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Abstract

We study the dynamics of the soliton–radiation interaction in the process of soliton excitation in quadratic nonlinear
media. The focus is on the dynamics of initial signals that are not weakly perturbed exact solitons. We use a combination of
numerical experiments and analytical tools based on the integral conserved quantities of the wave evolution. We show the
rate of convergence of representative, experimentally relevant inputs, to the asymptotic soliton states. A measure of soliton
content of arbitrary input signals is introduced and evaluated in several representative examples. The dynamic evolution of
oscillating solitons is studied using generalized Stokes parameters. q 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Since their re-discovery a few years ago, quadratic
w xsolitons have been a subject of intense investigation 1,2 .

Solitons have been observed experimentally in up and
Ž .down conversion second-harmonic generation SHG and

w xin parametric amplification schemes 3–8 , and many of
their basic properties are well established. In particular,
families of spatial and temporal solitons existing in wave-
guides and in bulk geometries are known, including those
existing in settings with a small Poynting vector walk-off
andror temporal group-velocity mismatch. Under condi-
tions where modulational instabilities cannot grow, and
with the exception of narrow regions near the cutoff
conditions for soliton existence, such families of stationary
solitons have been shown to be stable under propagation
and robust against several perturbations.

Notwithstanding, the evolution equations used to model
soliton formation in quadratic nonlinear media do not
belong to that special class of equations, referred to as
completely integrable, that have soliton solutions in the

w xrigorous mathematical sense 9–11 . Therefore, except at
the limit of large phase-mismatch between the several
waves forming the quadratic solitons, where under appro-
priate conditions they can be treated as perturbed solitons

Ž .of the nonlinear Schrodinger equation NLSE , the tools¨

and miracles that are exclusive of integrable systems do
not hold. Naturally, this fact has important implications.

For example, contrary to integrable systems, the soliton
content of an arbitrary signal, namely the fraction of the
energy that corresponds to a soliton, is not known a priori.
Also, collisions between several solitons and interactions
between solitons and radiation are inelastic. Such features
are intimately related, and are due to the friction, accompa-
nied by energy exchange, that solitons experience when
they interact with each other, and with linear waves. In
particular, the interaction between solitons and linear waves
manifests itself in the process of soliton excitation, or
when exact stationary solitons are slightly perturbed, pro-
ducing oscillating solitons. It is worth stressing that oscilla-
tions also appear in integrable systems, but in such case
they appear only due to nonlinear interference between
solitons and radiation, or between several solitons. Notice
that in integrable systems the binding energy between
solitons is zero.

In the case of quadratic solitons, an important point not
always properly appreciated is that in the excitation of
solitons with arbitrary inputs the shapes of the input
signals are not necessarily close to those given by the
soliton solutions of the governing equations. On the con-
trary, in the majority of cases, solitons are excited with
inputs which fall very far from those solutions indeed. For
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example, such is the situation encountered when light at
only one of the involved frequencies, namely the funda-

Ž . Ž .mental frequency FF or the second-harmonic SH when
solitons are formed in SHG settings, is input to the crystal.
Not so far, but in general still far from the stationary
solitons are the conditions met when both, coherent but
out-of-phase FF and SH signals are initially supplied, or in
the single soliton formation through the inelastic collision
and merging together of several initially separated solitons.
In all such cases, the inputs ought to reshape and adjust
themselves through radiation of dispersive waves to form a
soliton. Intuitively, such inputs can be regarded as to
contain the corresponding radiation together with the soli-
ton that eventually emerges after the light propagation over
an ideal infinite distance.

In this paper we report the salient points of the investi-
gations performed to elucidate the interaction of solitons
with radiation in the process of soliton excitation. The
focus is on situations where the initial conditions are not
close to the exact soliton shapes, so that the fraction of
radiation contained in the input conditions is significant.
We use a combination of numerical experiments and ana-
lytical tools based on the integral conserved quantities of
the wave evolution. Our goal is to expose the rate of
convergence of experimentally illustrative inputs, to the
asymptotic soliton states. We introduce a measure of soli-
ton content of arbitrary input signals and evaluate its value
in several representative examples. We also examine the
impact of radiation attached to oscillating solitons on their
features.

