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Partially coherent solitons of variable shape in a slow Kerr-like medium: Exact solutions
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We carry out a theoretical investigation of the properties of partially coherent solitons for media which have
a slow Kerr-like nonlinearity. We find exact solutions of theNth-order Manakov equations in a general form.
These describe partially coherent solitons~PCSs! and their collisions. In fact, the exact solutions allow us to
analyze important properties of PCSs such as stationary profiles of the spatial beams and effects resulting from
their collisions. In particular, we find, analytically, the number of parameters that control the soliton shape. We
present profiles which are symmetric as well as those which are asymmetric. We also find that collisions allow
the profiles to remain stationary but cause their shapes to change.@S1063-651X~99!08705-X#

PACS number~s!: 42.65.Tg
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I. INTRODUCTION

The theory of self-action of incoherent light beams is
relatively old subject@1,2#. In the temporal domain, the no
tion of temporal incoherent solitons was introduced by H
segawa in a series of works@3–5#, both for plasma waves
and for nonlinear pulses in multimode fibers. However,
creation of incoherent solitons in optical fibers requires
realistically high pulse energies. Photorefractive mater
are probably the only media for experimental studies of
coherent beams, as they generally exhibit very strong n
linear effects with extremely low optical powers@6–9#. The
problem of spatial incoherent solitons began to attract a g
deal of attention only recently@10–16#, after an experimenta
observation of partially incoherent solitons~PCSs! was made
by Mitchell et al. @17,18#. The experiment was done wit
photorefractive material with a drift nonlinearity where c
herent photorefractive solitons had been found to exist
lier @19,20#.

There are a few different approaches to a theoretical
vestigation of incoherent solitons. The most direct appro
is based on the equation for the field correlation funct
@1,2#. A description of spatial incoherent solitons, based
the ‘‘coherent density approach,’’ where the partially coh
ent beam is represented as a superposition of mutually i
herent components, has been developed by Christodou
et al. @10,11#. For the special case of the logarithmic nonli
earity, the symmetric solutions can be written in analy
form @10#.

The description of a partially coherent stationary solit
as a multimode self-induced waveguide@12–15# has been
especially fruitful. The main idea is that the modes must
self-consistent with the soliton profile, as in the case
higher-order solitons@21,22#. Then stationary soliton propa
gation can be obtained by adjusting the amplitudes of vari
mutually incoherent linear modes of the self-induced wa
guide. Due to mutual incoherence, the total light intensity
a direct sum of the intensities of all excited modes. Th
mode beating, which is a feature of coherent interaction
absent. On the other hand, while the qualitative approac
PRE 591063-651X/99/59~5!/6079~9!/$15.00
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useful in producing numerical results, it lacks the genera
required for finding all possible exact solutions, and con
quently completing analysis of the problem. At this point w
should note that there is a slight difference in the meth
used to create PCSs in the cases considered in@12,15# and
@13,14#. In the first instance, the PCSs are formed by sup
imposing a few cw mutually incoherent optical beams. In t
second case, various components of the partially cohe
solitons are derived from an incoherent light source of fin
extent. However, as has been pointed out in@16#, these two
configurations are completely equivalent as far as propa
tion in a slowly responding medium is concerned.

A diffractionless ray optics limit for treating spatial inco
herent solitons has been proposed by Snyder and Mitc
@23#. This approach is accurate when the size of the PC
much larger than the optical wavelength. In terms of a m
timode waveguide, this limit is valid when the number
modes goes to infinity, so that the soliton becomes co
pletely incoherent. This approach is useful for wide beam
However, all intermediate cases must be covered as we

Most of the above-referenced works only showed the
istence of symmetric solutions for PCSs. On the other ha
in the works@3# @the case of one dimensional~1D! solitons in
Kerr media# and@23# ~the case of 3D solitons in media wit
arbitrary nonlinearity! it was pointed out that incoherent sol
tons may have arbitrary shapes in the regime of comp
incoherence. This controversy has been resolved in@24#. It
has been shown that a PCS can be considered simultane
as a self-induced waveguide and also as a multisoliton c
plex. This complementarity in viewing PCSs greatly e
hances our understanding of PCSs and their properties. In
present work, we further develop the theory of PCS
Namely, we showanalytically that PCSs can have profile
which are variable and which are governed by a finite nu
ber of parameters. The number of parameters depends o
number of linear modes comprising the PCS. At one
treme, when the PCS forms a single-moded waveguide,
soliton is coherent, its shape is symmetric, and it is descri
by the sech function. This is the case of a single fundame
soliton. At the other extreme, when the number of mod
6079 ©1999 The American Physical Society
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6080 PRE 59ANKIEWICZ, KRÓLIKOWSKI, AND AKHMEDIEV
goes to infinity, the number of parameters which control
shape is also infinite. In this limit, the soliton effectively h
an arbitrary profile.

