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Pseudorecurrence in Two-Dimensional Modulation Instability with a Saturable
Self-Focusing Nonlinearity

N. N. Akhmediev, ® D. R. Heatley, G. I. Stegeman, and E. M. Wright

Optical Sciences Center, University of Arizona, Tucson, Arizona 85721
(Received 6 June 1990)

The modulation instability of a two-dimensional field with a saturable self-focusing nonlinearity is in-
vestigated numerically. We show that approximate recurrence to an initial homogeneous field occurs,
but oscillation around the exact recurrence is observed. This pseudorecurrence arises only for a restrict-

ed range of spatial modulation frequencies.

PACS numbers: 42.65.Jx, 42.50.Md, 42.65.Ma

The nonlinear Schrodinger equation (NLS) is a
universal model for nonlinear wave propagation that has
been studied extensively. Of particular interest is the
modulation instability (MI) that causes an initial homo-
geneous state to develop spatial structure. This was first
investigated by Bespalov and Talanov' using perturba-
tive methods in the context of nonlinear optical self-
focusing in two dimensions, and independently by Benja-
min and Feir? for the case of deep-water waves in one di-
mension. Numerical simulations of the one-dimensional
MI were later carried out,>™> most recently in the area of
pulse propagation in nonlinear optical fibers. %’

Modulation instabilities belong to a class of periodic
solutions of the NLS that have been studied using the in-
verse scattering method.®='? Analytic solutions in one
dimension have been obtained in some special cases, '*!4
and have found applications in nonlinear fiber optics. !>
In particular, it has been shown that many initial condi-
tions'=371316 can recur to the initial state to within a
phase factor upon propagation. The interest in such
periodic solutions is connected with the study of chaos in
nonlinear propagation as they describe homoclinic or-
bits.'"” In the presence of small perturbations!®!° the
solution can shift from a homoclinic orbit to adjacent
periodic ones whose periods are sensitive to the size of
the displacement. The field propagation can then appear
to be chaotic. Whether periodic solutions giving re-
currence arise in two dimensions or for saturable non-
linearities has, surprisingly, received very little attention.

In this Letter we investigate numerically MI with a
saturable self-focusing nonlinearity in two dimensions.
Saturation is introduced to avoid catastrophic collapse of
the field. We have discovered that this problem has solu-
tions that are close to homoclinic orbits, but which oscil-
late around the exact recurrence. This pseudorecurrence
arises only for a restricted range of spatial modulation
frequencies.

We consider a propagation in a nonlinear self-focusing
medium described by the intensity-dependent dielectric
constant

e(l) =et+Ael/(+1), (1

where Ae >0 is the saturated change in dielectric con-
stant, and 7 is in units of the saturation intensity. Then,
in the slowly varying envelope approximation, we obtain
the following scaled equation for the electric-field en-

velope A(x,y,z):%°
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If we consider a homogeneous solution 4(x,y,z) =A¢
xexp(ig), then

q*=A8/(1+A43). 3)

The phase ¢ is clearly arbitrary and can be set equal to
zero, but we retain it for later purposes. If we now rep-
resent the solution of Eq. (2) in the form

Ax,y,z) =[A4o+ f(x,p,z)]1e", @

and linearize around Ao, we obtain the following equa-
tion for the perturbation f:

2 2 2
9z  9x?  dy? (1+A43)?

This equation admits transverse periodic solutions with
kyx =k, =k of the form

fGx,y.2) =(mFe®+nF*e ~%)[cos(kyx) +cos(kyp)l.
(6)

Here the complex factor F=(k+2i6/k)kmax (|F|=1),
k2. =243(1+43)% n, and 75, are independently vari-
able small parameters, and the instability growth rate is
given by

=t k(i —k?). @)

U+ )=0. )

A simple calculation shows that for k < kpnax, 6 acquires
its maximum value for 4o =1, and we adopt this value in
the remainder of this Letter. The dependence of & on &
is shown in Fig. 1, and is valid in both one dimension and
two dimensions. However, the form of perturbation in
Eq. (6) is only valid for k, =k, =k, the case we consider
here. In general, the perturbation should be in the form
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FIG. 1. Instability growth rate & vs spatial modulation fre-
quency k. The stars correspond to k =0.5kmax, Kmax/v2,
0.9k max, which are discussed in the text.

of a product cos(k,x)cos(k,y).! We have chosen the
form in Eq. (6) because it results in the smallest spatial
dimensions of a unit cell when periodic boundary condi-
tions are imposed. We note that significantly different
results can be obtained for k,=k,.

