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We present analytical and numerical results related to partially coherent solitons (PCS) of a novel
class. In effect, there is freedom to choose the shape of a PCS as it is goverhgd-byt parameters,
where N is the number of linear modes contributing to the soliton. In particular, we show that a
PCS may have an asymmetric shape. The PCS shape becomes arbitrary in the limit of complete
incoherence. Another remarkable new feature of a PCS is that collisions in Kerr-like media cause
the PCS to change its shape, although each beam remains a stationary soliton after the collision.
[S0031-9007(98)07677-7]

PACS numbers: 42.65.Tg, 03.40.Kf

The notion of temporal incoherent solitons was intro-ject physically. It is a multimode self-induced waveguide
duced by Hasegawa some 20 years ago in a series of a slowly responding medium, so that its linear modes
works [1-3], both for plasma waves and for nonlinearare mutually incoherent. Experimental demonstration of
pulses in multimode fibers. However, as the creation omultimode spatial solitons formed by incoherent super-
incoherent solitons in optical fibers requires unrealisti-position of their linear modes in photorefractive crystals
cally high pulse energies, photorefractive materials are thbhas been reported recently in [18].
medium of choice for experimental studies, as they gen- The diffractionless ray optics limit for treating spatial
erally exhibit very strong nonlinear effects with extremelyincoherent solitons has been proposed by Snyder and
low optical powers [4,5]. The first experimental obser-Mitchell [19]. This approach is accurate when the size
vation of partially incoherent solitons has been made byf the PCS is much larger than the optical wavelength.
Mitchell et al. [6]. The latter have been nicknamed [19] “big incoherent

A theoretical description of spatial incoherent solitons,solitons.” In terms of a multimode waveguide, this limit
based on the so-called “coherent density approach,” whelie valid when the number of modes goes to infinity,
the partially coherent beam is represented as a superposi that the soliton becomes completely incoherent. The
tion of mutually incoherent components, has been develinteraction of incoherent and partially coherent solitons
oped by Christodoulidest al. [7,8]. For the special case is an interesting area of research, and it has only been
of the logarithmic nonlinearity, the symmetric solutions addressed in the recent papers [10,11].
can be written in analytic form [7]. The description of Most of the above-referenced works showed only the
a partially coherent stationary soliton (PCS) as a multi-existence of symmetric solutions for PCSs. On the other
mode self-induced waveguide [9—12] has been especiallyand, Hasegawa [1] (in the case of 1D solitons in Kerr-
fruitful. In that view, stationary soliton propagation is like media) and Snydeet al.[19] (in the case of 3D
obtained by proper population of various mutually inco-solitons in media with arbitrary nonlinearity) pointed out
herent linear modes of the self-induced waveguide. Bethat incoherent solitons in general may have an arbitrary
cause of mutual incoherence, the total light intensity is ashape (at least in the regime of complete incoherence). In
direct sum of the intensities of all excited modes. Thushe present paper, we investigate this problem using the
mode beating, which is a signature of coherent excitationdual character of PCSs as self-induced linear waveguides,
is eliminated. On the other hand, we found that this apas well as multisoliton complexes. Thus, we have found
proach is not sufficient to explain all the properties of thethat PCSs can have a profile which is variable to a certain
PCS. We claim that an additional viewpoint, seeing thedegree and which is governed by a finite number of
PCS as multisoliton complexes, gives us more informaparameters. The number of parameters depends on the
tion about their shape and collisions. number of linear modes comprising the PCS. At one

Complex soliton structures, in the context of temporalextreme, when the PCS forms a single-mode waveguide,
vector solitons, have been investigated earlier in [13,14]the soliton is coherent, its shape is symmetric, and it is
Higher-order vector solitons have been studied in [15]described by the sech function. This is the case of a
The concept of a vector soliton as multimoded waveguideingle fundamental soliton. At the other extreme, when
self-induced by its linear modes has been suggested lihe number of modes goes to infinity, the number of
Snyderet al.[16,17] in the study of spatial soliton struc- parameters which control the shape is also infinite. In
tures. As we mentioned above, the PCS is a similar obthis limit the soliton effectively has an arbitrary profile.
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We restrict ourselves to PCSs in Kerr-like media so o 5 2o Nl
that the wave evolution can be represented by a sét of 1« = Z(”i”j o) Z A