The interaction of incoherent and partially coherent so
tons is another interesting area of research which has
been addressed in recent papers@14,24#. In fact, the paper
@24# gave a complete qualitative description of PCSs a
their collisions. Nevertheless, more research is needed to
derstand the interaction of PCSs in nonlinear media an
describe them analytically.

In this paper, we give a complete description of PC
using exact solutions of the generalized Manakov equatio
This allows us to investigate not only the properties of s
tionary PCSs, but their collisions as well. The method
finding exact solutions of Schro¨dinger equations with specia
potentials was developed a long time ago by Kay and Mo
@25#. The starting point was to find potentials which have t
property of being reflectionless. It is important that these
solitonlike profiles at the same time. The multiplicity of su
potentials has been related to the fact that these are
consistent potentials for a set of linear equations. Apart fr
the self-consistency which is required for nonlinear objec
partially coherent solitons are also objects which can be
scribed by the technique@25#.

It turns out that a refinement of the method developed
Kay and Moses is suitable for finding solutions of a nonl
ear set of ordinary differential equations with cubic nonl
earities@26#. The self-consistency requirement relates line
and cubic nonlinear equations. This gives us the chanc
linearize the nonlinear equations and to find solutions wh
are multisoliton complexes. We use this method to find ex
solutions of multiwave equations describing PCSs. Anot
generalization was made by Nogami and Warke@27#. They
presented a method for constructing multisoliton solutions
N coupled nonlinear Schro¨dinger equations~NLSEs!. How-
ever, some important features of linear equations have b
missed in@27#. An important point to realize here is that th
set of functions considered by Nogami and Warke is tra
lationally invariant, thus giving an additional (N21) param-
eters to the solutions which relate to our interest. This
proach, with some modifications which add more parame
into the solution, allows us not only to find stationary mul
component solutions for the set of generalized Mana
equations, but also exact solutions for colliding solitons. U
ing this approach allows us to find solutions for collisions
self-induced waveguides. In particular, we have found ex
solutions for the process of collisions of PCSs. These can
treated using the linear set of functional equations wh
simultaneoulsy give solutions of generalized Manakov eq
tions. Importantly enough, the technique allows us to w
solutions for arbitraryN using just one matrix equation.

II. STATEMENT OF THE PROBLEM

It has been shown that propagation of partially coher
wave packets in nonlinear media with a slow nonlinear
sponse can be represented by a set of equations for the
tually incoherent components of the packet@11,3#. For a
beam ~or beams! consisting ofN components, the corre
sponding equations in media with Kerr-like nonlinear
have the form
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]c i

]z
1

1

2

]2c i

]x2
1adn~ I !c i50, ~1!

wherec i denotes thei th component of the beam,a is the
coefficient representing the strength of nonlinearity,x is the
transverse coordinate,z is the coordinate along the directio
of propagation, and

dn~ I !5(
i 51

N

uc i u2 ~2!

is the change in refractive index profile created by all inc
herent components of the light beam. The medium is con
ered to have a slow response, so that the intensities con
ute to the change of the refractive index but the relat
phases between the components do not.

We are interested in solutions of Eq.~1! in the form of
partially coherent solitons. These are stationary wavegu
self-induced by their own modes. The self-consistency c
dition requires that these solutions be multisoliton co
plexes. Namely, these are nonlinear superpositions of fun
mental solitons propagating in parallel and thus creating
waveguide. This complementary view is important for
physical understanding of PCSs. Fortunately, Eq.~1! is inte-
grable and, in principle, all of its solutions can be found
analytical form. The mathematical treatment of the probl
also admits this complementarity: the equations can be w
ten either as linear Schro¨dinger equations for each mode o
as a set of nonlinear equations. The latter allows us to t
the solution for partially coherent solitons as a nonlinear
perposition ofN solitons related to each of theN compo-
nents, respectively. Let us consider these special solutio

III. PARTIALLY COHERENT SOLITONS

Stationary solutions of Eq.~1! are given by

c i~x,z!5
1

Aa
ui~x!expS i

ki
2

2
zD , ~3!

with real functionsui(x) and real eigenvalueski . Then the
set of Eqs.~1! reduces to the set of ODEs:

]2uj

]x2
12F(

i 51

N

ui
2Guj5kj

2uj . ~4!