The remainder of the paper is organized as follows.
Section 2 contains the succinct formal statement of the
problem addressed. In Sections 3 and 4 the governing
equations, the integrals of the evolution, and the families
of stationary, bright soliton solutions are presented. Sec-
tion 5 is devoted to the excitation of solitons as monitored
using energy-Hamiltonian diagrams. In Section 6 Stokes
parameters are used to monitor the evolution of oscillating
solitons, and in Section 6 we introduce a measure of
soliton content. In Section 8 our main results are summa-
rized.

2. Statement of the problem

Rigorous solitons of dynamical systems governed by
completely integrable evolution equations enjoy unique

w xfeatures 9–11 . For our present purposes, we notice two
salient points:
Ø Existence of a spectral transform that giÕes the soliton

content, defined as the fraction of total energy that
corresponds to a soliton, of an arbitrary input. For the
NLSE, such soliton content is given by the eigenvalues
of the Zakharov–Shabat scattering equations.

Ø The soliton content remains constant during eÕolution.
Hence, collisions between several solitons and between
solitons and dispersive waves, i.e. wave packets that

considered alone carry a vanishing soliton content,
ought to be elastic. Namely, without energy exchange.

For non-integrable systems, as is the case examined here,
such features are lost. In particular, solitons interact with
linear waves. Therefore, to the best of our knowledge, to
date there is no known way to calculate the soliton content
a priori or at intermediate stages of the propagation in the
case of non-integrable systems. In what follows, we study
the soliton–radiation interaction in the process of soliton
excitation in the case of one-dimensional solitons that form
in quadratic nonlinear media, and introduce an a posteriori
measure of soliton content.

3. Governing equations

We focus here on spatial solitons formed in planar
waveguides under conditions for type I SHG, but the
analysis can be extended to higher-dimensional geome-
tries, to temporal solitons, and to general three-wave mix-
ing interactions. In the slowly-varying envelope approxi-
mation, the beam evolution can be described by the re-

w xduced equations 12

E a r E 2a1 1
)i y qa a exp yibj s0,Ž .1 22Ej 2 E s

E a a E 2a E a2 2 2 2i y y id qa exp ibj s0, 1Ž . Ž .12Ej 2 E sE s

where a and a are the normalized amplitudes of the FF1 2

and SH waves. In the case of spatial solitons rsy1 and
asyk rk , where k are the linear wave numbers at1 2 1,2

both frequencies. Actually, a,y0.5, so in the numerics
we always set asy0.5. The transverse coordinate s is
normalized to a beam width h, and the propagation coordi-
nate j is normalized to the diffraction length at the FF
Ž 2 . 2l sk h r2 . The parameter b is given by bsk h Dk,d1 1 1

where Dks2k yk is the wave vector mismatch. The1 2

parameter d accounts for the presence of Poynting vector
walk-off that occurs in birefringent media when propaga-
tion is not along the crystal optical axes. Walk-off is
absent in non-critical and usual quasi-phase-matching ge-
ometries. For our present purposes it is convenient to
investigate configurations without walk-off, and we here-
after set ds0. For a soliton width of about h;15 mm
that yields a diffraction length l ;1 mm, j in the ranged1

0–20, corresponds to a few cm.
Central to our approach in this paper is the fact that
Ž .Eqs. 1 define an infinite-dimensional Hamiltonian sys-

tem, with a conserved Hamiltonian that in the absence of
walk-off is given by

2 2E A a E A1 21Hsy r qH2
E s 2 E s

2
) 2 2 )< <yb A qA A qA A d s, 2Ž .2 1 2 1 2
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Ž .where we have defined A sa , and A sa exp yibj .1 1 2 2

The beam intensity or energy flow given by the Manley–
Rowe relation

2 2< < < <Is I q I s A q A d s, 3Ž .H1 2 1 2

is also conserved. One finds that the stationary solitons of
Ž .Eqs. 1 occur at the extrema of the Hamiltonian for a

given energy flow. This is an important result that provides
a powerful tool to analyze the dynamics of the wave
evolution. We shall make use of such a tool shortly below.