coupled Manakov equations. Examples of the lowest- i# Vo1 ik
order symmetric solutions and their interactions have been X (M,z +ul Z Wl +out — /\,zu,z) = const  (6)
presented in recent works [10,11]. However, those solu- mEi

tions contain only one free parameter. They are symmetric ) )
solutions of a given (sech) profile and have variable amWhere Ady = A — A; and each dot over; denotes
plitude (and width) for any particulay. We show in this & de_nvatlve V.V'th respect ter. For zero background
work that the actual PCS profiles are multiparameter famiSelutions, the integrals must be equal to zefo< 0 and
lies of solutions and that their shape and amplitude ma&k
vary. For finiteN, the number of parameters governing . W€ note, from (4), that the constani; have a
the stationary PCS profile is at le@¢ — 1. We alsoin- dual physical meaning. First, they can be considered
vestigate collisions of PCS. We find that, in the case of* the _amplltudes of partial fundamental solitons in
Kerr-like media, PCSs change their shape after collisiond® multisoliton complex. - Suppose that all fundamental
but nevertheless remain stationary solutions. solitons are separated In space and 4llbut one are
The set of equations describing propagationvoself- close to zero at a certain = 7o. Then the amplitude

trapped mutually incoherent wave packets in media witf! that soliton of the single equation which is left 4s.
Ke?rr-JIike nonlineyarity is P Second, if we considdd_ |u;|*] as a given self-induced

refractive index profile, then each; is an eigenvalue
; I n 1 9% + adn(); =0 (1) related to a certain mode of the self-induced waveguide.
9z 2 972 e ’ In our analysis it is important that the number of linear
where ¢; denotes theth component of the bean is _eigenvalue_sv _equals the number of fundamental solitons
the coefficient representing the strength of nonlinearity, N the multisoliton complex.
is the transverse coordinatejs the coordinate along the ~ FOr the cas&V = 2 we have:
direction of propagation, and Urr + 2? + vHu = Au,

N
sny) = 3 Il @ ver + 20+ vy = A,

i=l where we consider andv to be real. This set of ODEs
is the change in refractive index profile created by allhas two conserved quantities, which follow from (5),(6).
incoherent components of the light beam. The responsiamely, the Hamiltonian is
time of the nonlinearity is assumed to be long comparedy — ;2 + 2 — A2,2 — 22 + (% + v%)? = const
to temporal variations of the mutual phases of all com- ®)
ponents, so the medium responds to the average light in-
tensity, and this is just a simple sum of modal intensitiesand the second integral [21] (for the momentulth=
expressed by the relation (2). As a result, the set of equasv; — u,v) is
tions (1) is a_generalized Manak_ov set which has been; _ ;,2 | Ap(® + u* + u?v? — A2u?) = const
shown to be integrable [20]. This means that all solu-

(7)

tions, in principle, can be written in analytical form. 9)
Stationary solutions of (1) are given by A solution of (7) which describes PCSs is [22,23]:

2 = A/A A, coshA D, 10a

Wi(r,2) = —= ui(r) exp(iﬂz), e T An/Bde costr)/ (102)

\/E 2 v = )\2\/AA12 Sinf’(/\ln)/D s (10b)

with real functionsu;, so that the set of Egs. (1) reduces _
to the set of ODEs: D = s coshir;ry) coshiAzs)
- A Sinl”(/\lTl) Sinl’()tsz),

N
O u; 2 2
+ : = A2y,
o7? 2[;% i = A @) wherer) = 7 — 701, T2 = 7 — 702, @Nd Ay, Az, To1, To2
are arbitrary real constants. The change in refractive

which is also completely integrable for an arbitrary set ofindex profile self-induced by the beam is given by
real A;. It can be shown, using Poisson brackets, that the 9 9 5
dn = AApp[A? cosR(Aam) + A3 sint(A;7)]/D%