This set of equations is also completely integrable for
arbitrary set of real nondegenerateki . Using the results of
@26,27#, it can be shown that its solutions can be found fro
the linear set of algebraic equations:

(
i 51

N
exp@kix#exp@kjx#

kj1ki

ui~x!

A2ki

1
uj~x!

A2kj

52 exp@kjx#, ~5!

which can be written in a matrix form:

D j ,m

um~x!

A2km

52ej , ~6!

where the terms in matrixD are
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PRE 59 6081PARTIALLY COHERENT SOLITONS OF VARIABLE . . .
D j ,m5d j ,m1
ejem

kj1km
~7!

and

ej5 exp~kjx!. ~8!

Henceforth, we will replace theej functions with more
general ones, namely,

ej5A2kjaj exp~kj x̄j !, ~9!

where x̄ j5x2xj and the parametersxj are shifts for each
fundamental soliton. These are parameters which nontrivi
contribute to the shape of the PCS. The new functions a
give a solution for eachuj . The new feature of the function
ej here is the addition, not only of shiftsxj , but also of
arbitrary coefficientsai . We could absorb thexj into theaj ,
but we keep both the coefficientsaj and xj as independen
parameters. The reason is that the coefficientsaj define the
specific choice needed to achieve symmetry in the prese
tion of the solution and thexj define fundamental soliton
locations in the multisoliton complex.

We arrange the eigenvalues required in decreasing o
(k1.k2.k3.•••) and define the positive coefficient

ci j 5
ki1kj

uki2kj u
.

It happens that the choice

ai5)
j Þ i

ci j ~10!

is the one which allows us to obtain the above-mention
symmetry, provided that allxi50. Note that eachai.0. For
example, if there are four eigenvalues, then

a25)
j Þ2

c2 j5c21c23c245c12c23c24.

If, on the other hand, thexi ’s remain arbitrary parameters
then the solution is asymmetric, but is represented in
same compact and convenient form.

The solution components themselves can be written
simple form:

ui~x!52A2kiDi , j
21ej , ~11!

where the vectorej is also given by Eq.~8!. Although the
inversion of the matrixD is a standard technique, it require
some effort to present the solution in a compact and sim
form. This is essentially what is done in the three followi
sections.

As we can see from the above discussions, the solutio
actually a multiparameter family. It containsN soliton pa-
rameters,ki , as well asN shifts,xi . Admitting translational
symmetry of the solution as a whole, we can define all sh
relative to one of them, so that the total solution then c
tains 2N21 free parameters. These parameters give a h
diversity of PCS shapes. These solutions have been
cussed in the literature only partly@13,14#. This means that
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some rough classification of these solutions is needed.
simplest case is when the relative distances between the
tons are larger than their widths. Then the solution set c
sists ofN well-separated solitons, each as a separate com
nent. When solitons are located close to each other,
solution is more complicated. All of these solutions a
stable on propagation.

Below, we will investigate particular cases.

IV. GENERAL „ARBITRARY EIGENVALUES … SOLUTION
FOR N52

For N51, we defineD15 cosh(k1x̄1), so the fundamenta
NLSE soliton isu1(x)5k1 /D15k1 sech(k1x̄1). Let us con-
sider the caseN52. The matrix elements are given by

D11511a1 exp~2k1x̄1!,

D22511a2 exp~2k2x̄2!,

D125D215
2Aa1a2

k11k2
Ak1k2 exp~k1x̄11k2x̄2!.

The specific choice needed to achieve symmetry is

a25a15c125
k11k2

k12k2
. ~12!

Choosing these special coefficients@Eq. ~12!# and invert-
ing the matrixD gives, after some simple algebra,

u156
2k1Aa1

D2
cosh~k2x̄2!, ~13!

and

u256
2k2Aa2

D2
sinh~k1x̄1!, ~14!

where

D25 cosh~k1x̄11k2x̄2!1c12cosh~k1x̄12k2x̄2!. ~15!

