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Moving fronts for complex Ginzburg-Landau equation with Raman term

Adrian Ankiewicz and Nail Akhmediev
Optical Sciences Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia

~Received 6 January 1998!

Moving fronts, or optical shock-type solitons, are discussed for systems with gain and loss under the
influence of the Raman effect. We present energy and momentum segment balance equations and establish the
exact moving front solutions. We also show here that stationary and moving fronts also exist when we allow
for various other nonlinear terms in the modified Ginzburg-Landau equation.@S1063-651X~98!09611-1#

PACS number~s!: 42.65.Tg
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I. INTRODUCTION

The nonlinear Schro¨dinger equation~NSE! is a model
equation describing a variety of short-pulse propagation p
nomena in optics@1,2#. The NSE with nonconservative term
added is usually called the complex Ginzburg-Landau eq
tion ~CGLE!. Particular areas of application of the CGLE a
all-optical fiber transmission lines and passively mod
locked fiber and solid-state lasers. The NSE can be mod
to include the influence of various physical phenomena
short-pulse generation and propagation. The behavio
ultra-short pulses changes under the influence of these te
For example, third-order dispersion results in pulse asym
try and radiation phenomena@2#. Fourth-order dispersion
may result in solitons with oscillating tails@2#. Self-
steepening causes the leading edge of a pulse to bec
more sharp@1#. There are various works on ‘‘optical wav
breaking’’ as well. The inclusion of the Raman term resu
in a continuous downward shift in pulse frequency@3–6#. In
the time domain, this represents the fact that the glass~opti-
cal fiber! response to the imposed field is not instantaneo
This delay of a few femtoseconds~fs! can affect propagation
of fs signals. Gagnon and Belanger@7# showed that the exac
form of the soliton self-frequency shift follows from a sym
metry analysis of the equation.

Kink-type solutions for the NSE with Raman term prese
were discovered in@8#. In nonlinear optics, a kink is a shoc
wave which propagates undistorted in a dispersive nonlin
medium. Interestingly enough, when gain and loss terms
added to the NSE with the Raman term, the kink solution
still exist. In contrast to the NSE case, the front moves w
a certain velocity which depends on the parameters of
equation.

In the present work we consider moving front solutio
for the modified Ginzburg-Landau equation. We have dev
oped a special technique to find the solution in analytic fo
which is based on energy and momentum balance equa
@9#. In order to do this, we use the ansatz which follows fro
the point symmetry of the equation and use this ansatz in
energy and balance equations. Allowing for nonzero veloc
generalizes this ansatz to cover the case of moving fro
This technique allows us to find the coefficients of the so
tion in terms of the equation coefficients. We consider h
two examples which allow us to obtain the solution this wa
the CGLE with the Raman term and the CGLE with quin
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terms. Other cases can also be considered and exact solu
can be found.

II. FUNDAMENTAL EQUATION

For a fieldc(z,t) in a fiber with nonlinearityN, we may
write the modified NSE in the following form:

icz1
D

2
c tt1cN~ ucu2!50. ~1!

Here D, the group delay dispersion coefficient, is positi
for anomalous dispersion, and negative for normal disp
sion. When we introduce the nonlinear and nonconserva
terms, and consider the Raman and self-steepening eff
we obtain@10–13#

icz1S D

2
2 ib Dc tt1ucu2c~12 i e!

5 idc1tRc~ ucu2! t2 is~ ucu2c! t1~ im2n!cucu4.

~2!

Here the term withs, which is the self-steepening coeffi
cient, and that withtR , which is the Raman coefficient
modify the complex Ginzburg-Landau equation@2#. In the
CGLE, z is the normalized distance,t is the retarded time,c
is the normalized envelope of the optical field,b describes
the gain spectrum,d is a constant gain~or loss if negative!,
ande is a nonlinear gain~or two-photon absorption if nega
tive!. In general, some of these terms, which are additiona
those in the nonlinear Schro¨dinger equation, are needed
the analysis of soliton pulse propagation in optical fibe
@2,14#. We seek a suitable ansatz which can be used to s
some cases of the above equation. To do this, we first a
lyze the special case withb5e5m5d50, and then use the
same functional form in more general cases.