4. Stationary solitons

Ž .The known stationary solutions of Eqs. 1 have the
Ž . Ž .form a sU s exp ik j , where k , with k s2k qb ,n n n n 2 1

are the nonlinear shifts of the wave numbers. The forms of
U and U are given by the equations1 2

r d2U1
qk U yU U s0,1 1 1 222 d s

a d2U2 2q 2k qb U yU s0. 4Ž .Ž .1 2 122 d s

Here r, a and b are given by material and linear wave
parameters, while the nonlinear wave number shift k1

parametrizes the families of solitons. At present only the
Ž . w xzero-parameter solution of Eqs. 4 given by 1,13,14

2 2' ' 'U s3m a r sech m s, U sy3rm sech m s, 5Ž .1 2

Ž .that holds at bsy2m ay2 r , k sy2 rm, with m)01

being a free scaling parameter, is known in analytical
w xform. The whole families were found numerically 15,16 .

Useful approximate expressions can also be obtained by
w xusing variational methods 17 . Central to our analysis here

is the relation between the energy flow and the Hamilto-
nian of the solutions. One finds that the one-dimensional

3 1solutions occur at Hsy k Iq b I . Thus, the curve1 25 5

Ž .H I has to be calculated numerically. Figs. 1–4 show the
outcome of the calculations at positive and negative wave

w xvector mismatches, and at exact phase-matching 18 . At
Ž .bs0 one can use the similarity rules of Eqs. 4 to obtain

3 5r3H sy c I , where c is a constant. Numerically,bs0 1 15

one finds c ,0.206.1

5. Soliton excitation

As mentioned above, the stable stationary solutions
realize the absolute minimum of H for each I. Therefore,
to monitor the dynamics of the evolution of arbitrary input
conditions, one can compute the values of the Hamiltonian
and energy flow in a window of finite width centered at
the peak of the evolving localized fields, which shall be

˜ ˜Ž . Ž .referred as H j and I j , and plot their evolution in the
Ž .corresponding H I diagram. Explicitly,

s qLpĨ j s i j ,s d s, 6Ž . Ž . Ž .H
s yLp

where s is the position of the soliton peak, 2 L is thep
Ž .width of a suitable calculation window, and i s is the

˜energy flow density. An analogous expression holds for H.
The length L can be chosen to be a few soliton widths, so
that the calculation window contains all the soliton inte-
grals up to the desired numerical accuracy. An input that
does not coincide with a stationary solution either spreads
or it reshapes and radiates energy away and eventually

˜Ž .excites a stable stationary soliton. In the first case, H ` s
˜ ˜Ž . Ž .0, I ` s0, whereas in the second situation H j and

Ž̃ .I j approach one point of the curve corresponding to the
stationary solutions. On intuitive grounds, the trajectory

Ž .from the initial to the final point of the H I diagram, and
the rate of convergence, can be viewed as dictated by the
interaction between the soliton, defined as the soliton that
is eventually excited, and the radiation that hence can be
viewed as being attached to it.

We examined initial conditions with different shapes,
peak amplitudes and relative global phases of the FF and

Ž .SH signals, with the general form: a j s 0,s s1
aŽ . Ž . bŽ . Ž .A sech s , a j s 0,s s B sech s exp if . Impor-2 0

tantly, notice that the width of such fields is fixed. Because
Ž .of the form of the analytical solution 5 , in all the results

shown through the paper corresponding to bF0 we set
asbs2. Then, the input conditions correspond to the
point of the I–H diagram given by

2 2 2 2Hs 4 A q 5bq1 B y8 A Bcos f , 7Ž . Ž .Ž .015

4 2 2Is A qB . 8Ž . Ž .3

In some of the results presented for b)0 we set as1
and bs2. Then, the initial conditions correspond to the
point of the I–H diagram given by

1 22 2 2Hs A q 2bq B y4 A Bcos f , 9Ž .Ž .Ž . 03 5

22 2Is2 A q B . 10Ž .Ž .3

At b)0 we frequently consider that no SH light is
present at the input, so that then the initial conditions
become HsA2r3 and Is2 A2.