This form of the solution is convenient for generalizatio
whenN.2 and can be viewed as the standard form. Ot
forms have been used in the presentation of this solution
Refs.@28–31# and in @24#.

The solution is asymmetric in general for arbitraryk1 and
k2 but becomes symmetric for the special choice ofDx12
5x22x150. Thenu1 andu2 are, respectively, the even an
odd modes of a symmetric self-induced waveguide.
k1 /k252 with k2 arbitrary, thenD2 reduces to 4 cosh3(k2x)
and u1

21u2
2 is simply 3k2

2 sech2(k2x). Figure 1 shows the
two modes as well as the intensity profile for two differe
separations,Dx12. Note that the intensity profile for the sym
metric solution does not necessarily have to have a sin
maximum. Whenk1 andk2 are close to each other, the s
lution may show two peaks in the intensity profile. An e
ample of double peak structure of a symmetric PCS withN
52 is shown in Fig. 6.
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V. GENERAL SOLUTION FOR N53

If N53, the coefficientsaj are

a15c12c13, a25c12c23, a35c13c23. ~16!

Note thata15a22a311.
The explicit solution set for the arbitrary eigenvalue (k1

.k2.k3) case has the form

u1~x!5
2k1Aa1

D3
@cosh~k2x̄21k3x̄3!

1c23cosh~k2x̄22k3x̄3!#,

u2~x!5
2k2Aa2

D3
@sinh~k1x̄11k3x̄3!1c13sinh~k1x̄12k3x̄3!#,

~17!

u3~x!5
2k3Aa3

D3
@cosh~k1x̄11k2x̄2!

2c12cosh~k1x̄12k2x̄2!#,

where

FIG. 1. Transverse profiles and linear modes of the PCS foN
52. Calculations usek151.0, k250.5. For symmetric solution~a!,
Dx1250, and for asymmetric solution~b!, Dx1252.0.
D3~x!5 cosh~k1x̄11k2x̄21k3x̄3!

1a1 cosh~k1x̄12k2x̄22k3x̄3!

1a2 cosh~k1x̄12k2x̄21k3x̄3!

1a3 cosh~k1x̄11k2x̄22k3x̄3!. ~18!

This solution describes both symmetric and asymme
functions. Note thatu1(x) is a positive definite~nodeless!
function, and thus is the ‘‘fundamental’’ mode. Exampl
giving two sets of parameters which lead to symmetric a
asymmetric solutions are given in Figs. 2~a! and 2~b!, respec-
tively. To make the solutions symmetric, we have to set
xi50. Even in this case, the solution is still quite general a
the intensity profile may have a complicated shape includ
double and triple peak structures. There is a special subc
of single peak symmetric solutions havingk153k3 ,k2

52k3, k35arbitrary. In this particular case we find thatD3

reduces toD3532 cosh6(k3x) and that the sum of the inten
sities is(n51

3 un
2(x)56k3

2 sech2(k3x). The components then
agree with those which will be found in Sec. VII.

VI. GENERAL SOLUTION FOR N54

Our calculations allow us to present the explicit symm
ric solution set for the arbitrary eigenvalue (k1.k2.k3
.k4) case:

FIG. 2. Transverse profiles and linear modes of the PCS foN
53. Calculations usek151.0, k250.5, k350.2. Dx125Dx1350
for symmetric solution~a! and Dx1251.5, Dx13521.0 for asym-
metric solution~b!.
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PRE 59 6083PARTIALLY COHERENT SOLITONS OF VARIABLE . . .
u1~x!5
2k1Aa1

D4
@cosh~k2x̄21k3x̄31k4x̄4!

1c24c34cosh~k2x̄21k3x̄32k4x̄4!

1c23c34cosh~k2x̄21k4x̄42k3x̄3!

1c23c24cosh~k3x̄31k4x̄42k2x̄2!#,

u2~x!5
2k2Aa2

D4
@sinh~k1x̄11k3x̄31k4x̄4!

1c14c34sinh~k1x̄11k3x̄32k4x̄4!

1c13c34sinh~k1x̄11k4x̄42k3x̄3!

2c13c14sinh~k3x̄31k4x̄42k1x̄1!#, ~19!

u3~x!5
2k3Aa3

D4
@cosh~k1x̄11k2x̄21k4x̄4!