III. ANSATZ

Appropriate transformations for finding solutions fo
these types of equations can be formally described by c
sidering the point-symmetry group of the equation. Ea
transformation then has an infinitesimal operator or gener
associated with it@15,16#. Thus by settingc5U(t)e2 iVz,
and allowing for possible phase chirp by usingU
6723 © 1998 The American Physical Society
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5F(t)exp@if(t)#, with F and f real, we obtain a complex
equation. The real part is

D

2
@Ftt2Ff t

2#1F~F21V!52tR~F2!Ft1sF3f t2nF5,

~3!

while the imaginary part is

d

dt
~F2f t!526DsF3Ft52

3s

2
D

d

dt
~F4!. ~4!

Equation~4! is nontrivial only ifs is nonzero. In that case
we have

f t52
3s

2
D~F2!1c/F2,

wherec is a constant of integration. Thus

f52
3s

2
DE F2dt1cE dt

F2 . ~5!

Then Eq.~3! transforms to

D

2
Ftt1F32F~sc2V!52tR~F2!Ft2 n̄F51c2

D

2
F23,

~6!

where

n̄5n1
3

2
s2DS 12

3

4
D2D . ~7!

We now letF5Aw. This converts Eq.~6! to

D

4
wtt2

Dwt

8w
1w22w~sc2V!5tRwwt2 n̄w31c2

D

2w
.

~8!

We look for solutions withucu approaching zero at one en
~the low end!, and approaching a nonzero constant at
other ~high! end. If we set the constantc to zero, it is clear
that Eq.~8! can be solved usingw5Pg@11tanh(gt)#, where
P andg are constants. This is true because

wt

w
5g@12tanh~gt !#,

and then each term in Eq.~8! is of the form tanhn(gt) for n
50, 1, 2, or 3. We could equally well use the mirror ima
function (t→2t) for w.

Then

f52
3sD

2 E wdt52
3sDP

2
@gt1 log cosh~gt !#.

Therefore the suitable ansatz for stationary front solution

c5APgA11tanh~gt !eid log cosh~gt !eikt2 iVz, ~9!

whered andk are constants.
e

is

We are interested in moving front solutions. Hence,
can allow for solutions to move with velocityV by using

gt→g~ t2Vz!

in Eq. ~9!. In what follows, we prove that this form als
gives the required solution. The real parameters of the s
tion (d, P, g, k, V, andV! will be expressed in terms of th
equation parameters (D, b, e, d, tR , m, andn!. To relate the
parameters, we will use an original technique of balan
equations.

IV. SEGMENT ENERGY BALANCE
FOR FRONT SOLUTIONS

First we consider the balance equations in general fo
with all the coefficients in Eq.~2! being nonzero. Let us
convert to the moving group velocity frame by settingz5t
2Vz. Then, using the ansatz

c~z,z!5 f ~z!exp@ iz~KV2V!#,

we substitute it into Eq.~2!. The resulting equation is

D

2
f 92 iV f 82~KV2V! f 1u f u2f 1 is~ u f u2f !z

5 id f 1 ib f 91 i eu f u2f 1~ im2n!u f u4f 1tRf ~ u f u2!z .

~10!

By multiplying by f * , taking the complex conjugate, sub
tracting the two expressions, and integrating overz, we find
that

D

2
W~z!2

b

2
~ u f u2!81

3

4
su f u42

V

2
u f u2

5dE u f u2dz1eE u f u41mE u f u6dz2bE u f 8~z!u2dz,

~11!

whereW5Im(f8f* ). This equation is a consequence of t
energy balance. We may sety5gt, and, for convenience, se
the lower and upper limits at 0 andy, respectively, both for
the evaluations on the left and the integrals on the right.

The Raman term only causes a frequency shift and n
gain or loss of energy, so it does not affect the segm
energy balance equation for the front solutions. By using
above ansatz we can thus find the gain/loss contribution
each term. For a moving front solution the net gain must
zero. Following this procedure, the terms contain the in
pendent functionsy, tanh(y), tanh2(y), and log@cosh(y)#. The
overall coefficient of each term must therefore be zero.
this case the coefficients for the termsy and log@cosh(y)# are
the same:

d12ePg14mP2g22b~k1dg!250. ~12!