We start with the latter case and bs10. Fig. 1 shows
the trajectories followed by input conditions with increas-
ing energy in the corresponding I–H diagram. As dis-
cussed below in Section 7 for such inputs there is a
minimum threshold value of the input peak amplitude for
the excitation of solitons, even though all the cases shown
in the plot correspond to conditions above such threshold.
First, we examine the rate of convergence to the asymp-
totic soliton states. The full triangles and open circles
shown for each trajectory indicate the points reached at the
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Fig. 1. Evolution of several input conditions, and families of
stationary solitons represented in energy flow-Hamiltonian dia-
grams. Solid lines: families of stationary solitons; dashed lines:
‘‘trajectories’’ followed during propagation. Positive wave vector

Ž .mismatch b s10 . Input conditions: Bs0, as1, and labels
indicate the value of A. Full triangles: location at j s10; open
circles: j s20. Under typical experimental conditions for spatial
soliton formation with widths of 10–20 mm the normalized
distance j s20 corresponds to a crystal length of about 4 cm.

propagation distances js10 and js20, respectively.
Naturally, the exact location of such points depends slightly
on the width of the numerical window chosen to calculate
the values of I and H around the soliton. However, for
judicious choices of such a width the differences are not
even visible in the plots. The first conclusion to the raised
from Fig. 1 is that under the conditions of the plot, namely
reasonably large positive wave vector mismatch and mod-
erate input energies, the inputs converge fast to the final
soliton state. This is because under such conditions the
beam evolution can be viewed as given by a perturbed

w xNLSE for the FF wave 12 . The curves corresponding to
the input peak amplitudes As6 and As7 reveal a new
feature, that we only observed to occur with large positive
values of b. Namely, an abrupt change of behavior at a
given propagation distance. During the first propagation
units, the fields reshape fast so that the Hamiltonian of the
evolving fields decreases rapidly, but after that the evolu-
tion takes place with almost constant Hamiltonian.

Figs. 2 and 3 show the typical evolution at a small
Ž .positive phase-mismatch bs3 and at exact phase-

Ž .matching bs0 , respectively. The plots show the evolu-
tion of various inputs with identical energy flow but
different features, in terms of relative peak amplitudes and
phases of the FF and SH waves. In Fig. 2 the FF and SH
inputs are in-phase, but have different peak amplitudes. In
Fig. 3 the amplitudes of the inputs are AsBs3 in all
cases, and the various input conditions correspond to dif-

Ž .Fig. 2. Analogous to Fig. 1, but nearer phase-matching b s3 .
Input conditions: as2, bs2, f s0, and labels indicate the0

values of A and B.

ferent values of the relative global phase f . When the0

input conditions fall close to the curve corresponding to
the exact family of stationary solitons the input excite a
soliton. However, the point shown in Figs. 2, 3 is that even
though in all cases the input energy is far above the
threshold required for soliton formation, when such energy
is not properly supplied, the beams spread. In particular,
Fig. 3 illustrates the situation encountered in practice when
solitons are intended to be formed supplying both a FF
wave and a coherent but out-of-phase SH seed at the input

Ž .Fig. 3. Analogous to Fig. 1, but at exact phase-matching b s0 .
Input conditions: as2, bs2, As3, Bs3, and labels indicate
the value of f . Open squares: location at j s5, full triangles:0

j s10; open circles: j s20.
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of the quadratic crystal. The plots show that the relative
phases between the signals strongly impact the fraction of
the input energy that is eventually carried by the excited
soliton. For example, with in-phase signals the soliton
formed carries almost all the input energy, whereas when
f sp , solitons are not formed, so that all the energy0

spreads in the form of radiation.
The evolution of arbitrary inputs at negative b is more

complicated. Fig. 4 shows a few representative examples.
Here the open circles and triangles shown for each trajec-
tory indicate the points reached at the propagation dis-
tances js20 and js50, respectively. Recall that for the
typical conditions met in the experimental formation of
spatial solitons with widths of some 10–20 mm, the nor-
malized distance js50 would already correspond to a
theoretical crystal length larger than 10 cm. To stress the
differences between the dynamical regime explored here
and that considered in previous works where the evolution
of weakly perturbed exact solutions was studied, the evolu-
tion from point labeled E in Fig. 4 corresponds to the input

w xconditions considered by Etrich et al. 20 , in the case of
Ž .the perturbed analytical solution 5 with the amplitude

Ž . w xperturbation, as defined in Eq. 2 of Ref. 20 , equal to
0.25, which is the largest perturbation amplitude allowed
to avoid phase dislocations across the transverse axis. The
drastic difference in the input conditions considered is
clearly visible.