1c14c24cosh~k1x̄11k2x̄22k4x̄4!

2c12c24cosh~k1x̄11k4x̄42k2x̄2!

2c12c14cosh~k2x̄21k4x̄42k1x̄1!#,

and

u4~x!5
2k4Aa4

D4
@sinh~k1x̄11k2x̄21k3x̄3!

2c13c23sinh~k1x̄11k2x̄22k3x̄3!

2c12c23sinh~k1x̄11k3x̄32k2x̄2!

2c12c13sinh~k2x̄21k3x̄32k1x̄1!#,

where

D4~x!5 cosh~k1x̄11k2x̄21k3x̄31k4x̄4!

1a1 cosh~k2x̄21k3x̄31k4x̄42k1x̄1!

1a2 cosh~k3x̄31k4x̄41k1x̄12k2x̄2!

1a3 cosh~k4x̄41k1x̄11k2x̄22k3x̄3!

1a4 cosh~k1x̄11k2x̄21k3x̄32k4x̄4!

1b1 cosh~k1x̄11k3x̄32k2x̄22k4x̄4!

1b2 cosh~k1x̄11k2x̄22k3x̄32k4x̄4!

1b3 cosh~k1x̄11k4x̄42k2x̄22k3x̄3!. ~20!

Here we have used the convenient definitions@see Eq.
~10!#

a15c12c13c14, a25c12c23c24,

and

a35c13c23c34, a45 c14c24c34, ~21!
while

b15c12c14c23c34, b25c13c14c23c24,
~22!

b35c12c13c24c34.

We note thata11a35a21a4 andb21b35b111. We have
used

ci j 5
ki1kj

ki2kj
, ~23!

where i , j due to the ordering of the eigenvalues. Aga
u1(x) has no zeros.

This solution also describes both symmetric and asy
metric PCSs. Figure 3 shows intensity profiles as well as
mode structure of these solutions for two sets of paramet
one of which leads to symmetric@Fig. 3~a!# and the other one
to asymmetric@Fig. 3~b!# solutions. To make the solution
symmetric, we have to set allxi50. The symmetric solution
still admits arbitraryki and the actual shape of PCS can
quite complicated with up to four peaks. For the special s
class of single peak symmetric solutions withk154k4 ,k2
53k4 ,k352k4, k4 arbitrary, we see thatD4 reduces toD4
5512 cosh10(k4x) and that the sum of the intensities
(n51

4 un
2(x)510k4

2 sech2(k4x).
Generalization of the solutions to anyN.4 is lengthy but

straightforward. In each of these three sectionsN
51,2,3,4) the special subclass has determinantDN

5 1
2 @2 cosh(kNx)#N(N11)/2 and the sum of intensities is(un

2

5(N/2)(N11)kN
2 sech2(kNx). In the next section, we will

further investigate these special solutions.

FIG. 3. Transverse profiles and linear modes of the PCS foN
54. Calculations usek151.0, k250.6, k350.4, k450.2. Dx12

5Dx135Dx1450 for symmetric solution~a! andDx1251.5, Dx13

521.5, Dx1450.5 for asymmetric solution~b!.
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VII. SYMMETRIC SOLUTIONS IN TERMS
OF ASSOCIATED LEGENDRE FUNCTIONS

Suppose that the eigenvalues are equally spaced, i.ek1
5NkN , k25(N21)kN , up tokN2152kN andkN , wherekN
is arbitrary. This is a special case of general solution fou
above. This solution set is based on the modes of the ‘‘se
squared’’ waveguide@32#. The additional condition here i
that eachxi is zero. The above choices obey the conditi
that the sum of the components equals a fixed multiple of
function sech2(kNx). Hence, each component must satisfy

un9~x!1kN
2 N~N11!sech2~kNx!un~x!

5kN
2 ~N2n11!2un~x!, n51,2, . . . ,N.

~24!

Using j5 tanh(kNx) transforms each equation of this for
into the differential equation for the associated Legen
functions, so the solutions can be written in terms of
associated Legendre functions@32#:

un~x!56cnPN
(N2n11)~j!56cnPN

(N2n11)@ tanh~kNx!#,
~25!

where thecn are constants. These functions can be writ
explicitly using @33#

PN
j ~y!5 sechj~y!S dj

dj j
PN~j!D , j5 tanh~y! ~26!

wherePN is the Legendre polynomial of orderN. To satisfy
the original equation set, we need

2(
n51

N

un
2~x!5kN

2 N~N11!sech2~kNx!, ~27!

i.e.,

2(
n51

N

cn
2@PN

N2n11~j!#25kN
2 N~N11!~12j2!. ~28!