set of ODEs (4) ha®V conserved quantities, namely the
HamiltonianH : (11)
N N 2 The solution (10) has three nontrivial free parameters
H = z(”? — Ajup) + (Z “?) =const  (5) Ay, Ay, and ATip = T — 701. Two examples of this
i=1 i=l soliton, e.g., its intensity profile [which also represents
andN — 1 additional integraldy the refractive index profile (11) of the corresponding
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waveguide], as well as the functiomsand v, are shown equations. When the parametert,, is big in comparison
in the inset of Fig. 1. It is easy to see that one of thewith the soliton width, the solution effectively separates
componentsy) is a zeroth order linear mode of the self- into two independent solitons, with eigenvalugsand A,
induced waveguide and that the other on¢ i§ the first  arbitrarily located on the axis. As we explained above,
order linear mode. For the two examples shown in Fig. 1the number of linear modes in the waveguide coincides
the first soliton is chosen to be a symmetric function of thewith the number of fundamental solitomé in the PCS.
spatial coordinateX7, = 0), while the second one is an Hence, the parameters which control the PCS shape are
asymmetric function4{7, = 2). In the latter case, the theN amplitudes an&v — 1 distancesA;;.
functionsu and v are also asymmetric. This is a new Higher order (i.e., folN > 2) exact solutions of equa-
striking feature of PCSs, and is in contrast to the solutionsions (1) can be obtained using dressing or direct methods
found in [10,11]. It should be emphasized that even fol[23,24]. Doing this, we keep in mind that the solution for
ATy, = 0, the shape, the amplitude and the width of theN = 3 has5 (= 2N — 1) free parameters governing its
PCS are still arbitrary and are defined by the two otheprofile. These are the three eigenvalugs,and two rela-
parameters);. The symmetric solution of [10,11] for tive distancesAr;; between the fundamental solitons of
n =2 is only a very particular case of (10),(11) when this nonlinear superposition.
A = 228y and A, = /2By, where By is a parameter An example of a PCS comprising three linear modes
defined in [10,11]. of its own waveguide is shown in the inset of Fig. 2.
An alternative view of the solution (10) is that it is The eigenvalueg; in this case ard; = 1.22, A; = 3.01,
actually a two-soliton solution of the Manakov set of and A3 = 4.38. The valuesAr;; are small but nonzero.
The PCS profile in this particular case is asymmetric and
almost rectangular with three small peaks at the top. In
ouf  general, the shape is variable and can be symmetric (when
Ar;; = 0) or even single-peaked, as in [10,11]. The three
functionsu; (namelyu, v, andw) are always the three
linear modes of the self-induced waveguide.
506 The understanding of PCS as multisoliton complex
ouff  suggests that collisions must reshape them. In fact, the
N eigenvalues\; must be conserved during the collision,
but theN — 1 relative distanced\r;; must change. As
a result, the shapes of PCSs do not have to be preserved.
9 ““g7 56 This change can be calculated using the Manakov result
[25] for pairwise collisions. Because of integrability,
other components do not influence the results for pairwise
interactions during which any two soliton components are
always “orthogonal” to each other. All lateral shifts are
then additive quantities. Adding up the shifts for each
particular collision gives general collision induced shift
for ith soliton in PCS:

V2 i n (tand; — tand,)? + (A; + Ap)2
8Ai & (tan@; — tand,)? + (A; — Ap)?2°
(12)

i 1.0 i) 0.6 v

©
O intensity & © intensity

o intensity » o intensity

87’,’ ==

where #; and 6, are angles of incidence of two PCS
correspondingly. Clearly, these shifts are different for
each soliton component. The net result is PCS reshaping.
We should also mention that because of integrability of

—— the model, collisions are elastic and radiation waves are
10 not created. The output consists only of the reshaped
nate PCS. Physically the reshaping phenomenon can also

FIG. 1. Collision of a symmetric and an asymmetric PCSbe understood as mutual refraction of PCS on the self-
consisting of two linear modes. The inset shows the initialinduced waveguides. Since all the consituent modes

profiles of the solitons, amplitude profiles of both linear modesyt pcs nave different phase velocities, they experience
u and v of the corresponding waveguide as well as the '

final soliton profiles after the collision. Parameters chosen irfjlﬁterent r_ates of refract|on_ in the impact area of CO”'S',O_n'
calculations are\, = 1.0, A, = 0.5, A, = 0 (for symmetric ~ Self-consistent reassembling of modes after the collision

solution) andA 7, = 0.2 (for asymmetric solution). results in stationary output beam with another shape.
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can be estimated from numerical results and they are in
agreement with Eq. (12). It follows from (12) that when
the order of the PCS is higher, then the reshaping is
stronger. This is a remarkable feature of a PCS collision,
and it differs drastically from a standard collision between
two fundamental bright solitons.

We are grateful to Dr. Adrian Ankiewicz for many
out 2 W useful comments.
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