First, Fig. 4 shows that by and large the rate of
convergence of the inputs towards the asymptotic steady

Fig. 4. Analogous to Fig. 1, but at a small negative wave vector
'Ž .mismatch b sy3 . I: As3, Bs3, f s5p r8; II: As 17 ,0

Ž .Bs1, f s0; III: As3, Bs3, cos f sy1r27. In all cases:0 0

as2, bs2. Open circles: location at j s20; open triangles:
j s50; big full dot: j s105. Point labeled E corresponds to a

w x Žweakly perturbed analytical solution considered in Ref. 20 see
.text for details . Solid curve: family of stable solitons; long-dashed

curve: unstable solutions.

state is much slower than at b)0. This is because of the
stronger interaction between solitons and radiation, mani-
fested by the excitation of the so-called soliton ‘‘internal
modes’’, at negative b. We will return to this point in the
next section. Fig. 4 also illustrates that even though differ-
ent initial conditions can correspond to the same point of
the I–H diagram, as it is the case for the two conditions

'� Ž . 4 �As3, Bs3, cos f sy1r27 and As 17 , Bs1,0
4f s0 shown, their evolution is different thus so is the0

�soliton excited. The evolution of the input with As3,
4Bs3, f s5pr8 shows the excitation of one of the0

w x‘‘quasi-bound modes’’ discovered in Ref. 20 . The mode
shown exists for an energy below the threshold for station-
ary soliton existence. The fields radiate energy while their
trajectory tends to the Is0, Hs0 point. Yet, such leak is
extremely small, hardly distinguishable from the accuracy
of the numerical scheme. For the particular conditions
considered in Fig. 4 we observed excitation of such modes
with inputs having Hf0. For clearly positive values of

� 4H, such as for As3, Bs3, f sp , the beams spread.0

6. Oscillating solitons

The trajectories followed by the evolving signals in the
I–H diagrams shown in Figs. 1–4 give important, but only
partial information about the wave evolution. For example,
in Fig. 4 the evolving signals seem to ‘‘cross’’ the family
of unstable solutions, but such is not necessarily the case
because the evolution takes place in an infinite-dimen-
sional space, while I–H diagrams are only two-dimen-
sional. Also, by and large the convergence of the input
conditions to the asymptotic steady states reached at j™`

shown in Figs. 1–4 takes place through the generation of
‘‘oscillating solitons’’. Such oscillations can be very per-
sistent but they are not visible in the above trajectories,
except for the fact that they make the convergence rate
very slow.

To gain further insight into the dynamics of the wave
evolution we introduce generalized differential Stokes pa-
rameters defined as

< < 2 < < 2S j ,s s A q A , 11Ž . Ž .0 1 2

< < 2 < < 2S j ,s s A y A , 12Ž . Ž .1 1 2

1
2 ) ) 2S j ,s s A A qA A , 13Ž . Ž .2 1 2 1 2< <A1

1
2 ) ) 2S j ,s s A A yA A , 14Ž . Ž .3 1 2 1 2< <A1

which verify

S2 qS2qS2 sS2. 15Ž .1 2 3 0
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Ž .Writing general fields in the form A j , s sn

Ž . w Ž .xR j ,s exp if j ,s , with R and f being real func-n n n n

tions, one has

S sR2qR2 , 16Ž .0 1 2

S sR2 yR2 , 17Ž .1 1 2

S s2 R R cos 2f yf , 18Ž .Ž .2 1 2 1 2

S s2 R R sin 2f yf . 19Ž .Ž .3 1 2 1 2

The stationary soliton solutions verify f sk , f sk y1 1 2 2

b , which leads to S s0. We are interested in the evolu-3

tion of the generalized differential Stokes parameters eval-
Ž . Ž .uated at the soliton peak, namely s j sS j ,ss0 ,m m

ms0y3. The parameters s –s –s evolve in a Poincaré1 2 3

sphere of radius s , but the value of s changes dynami-0 0

cally due to the emission of radiation from the solitons.
For some purposes it might be useful to monitor the
evolution of the parameters scaled to s , but to make the0

radiative effects visible here we do not proceed that way.
Rather, we evaluate the four s parameters and monitorm

their dynamical evolution by plotting their trajectories in
suitable two-dimensional representations.