Note that each intensityun
2 is a polynomial inj. Equating the

coefficients of the polynomials then provides thecn . Of
course each component can be independently multiplied
61 as the index only involves intensities. Thus forN52 we
obtain c156c256k2 /A3. The solution with no nodes al
ways hasn51, so the ordering agrees with that of the pr
vious sections. Thenu2(x) has one node,u3(x) has two
nodes, etc., and finallyuN(x) hasN21 nodes.

For example, forN52, we have

u1~x!5A3k2 sech2~k2x!, ~29!

u2~x!5A3k2 sech~k2x!tanh~k2x!. ~30!

For theN53 case, we havek153k3 , k252k3 while k3 is
arbitrary; the solution is

u1~x!5
3

4
A10k3 sech3~k3x!, ~31!
d
h-

e

e
e

n

y

-

u2~x!5A15k3 sech2~k3x!tanh~k3x!, ~32!

u3~x!5
3k3

2A6
sech~k3x!@125 tanh2~k3x!#. ~33!

In general, the lowest-order function,u1(x), is proportional
to sechN(kNx) and is symmetric.uj (x) is symmetric if j is
odd and is antisymmetric ifj is even.

The condition of Eq.~27! specifies the coefficients of th
associated Legendre functions. The solution set forN54 is

u1~x!5
k4

2
A35 sech4~k4x!, ~34!

u2~x!5
3

2
A35

2
k4 sech3~k4x!tanh~k4x!, ~35!

u3~x!5
k4

2
A5 sech2~k4x!@7 tanh2~k4x!21#, ~36!

u4~x!5
5k4

2A10
sech~k4x!tanh~k4x!@7 tanh2 ~k4x!23#.

~37!

These solutions have been presented in Refs.@13,14# in re-
lation to PCSs.

VIII. COLLISIONS

The most intriguing property of PCSs is their collisio
behavior. Having analytical solutions to this interesting pro
lem allows us to describe the changes which multisoli
complexes undergo after collisions. It can be shown@27# that
multisoliton solutions of Eq.~1! are simultaneously solution
of the linear set of algebraic functional equations:

(
i 51

N exp~ki* x̄i2 ik i*
2z/2!exp~kj x̄j1 ik j

2z/2!

kj1ki*
c i~x,z!

A2 Reki

1
c j~x,z!

A2 Rekj

52
exp~kj x̄j1 ik j

2z/2!

Aa
, ~38!

where the eigenvalues arekj5l j1 iV j , with l j being the
amplitude andVj5 tanu j being the velocity of each soliton
and with eachxj being related to the initial location of th
soliton center. When dealing with two colliding PCSs, w
have to choose a different value ofVj for each PCS. Hence
we have only two values ofV. This fact somewhat simplifies
the calculations.

Equations~38! can be written in a matrix form:

D j ,m

cm~x,z!

A2 Rekm

52
ej

Aa
, ~39!

where the Hermitian matrixD,

D j ,m5d j ,m1
ejem*

kj1km*
, ~40!
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has a real determinant and

ej5 exp~kj x̄j1 ik j
2z/2!. ~41!

The multisoliton solutions of the generalized Manak
equations can be written in the form

c i52
Di j

21A2 Rekjej

Aa
. ~42!

The solution describes both the form of partially coher
solitons of any order and their collisions. The best way to
the solution~42! is numerical inversion of the matrix becau
the analytical expressions are not as simple as those
PCSs. It is easy to show that forN51, the solution is a
soliton of a single nonlinear Schro¨dinger equation. Other
wise, the solution is a superposition of single soliton com
nents.