We have obtained numerical solutions of Eq. (2) with
periodic boundary conditions using the two-dimensional
split-step method.?! For a given k <kma the spatial
grid L is chosen such that kL =27z, and the number of
mesh points varied from 8x8 to 128%x128. The reprodu-
cibility of the results was established by varying the nu-
merical parameters over a wide range in every example
presented. In all cases we set 7, =0 and 7, =10 "%

Numerical results were obtained for spatial modula-
tion frequencies 0 < k < kpax in which the growth rate is
positive (Fig. 1). To display the results, we chose to con-
struct the phase-space diagrams (Re(A4),Im(4)) at
several points over the transverse plane with the longitu-
dinal coordinate z parametrizing the evolution. In this
representation the homogeneous solution 4 =Agexp(ig)
(Ap=1) is a unit circle. The initial condition is then
(1,0) along with the perturbation given in Eq. (6). Each
point on the unit circle then represents a phase-shifted
version of the initial condition.

Figure 2 shows the results obtained for k =0.9k pax.
We see that as the MI develops from the initial phase-
space point (1,0) all phase-space trajectories are repelled
from it as shown in Fig. 2(a). This is understood by not-
ing that all points on the unit circle have the structure of
a saddle point, and the initial condition is chosen to lie
along the direction of maximum growth.!> [The term
proportional to 1, in Eq. (2) corresponds to the direction
in which the perturbation decays.] We have also used
two-dimensional computer animation to follow the evolu-
tion of the full field profile. As the MI grows the field
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FIG. 2. Phase-space trajectories (Re(A4),Im(A4)) for several
points in the (x,y) plane including the field maximum (curve
1) and minimum (curve 5) for a spatial modulation frequency
k=0.9km.x (denoted by the right-most star in Fig. 1). (a)
Starting near the point (1,0), the field evolves through four
pseudorecurrences on the unit circle in the counterclockwise
direction. (b) Enlarged picture of trajectories inside the
dashed box of (a) showing the first two recurrences; the dashed
line is the unit circle. (c) The fraction of energy in the com-
ponents Koo, Ko1, and K vs propagation distance.
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develops a peak in one quadrant of the transverse plane
that reaches a maximum and then starts to decrease.
This is illustrated in Fig. 2(a) by the large-amplitude
trajectory (curve 1), which is at the peak of the field. As
the peak continues to decrease in amplitude, we see that
the phase-space trajectories tend to regroup back to a
new point on the unit circle. This result is clearly indica-
tive of periodic behavior in which the initial condition is
reconstructed but phase shifted. Figure 2(a) shows that
this cycle can be repeated several times, and we are
tempted, perhaps, to claim that we are observing re-
currence in which the phase-space trajectories are close
to homoclinic orbits. However, it is clear from Fig. 2(a)
that the first and third recurrences are different in nature
from the second and fourth. Figure 2(b) shows an en-
larged section of the phase-space trajectories around the
first and second recurrences, and demonstrates that there
is no true recurrence. Some phase-space trajectories os-
cillate around the exact saddle point before diverging
again; others are repelled, as would be the case for a true
saddle point. We have termed this effect pseudore-
currence, since it only has the appearance of a true re-
currence from afar [Fig. 2(a)l. We remark that these
results can be reproduced reliably and are not numerical
artifacts. Pseudorecurrence also appeared in the one-
dimensional variation of this problem, and our computer
code correctly reproduced the exact recurrences that
arise without saturation in one dimension.