The sketch displayed in Fig. 5 shows the loci of the
families of stationary soliton solutions in the s –s –s1 2 3

space, together with a few illustrative excitation points.
The most symmetric excitation conditions are located along
either of the axes. The families of stationary solutions are
located at the plane s –s indeed. Because at bs0 all the1 2

Fig. 5. Sketch of the Poincare sphere defined by the generalized´
Stokes parameters showing the loci of the families of soliton
solutions for different values of b , together with a few excitation

Ž .points labeled E1–E3 whose evolution is shown in Figs. 7 and 8.
The spheres drawn with radius s s18 and s s32 correspond to0 0

the inputs of Figs. 2–4 and Figs. 7, 8, respectively.

Fig. 6. Sketch showing the loci of the families of stationary
soliton solutions existing for different values of b represented
using the scaled Stokes parameters. The arrows indicate the
direction of increasing soliton energy.

stationary solutions are self-similar, they are located at the
straight line
s2 4r3sc , with s sc I , 20Ž .a 0 bs1

where c and c are numerical constants. One finds c ,a b a

5.286, and c ,0.297. At b)0 the cut-off point forb

soliton existence, given by k s0, is located at the origin1
Ž . Ž .s ,s s 0,0 . At b-0 cut-off occurs at k s0, yield-1 2 2

Ž 2 .ing the point yb r4,0 . The locus of the zero-parameter
Ž .analytical solution given by expression 5 at b-0 is

located at

1 2 2's sy b , s s 2 b , 21Ž .1 22

with
3 2s s b . 22Ž .0 2

The diagram that is obtained using the scaled parameters
s ss rs , ns1–3, is shown in the sketches of Fig. 6.˜n n 0

The arrows appearing in the drawing indicate the direction
of increasing soliton energy. In this more compact repre-
sentation, all stationary solutions existing at bs0 are

Ž .located at a single point, numerically given by s ,s ,˜ ˜1 2
Ž . Ž .0.186,0.983 , cut-off occurs at the points 1,0 at b)0,

Ž .and y1,0 at b-0, and the zero-parameter analytical
'Ž . Ž .solution 5 is located at the point y1r3,2 2 r3 .

The plots shown in Figs. 7 and 8 illustrate the typical
evolution as seen using the non-scaled Stokes parameters,
in the two representative cases. The families of stationary
solutions, which are all located in the s s0 plane, are3

also shown. In Fig. 7, the excitation conditions correspond
to the points labeled E1 and E2 in Fig. 5, and in both cases
bsy3, As4, and Bs4, but for E1 one has f sp ,0

whereas E2 corresponds to f spr8. As shown in Fig.0
Ž .7 a , the input conditions E1 spread, thus all the non-scaled
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Fig. 7. Evolution of the excitation points E1 and E2 of Fig. 5.
Normalized wave vector mismatch b sy3. E1 spreads; E2 ex-
cites an oscillating soliton. Input conditions: as2, bs2, As4,
Bs4. For E1: f sp ; for E2: f sp r8. The plots show the0 0

evolution until j s200.