Equating coefficients of tanh(y) we find

D~k1dg!2V52b~d2g12kd2 1
4 g!

22eP26mP2g23sPg, ~13!
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while equating those for tanh2(y) we obtain

4~Dd1mP2!5b~4d223!26sP. ~14!

V. SEGMENT MOMENTUM BALANCE
FOR FRONT SOLUTIONS

On the other hand, by multiplying Eq.~10! by f * 8, taking
the complex conjugate, and adding the two expressions
find that

2~kV2V!~ u f u2!81
D

2
~ u f 8u2!81

1

2
~ u f u4!8

52dW2
n

3

d

dz
~ u f u6!22Ws

d

dz
~ u f u2!

1 ib~ f 9 f * 82 f * 9 f 8!12eu f u2W12mu f u4W

1tRS d

dz
~ u f u2! D 2

. ~15!

By integrating with respect toz we find

~V2kV!u f u21
D

2
u f 8u21

1

2
u f u41

n

3
~ u f u6!

52E Wg~z!dz22b Im E f 9 f * 8dz

1tRE S d

dz
~ u f u2! D 2

dz, ~16!

where

g~z!5d1eu f u21mu f u42s
d

dz
~ u f u2!.

This equation is the result of the balance of momentum.
We now represent the complex functionf using Eq.~9! in

the form which allows for nonzero velocity. This leads
five momentum balance equations:

n01n21n450, ~17!

n11n350, ~18!

g~V2kV!1
D

2
gS 2kdg1k22

g2

4 D1Pg2

1nP2g312~n21n4!50, ~19!

D

2
gS d2g212kdg2

g2

4 D1
1

2
Pg21nP2g31n350,

~20!

and

S d21
1

4D S 3D

2
22bdD1nP212dP~mP1s!1PtR50,

~21!

where
e

n05ka2bFg2

4
~2dg13k!1k3G1tR

P

2
g3,

n15kh21a~k1dg!2b~k13dg!S g2

4
1k2D ,

n25kh31h2~k1dg!1adg2bh42tRPg3,

n35h3~k1dg!1dgh22bh5 ,

and

n45dgh32bdg3S d21
1

4D1tR

P

2
g3.

The coefficients used in the above equations are

a5d1Pg@e1g~mP2s!#,

h25Pg@e12gmP#,

h35Pg2@mP1s#,

h453gFdS k22
g2

4 D1gkS d22
1

4D G ,
and

h55g2FdgS d22
3

4D1kS 3d22
1

4D G .
These equations allow us to find the coefficients of the so
tion in terms of the coefficients of the fundamental equati
Henceforth, we sets50, but of course, this restriction is no
necessary when seeking other types of solutions.

VI. EXAMPLE 1:
MOVING RAMAN FRONT SOLUTIONS

As an example, let us consider moving Raman front s
ton solutions. Thus we setm5n5s50, but taketRÞ0.
Equation~2! then becomes

icz1S D

2
2 ib Dc tt1ucu2c~12 i e!5 idc1tRc~ ucu2! t .

~22!

By using the solution of form~9!, we can equate coeffi
cients of the powers of tanh@g(t2Vz)# and find the required
constants. We obtain

d5
D6AD213b2

2b
,

which is clearly real, and

P5~2bd23D/81d2D/2!/tR .

For convenience, we now define

r 5P~112ed!/~114d2! and a153b/41dD/21
D2

16b
,



e
ro

31

nd
in
rs
m

a

6726 PRE 58ADRIAN ANKIEWICZ AND NAIL AKHMEDIEV
b15r S 2d2
D

2b D22eP and c15r 2/b2d.

Then

g5@2b16Ab1
224a1c1#/~2a1!

and

k5S r 2
gD

4 D Y b.

The only restriction is thatg must be real, i.e.,b1
2.4a1c1 .

The velocity is

V52eP1k~D24bd!2g~b1dD!.