To investigate the nature of the pseudorecurrence fur-
ther, we have also calculated the transverse spatial-
frequency profile 4 of the field 4 using Fourier transfor-
mation. In the numerical scheme the spatial frequencies
are integer multiples of &, so we label the elements of 4
by two integers m and n, and define |A4|2=Ku.. Koo
corresponds to the dc component and must equal 1 on
the unit circle, that is, at points of recurrence. To a high
degree of accuracy, we have found that for all K, =Ko,
Kumn is symmetric under interchange of m and », and
changing the signs of m and n. We therefore include a
factor of 4 to account for this degeneracy in the follow-
ing discussion. Figure 2(c) shows the evolution of Ko,
Koi1, and K; the other components are nonzero but not
clearly visible on this scale. Here we clearly see the
pseudorecurrence as Kgg returns close to 1. The other
components become populated as Koo is depleted. Note
that, consistent with Fig. 2(a), Ko only appears to re-
peat after every second cycle. This suggests that a
“period 2” oscillation may be occurring, but so far we
have found no evidence of a period doubling or other
type transition to chaos as k is varied. This possibility is
currently being explored in more detail.

Having introduced the phenomenon of pseudorecur-
rence for a specific example, we now consider the effect
of variation of the spatial modulation frequency k. Fig-
ure 3 shows the phase-space trajectories at the peak of
the field obtained for (a) k =kmax/~/2, which corre-
sponds to the peak of the instability curve in Fig. 1, and
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FIG. 3. Phase-space trajectories for (a) k =k max/~/2 (denot-
ed by the middle star in Fig. 1), and (b) k =kmax/2 (denoted
by the left-most star in Fig. 1). For clarity, only the field tra-
jectory with the maximum amplitude is shown in each case.

(b) k=0.5kmax, which is below the maximum. For case
(a) there is still pseudorecurrence, though the oscillatory
structure around the exact recurrence is clearly larger
than in Fig. 2. In contrast, for case (b), the pseudore-
currence is absent and the evolution is irregular. Thus,
pseudorecurrence does not appear for all spatial modula-
tion frequencies. To quantify the degree of recurrence
we have calculated Ko and E=Ky+K 0+ K1 at the
first recurrence (first peak in Koo after it has been dep-
leted) as a function of k, and the results are shown in
Fig. 4. When Z falls below I, higher spatial frequencies
than those in the sum are excited; for a perfect re-
currence Koo=X=1. Figure 4 shows that for %k
> 0.6k max, there is a high degree of recurrence after the
first cycle, both Kgo and X being larger than 0.98. (The
second recurrence is not necessarily so good.) For
k < 0.6k max, both Koo and X drop suddenly and the pseu-
dorecurrence is destroyed. Indeed, in this case the
phase-space trajectories become highly irregular, show-
ing no signs of recurrence [see Fig. 3(b)l. Multiple
pseudorecurrences of a high degree only occur for values
of k= 0.8kmax. For k <0.8k sy the pseudorecurrences
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FIG. 4. Energy in the lowest spectral component Koo and
the sum Z =K+ Ko+ K1, measured at the first recurrence
and plotted as a function of the spatial modulation frequency
k.

do not persist for as many cycles before irregular behav-
ior ensues. In addition, the size of the oscillatory motion
around the exact recurrence increases as k is decreased
below 0.9k .y [see Fig. 3(a)l.

Figure 4 provides a clue to the mechanism of the de-
struction of the pseudorecurrences with decreasing k.
We see that for k <0.6kn,x more energy is present in
the higher spatial frequencies at the first pseudore-
currence since X is smaller. We have found that more
and more energy transfers to higher spatial frequencies
with increasing number of cycles (pseudorecurrences).
For k > 0.8k max the transfer of energy is slow, thus al-
lowing several complete cycles. As k is reduced, the rate
of energy transfer increases, and eventually no cycles can
be completed and irregular behavior follows. The pseu-
dorecurrences are therefore destroyed by the gradual
transfer of energy to high spatial frequencies. This be-
havior was also observed in the one-dimensional version
of the problem. In contrast, in the one-dimensional
problem with no saturation, which is integrable, this en-
ergy transfer is reversible and exact recurrence is ob-
tained. The appearance of pseudorecurrences is there-
fore a consequence of the saturable nonlinearity which
renders the system nonintegrable.

In conclusion, we have discovered that modulation in-
stability of a two-dimensional field with a saturable self-
focusing nonlinearity leads to pseudorecurrences rather
than exact recurrences. These pseudorecurrences occur
only for a restricted range of spatial-frequency modula-
tions, and are a consequence of the saturable nonlineari-
ty which makes the problem nonintegrable. These re-
sults should be of great significance in the study of chaos
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