitatively different types 
of t-periodic solutions. Pairs of trajectories of type A, symmetric with respect to the v 
axis, correspond to one and the same solution obtained by translation with respect to x by 
~/v~. The trajectories of the type B, symmetric with respect to the origin and situated 
beyond the separatrices, also have an analog obtained by translation and situated within 
the separatrices. For periodic trajectories of type A there is a "center point" O, which 
corresponds to a stationary solution in the form of a Jacobi elliptic function: 

ao(x) =i~ko cn[a(x--xo), k0], ( 17 ) 

where ~=(ko2--t/z) -'~, and t h e  modulus  o f  t h e  e l l i p t i c  f u n c t i o n  k0 f o r  t h e  p e r i o d  w i t h  r e s p e c t  
t o  x t h a t  we c o n s i d e r  i s  d e t e r m i n e d  from t h e  e q u a t i o n  n/~2ko~-i=2K(ko), in  which K(k0) i s  a 
complete elliptic integral of the first kind. 

By numerical modeling of the periodic solutions of the NSE we have established that 
for solutions periodic with respect to the two variables a linear connection of the general 
form (5), in which a definite solution corresponds to certain functions p(t) and q(t), is 
valid. If it is borne in mind that a linear connection of the real and imaginary parts of 
u is also valid for the known "simple" solutions of the NSE (families of single-soliton 
solutions with the soliton width as parameter, and also families of stationary solutions of 
the type (17)), it becomes clear that there exists a fairly large class of solutions of the 
NSE possessing the property (5). A regular procedure for finding the coefficients q and U 
in (5), and with them the complete class of solutions, is the subject of a separate paper. 
In the present paper, we restrict ourselves to the example of the one-parameter family of 
solutions found by means of the ansatz (5), in which q = --sn(t, k)cn(t, k)/dn(t, k) and 

= --sn(t, k) can be expressed in terms of Jacobi elliptic functions with modulus k as 
parameter. For these values of the coefficients, the solution of the NSE has the form 

k) +i(i/Y l+k)  cd (Y l+kx, ~ ( i -k)  / ( i+k) )  cn (t, k) u(z, t) =k,--sn(t' (18) 
1-- ( i / ?  i+k )  ca (Y i+--~x, ? ( i - k )  / ( i+k) )  dn (t, k) 

where  c d ( z )  = c n ( z ) / d n ( z ) .  For  t h i s  f a m i l y  o f  s o l u t i o n s ,  t h e  p e r i o d s  w i t h  r e s p e c t  t o  t and 
w i t h  r e s p e c t  t o  x depend on t h e  p a r a m e t e r  k.  In  t h e  l i m i t  k + 1, (18)  i s  i d e n t i c a l  t o  t h e  
solution (ii), and in the limit k ~ 0 it degenerates into a soliton solution with fixed 
width u = 2ieit/cosh 2x. Since the limiting cases of the family (18) are solutions of other 
families with fixed parameters, the class of solutions possessing the property (5) is deter- 
mined by not less than two parameters. The number of these parameters is, however, limited, 
since two- and, in general, N-soliton solutions, and also periodic solutions with two and 
more periods with respect to x do not satisfy the relation (5). Thus, the relation (5) 
separates from the complete manifold of NSE solutions those that can be called first-order 
solutions. 
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EFFECTIVE ACTION FOR SUPERSYMMETRIC CHIRAL ANOMALY 

V. K. Krivoshchekov and L. O. Chekhov 

It is shown that consistency conditions of the type of the Wess-Zumino 
conditions are necessary and sufficient conditions for local integrability 
of the supersymmetric chiral anomaly. It follows from the requirement of 
global integrability that the coefficient of the anomalous action is 
discrete. Explicit expressions are obtained for consistent anomalies and 
the corresponding functionals, which depend on superfields of various 
types. 

Introduction. In the construction of low-energy effective Lagrangians describing the 
behavior of composite objects, anomalous terms must be included if the low-energy phenomeno- 
logy is to be correctly described. The form of the invariant part of the effective chiral 
Lagrangian is fixed in the case of quantum chromodynamics (QCD) more or less uniquely by 
considerations of global invariance under U(3) L • U(3) R and minimality with respect to the 
derivatives and fields that describe the mesons. The obtaining of the anomalous term in 
the effective action is a much more difficult problem, and requires for its solution not 
only allowance for the symmetries of the theory but also the use of global topological 
arguments. In the case of QCD, a number of authors have shown [1-4] that the anomalous 
action can be taken in the form 

Fwzw=--  (i/240~ 2) c~kz~ ; dSx Tr(UO~U + UOjU+UOkU+U~U+U~U+), ( 1 ) 

where  t h e  i n t e g r a t i o n  i s  o v e r  a f i v e - d i m e n s i o n a l  d i s k  ~ .  