Stokes parameters s converge to the origin. Physically,m

with f sp the provoked energy exchange between the0

FF and SH waves prevents the formation of solitons.
Geometrically, such difficulty is manifested by the fact
that the excitation conditions E1 belong to the lower
semi-space s -0 while the soliton states lay far, in the2

upper semi-space.
The input conditions corresponding to E2 reshape and

excite a soliton. The dynamics of the evolution is more
Ž . Ž .visible in the zooms displayed in Figs. 7 b and 7 c . Such

plots show that the FF and SH waves are locked both, in
amplitude and in phase. After the initial reshaping, the
evolution towards the asymptotic soliton state is extremely
slow. In Fig. 7 the evolution is shown until js200, but
no significant differences were observed when the propa-
gation distance was increased several orders of magnitude.
The plots clearly stress the oscillating nature of the corre-

w xsponding solitons 19 .
The oscillations are due to the soliton interaction with

the radiation present and to the excitation of a so-called
w xsoliton ‘‘internal mode’’ 20–22 . In the case of quadratic

solitons, internal modes have been shown to exist only for

given ranges of wave vector mismatches and soliton ener-
w xgies 20 . When they are absent, as in the evolutions

shown, e.g., in Figs. 1 and 2, the input conditions shed
most of the radiation away during the first tens of propaga-
tion units and then converge fast to the stationary soliton
states. To allow direct comparison with Fig. 7, a typical
example of such evolution as seen using the generalized
Stokes representation is shown in Fig. 8. However, under
the conditions where internal modes exist, the oscillations
are extremely persistent. Recent perturbative investigations

w xreported in Ref. 22 appear to suggest that at large dis-
tances the radiation is emitted at a logarithmic rate, and we
indeed had found numerically that the oscillations persist

Ž 6.beyond one million propagation units i.e., j)10 ex-
hibiting decay rates hardly distinguishable from the actual
accuracy of the numerical scheme.

Ž .Fig. 7 a shows another important feature. Namely, the
fact that even though in the I–H diagram, many excitation

Ž .conditions e.g., E2 during their dynamical evolution seem
to ‘‘cross’’ over the family of unstable stationary solutions
arising near the cut-off for soliton existence, such is not
the case indeed. Therefore, such unstable solutions have a
very limited relevance to the experimental excitation of
solitons.

Fig. 8. Analogous to Fig. 7, but at positive wave vector mismatch
Ž .b s3 . Input conditions: as2, bs2, As4, Bs4, f s0.0
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There are a large variety of excitation conditions whose
evolution can be usefully monitored using the above repre-
sentation. In general, analogous qualitative features as
those shown in Figs. 7, 8 are obtained. Thus, we devote
the remainder of the paper to study a new feature, that can
be viewed as the measure of the efficiency of the process
of soliton excitation. Namely, the fraction of input energy
that is captured by the excited soliton.

7. Soliton content

We restrict to input conditions at which at most only
one soliton is formed. In such case, one can define the

Ž .single soliton content SSC of an arbitrary input as the
fraction of the input energy that is carried by the soliton
that is eventually excited. Namely,

Isoliton
SSCs . 23Ž .

Iinput

When the input does not excite a soliton one has SSCs0,
and when the input is an exact, stable soliton solution of
the governing equations SSCs1. Otherwise, 0-SSC-1.

As mentioned above, in the case of dynamical systems
governed by completely integrable evolution equations the
SSC is a constant of the evolution. Hence, it can be
calculated at any instance of the propagation, and in
particular at js0, using the corresponding Lax pair of the
system. For example, in the case of the NLSE one has

2h
SSCs , 24Ž .

Iinput

where h is given by the imaginary part of the eigenvalue
of the Zakharov–Shabat scattering equations calculated for
the input conditions or at any instance of the evolution.
The details of the procedure are particularly well described

w xin Ref. 9 . For weakly perturbed integrable systems an
intuitive measure of soliton content can still be obtained by
monitoring the evolution of the eigenvalues of the corre-
sponding Lax pair. Relevant examples include a variety of

w xperturbed NLSEs 23–30 , and also quadratic solitons un-
w xder appropriate conditions far from phase-matching 31,32 .

However, for non-integrable evolution equations as it is
Ž .the case of 1 , to date a precise definition of soliton

content can only be given a posteriori. In other words, SSC
can only be calculated at j™`. Namely,

1
˜SSCs lim I j , 25Ž . Ž .

I j™`input

Ž̃ . Ž .where I j is given by 6 .
We have evaluated such soliton content for several

illustrative examples. Fig. 9 shows the soliton content
obtained at bs10 and bs3 when the input comprises

Fig. 9. Soliton content at positive wave vector mismach for
Ž .sech-like FF signals as1 , as a function of the input peak

Ž .amplitude A. No initial SH Bs0 . Labels indicate the value of
b. Discrete points are the results of numerical experiments, the
solid lines are only to help the eye. Dotted lines are estimates
from the limiting NLSE.