Suppose we have two PCSs with componentsN1 andN2,
respectively, such thatN11N25N. Let us consider colli-
sions between them. The interpretation of a PCS as a m
soliton complex suggests that collisions must reshape th
In fact, theN eigenvalueski must be conserved during th
collision, but the N21 relative separations,Dxi j , must
change. As a result, the shapes of PCSs do not have t
preserved. Equation~42! allows us to calculate the
asymptotic values for fundamental solitons after the collis
and, as a result, the change in their relative separations.
change can also be calculated using the Manakov result@34#
for pairwise collisions. All lateral shifts are additive quan
ties. Adding up the shifts of the individual collisions give
the total collision-induced shift for thei th soliton in the first
PCS:

dxi5
1

l i
(

k5N111

N

lnA~ tanu12 tanu2!21~l i1lk!
2

~ tanu12 tanu2!21~l i2lk!
2
,

i 51,2,3, . . . ,N1 ~43!

whereu1 andu2 are the angles of incidence of each of t
two PCSs. A similar expression can be written for solit
shifts in the second PCS. Clearly, these shifts are diffe
for each soliton component in a given PCS. The net resu
PCS reshaping. We should also mention that, because o
integrability of the model, collisions are elastic and radiati
waves are not created. The output consists only of the
shaped PCS, but it contains no radiation.

Examples of collisions are presented in Figs. 4–6. T
plots have been obtained using Eq.~42!. A collision of two
PCSs, each consisting of three fundamental solitons
shown in Fig. 4. The main feature of the collisions is that
PCS remains and propagates as a stationary solution afte
collision, but its shape changes. As we explained above,
reason for this is that theN partial amplitudes in the PCS d
not change during interactions, but the relative separati
xi2xj , of the constituent solitons do change. The net re
is a restructuring of the PCS after a collision.

A spectacular example of this rearrangement is show
Fig. 5. In this case, each PCS is initially slightly asymmet
and consists of six linear modes. Because of the mult
interactions, the shifts@Eq. ~43!# are large, and as a resu
each output beam is almost completely separated into its
t
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fundamental solitons. We can think of this process as
transformation and a separation of a partially coherent be
into its coherent components. This idea could be used
some applications where an initially incoherent wave pac
can be transformed into a number of coherent beams. In
estingly enough, the larger the number of components,
larger is their separation after the collision.

One more example of a soliton collision is shown in F
6. This is a very special case of a collision between a fun
mental soliton and a PCS consisting of two modes. E
dently, in this case, the shape of the PCS solitondoes not
changeafter the collision. This may seem to be rather s
prising in the light of our earlier discussion concerning t

FIG. 4. Collision of two symmetric PCSs, each consisting
three modes. The inset shows the input and output profiles of
PCSs. Parameters chosen in this simulation arel153.0, l252.0,
l351.0, Dx125Dx1350 and the angle of collision is such tha
tanu50.3.

FIG. 5. Collision of two slightly asymmetric PCSs, each co
sisting of six linear modes. The inset shows the input and ou
profiles of the PCS. Parameters chosen in this simulation arel1

56.0, l255.0, l354.0, l453.0, l552.0, l651.0, Dx1250,
Dx13520.2, Dx14520.1, Dx15520.3, Dx16520.1 and the
angle of collision is chosen such that tanu50.3.
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FIG. 6. Collision of PCS formed by two linear modes with a single soliton. The inset shows the initial and output intensity pro
both solitons. Parameters chosen in this simulation arel151.0, l250.65,Dx1250 ~for the PCS!, l351.0 ~for the single soliton!. The angle
of collision is such that tanu50.1253. Note that the profile of the PCS does not change after the collision. This happens only at this
angle of collision when the two constituent solitons which form the PCS experience exactly the same lateral shift during collision so
final separation again isDx1250.
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collisions of partially coherent solitons. However, the exp
nation of this result is very simple. The partially cohere
soliton does not change its shape when all of its compon
experience exactly the same lateral shift during the collisi
This is possible because the lateral shift of each soliton
nonlinear function of its amplitude and velocity. It can b
shown that, for a situation like that in Fig. 6, there exists
collision angle for whichdx15dx2, and, consequently, th
profile of the soliton remains unchanged. It should
stressed, though, that this is only possible for very spec
parameters of the collision. In the general case, the shap
a PCS changes dramatically.
nt.
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-
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IX. CONCLUSIONS

We have found exact solutions of the generalized Ma
kov equations which describe partially coherent solitons a
their collisions. The exact solutions allowed us to find s
tionary profiles of the spatial beams and predict the resul
their collisions. We have found, analytically, the number
parameters that control the soliton shape. We have fo
profiles which are asymmetric in general, but which beco
symmetric for certain values of the parameters. We have
found that collisions allow the profiles to remain stationa
but change their shapes substantially.
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