The p r o o f  o f  i n t e g r a l i t y  o f  t h e  c o e f f i c i e n t  c [1] i s  b a s e d  on t h e  n o n t r i v i a l i t y  o f  
~ s ( S U ) 3 ) ) ,  w h e r e a s  ~ 4 ( S U ( 3 ) )  = 0. S e v e r a l  ways o f  o b t a i n i n g  FWZ W a r e  known. B e s i d e s  t h e  
g e o m e t r i c a l  me thod  b a s e d  on t h e  u s e  o f  t h e  cohomology  g r o u p  [ 1 , 2 ]  and t h e  method  a s s o c i a t e d  
w i t h  u s i n g  t h e  i n d e x  t h e o r e m  [ 5 ] ,  t h e r e  e x i s t s  a method  o f  " d i r e c t "  c a l c u l a t i o n  o f  t h e  
e f f e c t i v e  a c t i o n  by i n t e g r a t i n g  t h e  a n o m a l y ,  wh ich  s a t i s f i e s  c o n s i s t e n c y  c o n d i t i o n s  [ 3 , 4 ]  
and  can  be o b t a i n e d  in  some r e g u l a r i z a t i o n  scheme.  

The p r o b l e m  o f  c a l c u l a t i n g  t h e  c o n s i s t e n t  s u p e r s y m m e t r i c  c h i r a l  anoma ly  h a s  been  
d i s c u s s e d  i n  a number  o f  s t u d i e s  [ 5 , 7 , 8 ] .  I n  t h e  f i r s t  s e c t i o n ,  we f o r m u l a t e  t h e  p r o b l e m  
o f  c o n s t r u c t i n g  t h e  s u p e r s y m m e t r i c  a n a l o g  o f  t h e  a n o m a l o u s  W e s s - Z u m i n o - W i t t e n  a c t i o n ,  
wh ich  r e p r o d u c e s  t h e  c o n s i s t e n t  c h i r a l  a n o m a l y .  The e x p r e s s i o n  f o r  t h e  anomaly  i s  h e r e  
c a l c u l a t e d  in  t h e  p r e s e n c e  o f  a gauge  f i e l d  and a d d i t i o n a l  c h i r a l  m u l t i p l e t s .  The c o n t r i -  
b u t i o n  o f  t h e s e  a d d i t i o n a l  c h i r a l  f i e l d s  t o  t h e  e x p r e s s i o n  f o r  t h e  anomaly  i s  e q u a l  t o  t h e  
v a r i a t i o n  o f  a l o c a l  f u n c t i o n a l .  The e x p r e s s i o n  f o r  t h e  t o p o l o g i c a l l y  n o n t r i v i a l  p a r t  o f  
t h e  s i n g l e - l o o p  e f f e c t i v e  a c t i o n  i s  n o t  c h a n g e d .  I n  t h e  s e c o n d  s e c t i o n ,  we g e n e r a l i z e  t o  
t h e  s u p e r s y m m e t r i c  c a s e  t h e  me thod  o f  i n t e g r a t i n g  t h e  c o n s i s t e n t  c h i r a l  a n o m a l y  d e v e l o p e d  
in  [ 4 ] .  I t  i s  shown t h a t  c o n s i s t e n c y  c o n d i t i o n s  o f  t h e  W e s s - Z u m i n o  t y p e  a r e  n e c e s s a r y  and 
sufficient conditions of local integrability of the anomaly. Integrality of the coefficient 
of the supersymmetric effective action arises from the requirement of global integrability 
of the anomaly. In the Appendix, a formula for the consistency supersymmetric anomaly 
is derived. 

i. In connection with the appreciable progress in supersymmetric theories, a number 
of authors have recently discussed the problem of constructing supersymmetric effective 
Lagrangians [9]. In the construction of a supersymmetric analog of the anomalous action 
(i), the choice of the parametrization of the group manifold constitutes a certain prob- 
lem. We assume that the meson multiplet is described by the pseudoscalar component ~a(X) 
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