Finally, the frequency shift is

V5g2S PtR1
D

8
2bdD1kS Dk

2
2bg D2gP.

These formulas can be used to present the relation betw
the equation and solution parameters in a simple way. F
Eq. ~9! we see that whent changes from21/2g to 1/2g, the
front intensity increases from 0.269 of its maximum to 0.7
of its maximum. We thus define the ‘‘width’’ of the front to
be 1/ugu. In fact, at t521/g, the intensity is 0.12 of its
maximum, while att51/g, it is 0.88 of its maximum.

One example, giving the Raman kink width, height, a
velocity versuse for a given set of parameters, is shown
Fig. 1. Other dependencies of the soliton parameters ve
parameters of the equation can also be presented on si
plots.

The stationary (V50) kink solution, obtained in@8#, is a
limit of this solution whenb,e→0 and D.0. Then most
solution coefficients are zero, but

g5
23

2tR
and V5

29D

8tR
2 .

Thus the above solution reduces to

c5mADA12tanh~2mt!e2im2Dz

5mADe2mtAsech~2mt!e2im2Dz, ~23!

wherem523/4tR , in agreement with@8#.

VII. EXAMPLE 2:
FRONT SOLUTION FOR QUINTIC EQUATION

We now consider the front solution for the quintic equ
tion, i.e., we takes5tR50 butm,nÞ0. A Painleve analysis
of the equation for this situation has been presented in@17#.
We defineb25(Dn12bm)/(2bn2Dm). Then

d5b26Ab2
21

3

4

and
en
m

us
ilar

-

P5AS bd22dD2
3

4
b D Y m.

We now introduce

g5
r 2

4
12bd,

where

r 258P2
n12md

114d2 2D,

a25
3

4
b1dD23mP21

gr2

4b
,

and

FIG. 1. ~a! The width~as defined in text!, ~b! the height, and~c!
the velocity of the kink solution of Eq.~22! as a function ofe. The
parameters of the equation are given in the diagrams.
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b35
r

b S g1
r 2

4 D22eP,

wherer is as defined in the preceding section. Then

g5
1

2a2
F2b36Ab3

214a2S d2
r 2

b D G
and

k5S g

4
r 21r D Y b,

and the velocity is now

V52eP1k~D24bd!2g~b1dD24mP2!,

while the frequency offset is

V5g2S D

8
2bd2nP2D2g~P1bk!1

D

2
k2. ~24!

The actual solutions in these two sections satisfy both
energy @Eqs. ~12!–~14!# and momentum@Eqs. ~17!–~21!#
balance equations.

b50 solution family

As pointed out in @17#, when b50, there is a one-
parameter family of solutions, as long as a consistency c
dition relating the equation parameters is satisfied. This
lution has the same functional form as that above, w
solution parameters simplifying to

b252n/m

and

P252dD/m.

Furthermore,

g5
4Pm

D

112de

8nd1m~1120d2!
. ~25!
.
-

e

n-
o-
h

Now V2kD can be written in terms of the equation param
eters. The consistency condition is

d5
3

2
dDg21gPFc2

c3
2eG , ~26!

where

c25
5

2
d2eS 2n

d

m
1

1

4D ,

and

c355d21S 2n
d

m
1

1

4D .

For example, we can specifyD, e, n, andm and then use
Eq. ~26! to find d. Then, withV as anarbitrary velocity, we
have

k5S V12P
c2

c3
D Y D,

with V given by Eq.~24! ~with b50). Thus moving front
solutions exist even when the Raman term is absent.

VIII. CONCLUSION

We have found moving-front-type solitons of the e
tended CGLE. We have used the novel energy and mom
tum segment balance equations for analytical calculatio
This method shows clearly the contribution of each term
the overall physical balance. In particular, the weight
losses and gains must add to zero for a valid front soluti
The method allows us to find soliton solutions in a number
cases. In this paper we considered only particular case
kinks for the equation with the Raman term and for the qu
tic CGLE. Other types of solutions~e.g., pulses! and solu-
tions for the equation with other terms can be found in
similar fashion.
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