Ž . Ž .only light at the FF with the form a js0,s sA sech s ,1

as a function of the input peak amplitude A. The dotted
lines are the estimates for such inputs calculated using the
Zakharov–Shabat scattering equations associated to the

Ž .NLSE that is obtained from 1 when b41 and conver-
sion to the SH is negligible. One gets

'b 'SSC s 2 Ay b , 26Ž .Ž .NLSE 2A

'for AG b r2. The plot reveals that there is a minimum
peak amplitude below which the soliton content vanishes,
thus the signals spread, and there is an optimum input peak
amplitude at which the soliton content reaches its maxi-
mum value. Such critical peak amplitudes, as well as the
value of the maximum soliton content, depend on the value
of b. At b)0, the threshold input FF peak amplitude for
soliton formation is given by the NLSE limiting value

'A s0.5 b . At b41, the limiting NLSE predicts thatth

the maximum soliton content, which for the ideal NLSE
'would be SSC,1, is reached with A , b . Fig. 9m

shows that at bs10 such expression gives a good esti-
mate of the actual value and even at bs3 it gives an
useful approximation.

One observes that the maximum value of the SSC is
smaller at bs3 than at bs10. This is because the shape
of the input signals differ a larger extent from the corre-
sponding soliton families, mainly because for a given
soliton energy, as b decreases the fraction of energy

Ž .carried by the SH wave which is not initially supplied
increases.
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Fig. 10. Analogous to Fig. 9, but at exact phase-matching and at
negative wave vector mismach and for input conditions with
as2, bs2, As3 and Bs3, as a function of the phase
difference f between the FF and SH input signals. Labels0

indicate the value of b. Full square: minimum non-vanishing
soliton content possible at b sy3 for inputs with Is24, numer-
ically equal to f0.49.

Fig. 10 shows the soliton content calculated at bs0
Ž .and at bsy3 with the input conditions a js0,s s1

2Ž . Ž . 2Ž . Ž .A sech s , a js0,s sB sech s exp if , with As2 0

Bs3 in all cases, as a function of the global phase f . In0

agreement with Figs. 3 and 4, the soliton content is found
to decrease with increasing de-phasing, even though not
necessarily monotonically as shown by the curve corre-
sponding to bsy3.

Important information can be obtained from curves of
soliton content for a variety of input conditions that was
not possible to examine here. For example, in the case of

Ž Ž ..two-dimensional i.e., 2q1 solitons propagating in bulk
crystals, curves of soliton content as a function of wave
vector mismatch, input power or beam ellipticity have
direct applications to the design of soliton devices for

w xoptical beam clean-up 33 , and for bandwidth-enhance-
w xment in second-harmonic generation schemes 34 .

8. Concluding remarks

To summarize, we have studied the dynamics of the
excitation of quadratic solitons from input conditions that
contain a significant amount of energy that is gradually
radiated away. Our goal was to target two crucial features
on regard to soliton formation: The soliton content, or
fraction of the input energy flow that is captured by the
excited soliton, and the rate of convergence of the input
light signal to the asymptotic soliton states.

We have shown that a great deal of the important
information about the process can be exposed by monitor-
ing the wave evolution using energy flow-Hamiltonian
diagrams and generalized Stokes parameters. The outcome
stresses the oscillating nature of many quadratic solitons
when they are excited with realistic input signals. A mea-
sure of soliton content of arbitrary inputs has been intro-
duced and evaluated in several illustrative examples. Such
calculations revealed, in particular, that with only funda-
mental input light the soliton content exhibits a maximum
at a finite input peak amplitude. Thus, increasing the input
energy does not necessarily lead to a larger soliton content.
The optimum input peak amplitude and maximum soliton
content attainable have been shown to depend, in particu-
lar, on the existing wave vector mismatch. Eventually, we
emphasize that the approach discussed has applications to
soliton excitation in analogous but different settings mod-
eled by non-integrable evolution equations.
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